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Motivation: Generalization of Riesz-Thorin to general Banach spaces. Recall that
Riesz-Thorin said that given a linear map 7" which is bounded between two pairs of LP-
spaces, say from LP° to L% and from LP' to L', then it will also be bounded between
all the pairs in between, i.e. from LP? to L%, 6 € [0,1]. For general Banach spaces we
will define interpolation spaces for a given 6 € (0,1). The main result is then that if T
is bounded between two pairs of Banach spaces, then it will also be bounded between all
of the interpolation spaces.

Let E,F be Banach spaces. We first consider the case where F' C E continuously
injected. Put
Q:={z€C|0<Rez< 1}

Define

He r(Q) = {u e Cy(Q, E) | u holomorphic on Q, u(1+iy) € F and
AC: lu(l +iy)|r < C, Vy € R}

(For future notation, I will just write Hg ).

Definition 1. For 6 € [0, 1] we define the interpolation space [E, Fy by
[E,Flg ={u(0) | u € Hp,r}
Proposition 1. [E, F|y is a Banach space.

Proof. As vector spaces, we clearly have that [E, Flp = Hp r/{u : u(d) = 0} (by the

isomorphism u(#) +— [u]). We will show that Hg r is a Banach space and that {u :

u(f) = 0} is a closed subspace. Then we know that the quotient is also a Banach space.
For u € HE,F, define

[ull#p,r = sup [Ju(iy)| g + sup lu(1 + iy)||F
yER yeR

We need to check that this is a norm. It is easy to see that it satisfies the triangle
inequality and behaves well under multiplication with scalars. It remains to check that
llull#z » = O implies u = 0. If ||ullz; = 0, then u(iy) = 0 and u(1l +4y) = 0 for all y € R
by definition of the norm. Recall Lindeléf’s Theorem from the lectures: If v is bounded
by A on the left boundary of 2 and by B on the right boundary, and if v doesn’t grow



too fast, then [[v(0 + it)|| < A*?BY for all € [0,1]. In this case, we have that u is
bounded by 0 on the boundaries so it follows that u = 0 everywhere.

We proceed to show that Hp r is complete with this norm (hence a Banach space).
Let (upn)nen be a Cauchy sequence in Hp . Since || - ||r > || - ||z, we get by Lindelof’s
Theorem that

[ullg,» = sup [luiy) ||z + sup [[u(l +iy)llz = sup [[u(z)]| e
yeR yER 2€02

Hence (u,) is also a Cauchy sequence in C,(Q, E), and since we know that this is a
Banach space, we get that u, converges to some u € Cy(Q, E). We will show that
u € Hp,r and that u, — v in Hg r. For every z € Q we have that u,(z) — u(z) in E.
Note that for every y € R we have that (u,(1 4 iy)) is a Cauchy sequence in F', hence
converges to a limit @(1+4y) € F' (hence also in E). By uniqueness of limits, we get that
u(l +idy) = u(1 +iy) € F. Moreover, for € > 0:

[u(X +ay)llr < lul +iy) —un(1 + iy)llr + lun(l +iy)[|r < C +e

if n is big enough. Hence [|u(1 + iy)||r < C. It remains to show that u is holomorphic.
By the Cauchy Integral Theorem we have that

1 n 1
un(z0) = / un(2) dz - — u(z) dz
211 OBy (z0) 20 — % 211 OBy (z0) 20 — %

as n — oo since u, converges uniformly to u. Hence w satisfies the Cauchy Integral
Theorem so u is holomorphic. Thus v € Hg r and it is clear that u,, — v in Hg r (since
we have pointwise convergence).

Finally, we prove that U = {u € Hp r | u(f) = 0} is a closed subspace of Hp r. Let
(un) be a sequence in U that converges to u € Hp p. We saw above that this implies
that w, converges uniformly to u, in particular u,(8) = 0 converges to u(6) so u(f) =0
and hence u € U. O

Note that for # = 0 we have that [E, F]o = E and for § = 1 we have that [E, F]; = F
so we can interpret the spaces [F, Fy as being the spaces lieing in between E and F.

Proposition 2. Let (E,F) and (E,F) be as above. Let T : E — E be continuous and
linear such that T : F — F continuously. Then for all 6 € [0,1]: T : [E, Flg — [E, F)g
continuously.

Proof. Let x € [E, Fly. There exists a u € Hp, () such that u(f) = z. T want to show
that Tu € Hz z.

e Tu:Q — E continuous: clear

e Tu holomorphic: From KomAn: » holomorphic < Cauchy integral formula holds.

Hence we can write u(20) = 5= faBr(zo) Z“EZ dz where B,(29) C Q. The integral is

a limit of sums so since 7' is linear and continuous we get that

1 1
Tu(zo) =T / u(z) dz | = / Tu(z) dz
21 9By (z0) Z — 20 21 9By (z0) Z — 20

Hence Cauchys integral formula holds for Tw so T'u is holomorphic.




e Tu bounded on Q: We know ||u(z)||g < C for all 2z € Q so by boundedness of T we
get [[Tu(z)llz < I T|[u(z)lle < CIT]-

o Tu(l+iy) € F: We know u(l +iy) € Fand T: F — F.

e ||[Tu(1 + iy)||z bounded: T bounded F — F (continuous and linear) so ||Tu(1 +
Wlp < ITu +iy)llr < |ITIC.

Hence T'u € H () so Tx = Tu(f) € [E, F)g as wanted. It remains to show continuity:

T) 73, = 0 [Tt vl < int [ Tu g,

= inf ||T .
N CACRRI

= inf { sup ||T'(u+v)(iy)| 5 + sup |T(u+v)(1 +iy)| 7
v(0)=0 \ yeR y€ER

< C inf | sup|(u+v)(iy)lle +sup|[(u+v)(1 +iy)llr
v(0)=0 \ yeR yEeR

=C it fut vl = Cl®) s,

where C' = ma:X{HT”E*)E’ |’THF~>F} OJ

Next: H Hilbert space, D(A) the domain of a closed operator A on H (Banach space
with the graph norm). Want to identify [H, D(A)]y.

We will consider operators on the form A = U'BU where U : H — L?(X,p) is
unitary and B is a multiplication operator on L?(X, 1) for some measure space (X, p),
that is

Bu(x) = Myu(z) = b(z)u(x)

for some function b. (For example, A could be a positive selfadjoint operator (by the
Spectral Theorem).) Here D(B) = {u € L? | bu € L?}. Since AU~ = U™'B we have
that D(A) = U~'D(B). We will assume that b(z) > 1. Since b(z) € R it can be shown
that B is selfadjoint which implies that it is also closed (DifFunl). (That B is selfadjoint
is clear if b is bounded, but not clear in general.)

For n € N we clearly have that A" = U~'B"U. For z € C we define A*> = U"'B*U
where B*u(x) = b(z)?u(z). Then D(A?*) = U~'D(B?) where D(B?) = {u € L* | b*u €
L?}.

Proposition 3. Let A be as above. For 6 € [0,1]: [H,D(A)]g = D(A?).

Proof. O: Let v € D(AY). Want to find u € Hppa) () such that u(f) = v. Define
u(z) = A=**%. Then u(f) = v. Check that u € Hiupay(Q):

e u:Q — H welldefined (i.e. v € D(A7**%)): Note that

u(z) = A0 = U ' B~*0Uy = U1 B*BUv



v € D(A%) = U™'D(B?) by assumption. Hence Uv € D(BY) so BUv € L2 It
remains to show that BUv € D(B~%). We have that |b(z)~?| = |b(x)| R <1
since b(z) > 1 and Rez > 0 on . Hence b~*w € L? for all w € L? so BUv € L? C
D(B~#). Thus u is welldefined and maps  to H.

e u continuous on © and holomorphic on §: easy to see since A is essentially a
multiplication operator.

e u bounded on Q: Put b= Uv. Then b € D(B?). We have that
lu(2)llzr = U™ B=**Uv||g = |UT'B~*B%|ln
=||B*B°bl| 2 < [|B~*[|[| B°bll 2 < |B’D]| 12 = C < o0
since ||B#|| <1 as above.
e u(l+iy) € D(A): We need to show that Au(l +iy) € H.
Au(l +iy) = AATITWF0 = A=W A%,

We have that A% € H since v € D(AY). The result follows if we can show
that D(A~%) = H or equivalently that D(B~%) = L2, We have that [b=%| =
|b|~Re(@) = |0 = 1. Hence b~%w € L? for all w € L? as wanted.

e [[u(l +iy)|pca) bounded:
lu(l +iy)lpay = [u( +iy)lla + [[Au(l + iy) ||z < oo
since u bounded on Q in ||-||  and we just showed that || Au(1+iy)|| g = ||A~Y A%| g <
| A% < oo.

C: Suppose v € [H,D(A)]p i.e. v = u() for some u € Hy pa). We need to show
that A%u(9) € H.

We would like to use the maximum modulus principle on the function A*u(z). Prob-
lem: 2 is not bounded. Instead of A*u(z) we will look at A*(1+icA)~1u(z), which turns
out to be a bounded function, and then let € — 0.

We first show that A%(1 +icA) " u(z) is bounded on €:

A*(1+icA)  u(z) = U BFU(U (1 +ieB)U) u(z) = U ' B*(1 4+ ieB) 'Uu(z)

We know that Uu(z) is a bounded holomorphic function € — L? since u by assumption
is a bounded holomorphic function on . Moreover, B*(1 + ieB)~! is bounded since

[b["e 0] bl _ 1

T Vita2R  Jitewr o Jap e

Here, we used that Rez € [0,1] since z € Q. Hence U~ B*(1+ieB)~'Uu(z) is a bounded
holomorphic function from €2 into H so we can use the maximum modulus principle:

bZ
14 ieb

sup ||A*(1 + Z'EA)_lu(z)HH = sup maX{HAiy(l + isA)_lu(iy)HH,
2€Q yER

1A (1 + i) u(1 + iy)l|n }



We need this to be bounded independently of €.
The left boundary: We saw earlier that A% is bounded on H. Since U is unitary we

have that ||(1 +icA)~|| = ||(1 + ieB)~!|. Since ‘ = \/1+152b2 <1, we thus get that
(1 +icA)~Y| < 1 for all e. Hence

1
1+4ieb

1A% (1 + ie )~ uliy) | m < Clluiy)|m

for some C' independent of €.

The right boundary: An easy calculation shows that A #(1 + icA)~tu(l + iy) =
A%(1+icA)~ Au(1 +dy) (since multiplication operators commute). We saw before that
A%(1 4 icA)~" is bounded by C. Since u € Hy p(ay we have that u(1 4 iy) € D(A) so

[A%(1 + icA) " Au(l +iy)||g < Cl|Au(l + iy) ||l < Cllu(l + iy)|Ip(a)
We conclude that

sup | A%(1 +ie A) " 'u(z) || < Sugmax{CHU(iy)lIH,Cll’IL(l +iy)lpay} < C
z€€) ye

for some C independent of . By letting € — 0 we get that A*u(z) € H with [[A%u(z)] <
C for all z € Q. In particular, if we let z = 6 we get A%u(0) € H as wanted. O

Application:
Recall from DifFun:
H*(R") = {u € S'(R") | (§)*a(¢) € L*(R")}, seR
= {ue S'(R") | FH{E)"a(¢) € L?}
Put A := F ' Mgy F with D(A®) = {u € &' | A®u € L?}. Then
H*(R") = {u € S'(R") | A*u € LA(R")} = D(A®)

If s > 0 then we know from DifFun that H® C L% so A® is an operator on L2. Hence it
satisfies all of the assumptions of the above proposition so we get that

[L2(R"), H*(R™)]y = H(R™), 6 €[0,1]

for s > 0.
More generally, we can show that for any o,t € R (¢t > o):

[HU(Rn)’Ht(Rn)]G _ H9t+(1_9)U(Rn), 9 e [0’ 1]

Proof. We saw in DifFunl that A® is an isometry H! — H'=% for all s,t € R. We must
then have that
N[E, Flp = [A°E, A*F),

(AS[E, Flg = {A*u(0)} and [A*E, A*F]y = {(A*u)(6)}.)



We are looking at E = L? = H°, F = H*. Then A*E = H~* and AF = H* 5. We
get
[H_S,Hk_s]g — AS[L2’H’C]9 — AsHkG — Hk@—s
Given o and t from above, we choose s = —o and k =t — 0. Then the above result

vields
[HU,Ht]g — H(t—o’)9+0 — H9t+(l—9)0'

as wanted. O

As an application of this, we can look at the multiplication operator M, given by
(Mpu)(z) = p(z)u(z). If ¢ € CF°_ (i.e. D% € L™ for all ) then it is clear that M,
maps H* to H* if k € Z (follows by Leibniz’ rule for positive integers and by duality for
negative integers). If £ € R is not an integer this is not clear. However, it easily follows
from complex interpolation:

Given s € R we know that s € [n,n + 1] for some n € Z, so we can write s =
On + (1 — 0)(n+ 1) for some 6 € [0,1]. We know that M, maps H" to H" and H""! to
H"™"! s0 by Proposition 2.3 it follows that M, maps [H", H" "]y to itself. But we just
saw that [H™, H"t1]y = HOnt(-0)+1D) — F5 50 the result follows.

We can also use interpolation to generalize the definition of Sobolev spaces to arbitrary
domains (so far only defined for s € Np): Let s > 0 and let 2 C R™ be open. Define

H*(Q) = [LX(Q), H*(Q)]p, s = 0k

Note: One has to prove that this does not depend on the choise of k, 6. It can be shown
that
H?(Q) ~ H*(R")/{u € H*(R") : u|lg = 0}

This characterization can be used to define H*(£2) when s < 0.

We now want to define interpolation spaces for Banach spaces which are not contained
in eachother. Let F, F' be Banach spaces and suppose that they are both continuously
injected into a locally convex topological vector space V. Put G=E+ F ={e+ f|e¢€
E, f € F}. This is a Banach space with the norm

lallc = inf{[lellg + [|fllr|la=e+ fie€ E, f € F'}
As before we define

Her(Q) = {u e Cy(Q, G) | u holomorphic on Q, ||u(iy)| g and
|lu(1 + iy)||F bounded for y € R}

Note that if F' C E, this is the same definition as before since then G = E (and we can
choose V' = F). The definition of the interpolation spaces is exactly the same as before:

[E,Flg ={u(d) |ue Hpr(Q)}, 6¢€]l0,1]

We can use this on LP spaces, which are typically not contained in eachother (we can
use V = G = LP + L7 when interpolating between LP and L7). We have the following
result which I will not prove:



Proposition 4. Let (X, ) be a measure space. For 0 <6 < 1:
[LP(X, p), LPH(X, p)]o = L7 (X, )

1 _1-60_, 0
where Pe Do + p1°

We have a similar proposition as before:

Proposition 5. Let (E, F),(E,F) be as above. Suppose T : G — G is linear such
that T : E — E is bounded and T : F — F is bounded. Then for all 0 € [0,1]:
T:[E,Flg — [E, Flg is bounded.

Remark 1. Proposition 4 and Proposition 5 give us Riesz-Thorin as stated in the lecture:
If T is bounded LP° — L% and LP* — L% then Proposition 5 says that T :
[LPo, LP1]y — [L%, L9y for all 6 € [0, 1]. By Proposition 4: T : LP¢ — L%,



