Complex Interpolation

Anna Sofie Krogager

May 30, 2012

<u>Motivation</u>: Generalization of Riesz-Thorin to general Banach spaces. Recall that Riesz-Thorin said that given a linear map T which is bounded between two pairs of L^{p} spaces, say from L^{p_0} to L^{q_0} and from L^{p_1} to L^{q_1} , then it will also be bounded between all the pairs in between, i.e. from $L^{p_{\theta}}$ to $L^{q_{\theta}}$, $\theta \in [0, 1]$. For general Banach spaces we will define interpolation spaces for a given $\theta \in (0, 1)$. The main result is then that if Tis bounded between two pairs of Banach spaces, then it will also be bounded between all of the interpolation spaces.

Let E, F be Banach spaces. We first consider the case where $F \subseteq E$ continuously injected. Put

$$\Omega := \{ z \in \mathbb{C} \mid 0 < \operatorname{Re} z < 1 \}$$

Define

$$\mathcal{H}_{E,F}(\Omega) = \{ u \in C_b(\bar{\Omega}, E) \mid u \text{ holomorphic on } \Omega, \ u(1+iy) \in F \text{ and} \\ \exists C : \|u(1+iy)\|_F \le C, \ \forall y \in \mathbb{R} \}$$

(For future notation, I will just write $\mathcal{H}_{E,F}$).

Definition 1. For $\theta \in [0,1]$ we define the interpolation space $[E,F]_{\theta}$ by

$$[E, F]_{\theta} = \{ u(\theta) \mid u \in \mathcal{H}_{E, F} \}$$

Proposition 1. $[E, F]_{\theta}$ is a Banach space.

Proof. As vector spaces, we clearly have that $[E, F]_{\theta} \cong \mathcal{H}_{E,F}/\{u : u(\theta) = 0\}$ (by the isomorphism $u(\theta) \mapsto [u]$). We will show that $\mathcal{H}_{E,F}$ is a Banach space and that $\{u : u(\theta) = 0\}$ is a closed subspace. Then we know that the quotient is also a Banach space.

For $u \in \mathcal{H}_{E,F}$, define

$$||u||_{\mathcal{H}_{E,F}} = \sup_{y \in \mathbb{R}} ||u(iy)||_E + \sup_{y \in \mathbb{R}} ||u(1+iy)||_F$$

We need to check that this is a norm. It is easy to see that it satisfies the triangle inequality and behaves well under multiplication with scalars. It remains to check that $\|u\|_{\mathcal{H}_{E,F}} = 0$ implies u = 0. If $\|u\|_{\mathcal{H}} = 0$, then u(iy) = 0 and u(1 + iy) = 0 for all $y \in \mathbb{R}$ by definition of the norm. Recall Lindelöf's Theorem from the lectures: If v is bounded by A on the left boundary of Ω and by B on the right boundary, and if v doesn't grow too fast, then $||v(\theta + it)|| \leq A^{1-\theta}B^{\theta}$ for all $\theta \in [0, 1]$. In this case, we have that u is bounded by 0 on the boundaries so it follows that u = 0 everywhere.

We proceed to show that $\mathcal{H}_{E,F}$ is complete with this norm (hence a Banach space). Let $(u_n)_{n\in\mathbb{N}}$ be a Cauchy sequence in $\mathcal{H}_{E,F}$. Since $\|\cdot\|_F \geq \|\cdot\|_E$, we get by Lindelöf's Theorem that

$$\|u\|_{\mathcal{H}_{E,F}} \ge \sup_{y \in \mathbb{R}} \|u(iy)\|_E + \sup_{y \in \mathbb{R}} \|u(1+iy)\|_E \ge \sup_{z \in \bar{\Omega}} \|u(z)\|_E$$

Hence (u_n) is also a Cauchy sequence in $C_b(\bar{\Omega}, E)$, and since we know that this is a Banach space, we get that u_n converges to some $u \in C_b(\bar{\Omega}, E)$. We will show that $u \in \mathcal{H}_{E,F}$ and that $u_n \to u$ in $\mathcal{H}_{E,F}$. For every $z \in \bar{\Omega}$ we have that $u_n(z) \to u(z)$ in E. Note that for every $y \in \mathbb{R}$ we have that $(u_n(1+iy))$ is a Cauchy sequence in F, hence converges to a limit $\tilde{u}(1+iy) \in F$ (hence also in E). By uniqueness of limits, we get that $u(1+iy) = \tilde{u}(1+iy) \in F$. Moreover, for $\varepsilon > 0$:

$$||u(1+iy)||_F \le ||u(1+iy) - u_n(1+iy)||_F + ||u_n(1+iy)||_F \le C + \varepsilon$$

if n is big enough. Hence $||u(1+iy)||_F \leq C$. It remains to show that u is holomorphic. By the Cauchy Integral Theorem we have that

$$u_n(z_0) = \frac{1}{2\pi i} \int_{\partial B_r(z_0)} \frac{u_n(z)}{z_0 - z} \, \mathrm{d}z \to \frac{1}{2\pi i} \int_{\partial B_r(z_0)} \frac{u(z)}{z_0 - z} \, \mathrm{d}z$$

as $n \to \infty$ since u_n converges uniformly to u. Hence u satisfies the Cauchy Integral Theorem so u is holomorphic. Thus $u \in \mathcal{H}_{E,F}$ and it is clear that $u_n \to u$ in $\mathcal{H}_{E,F}$ (since we have pointwise convergence).

Finally, we prove that $U = \{u \in \mathcal{H}_{E,F} \mid u(\theta) = 0\}$ is a closed subspace of $\mathcal{H}_{E,F}$. Let (u_n) be a sequence in U that converges to $u \in \mathcal{H}_{E,F}$. We saw above that this implies that u_n converges uniformly to u, in particular $u_n(\theta) = 0$ converges to $u(\theta)$ so $u(\theta) = 0$ and hence $u \in U$.

Note that for $\theta = 0$ we have that $[E, F]_0 = E$ and for $\theta = 1$ we have that $[E, F]_1 = F$ so we can interpret the spaces $[E, F]_{\theta}$ as being the spaces lieing in between E and F.

Proposition 2. Let (E, F) and (\tilde{E}, \tilde{F}) be as above. Let $T : E \to \tilde{E}$ be continuous and linear such that $T : F \to \tilde{F}$ continuously. Then for all $\theta \in [0,1]$: $T : [E,F]_{\theta} \to [\tilde{E},\tilde{F}]_{\theta}$ continuously.

Proof. Let $x \in [E, F]_{\theta}$. There exists a $u \in \mathcal{H}_{E,F}(\Omega)$ such that $u(\theta) = x$. I want to show that $Tu \in \mathcal{H}_{\tilde{E},\tilde{F}}$.

- $Tu: \overline{\Omega} \to \tilde{E}$ continuous: clear
- Tu holomorphic: From KomAn: u holomorphic \Leftrightarrow Cauchy integral formula holds. Hence we can write $u(z_0) = \frac{1}{2\pi i} \int_{\partial B_r(z_0)} \frac{u(z)}{z-z_0} dz$ where $\overline{B_r(z_0)} \subseteq \Omega$. The integral is a limit of sums so since T is linear and continuous we get that

$$Tu(z_0) = T\left(\frac{1}{2\pi i} \int_{\partial B_r(z_0)} \frac{u(z)}{z - z_0} \, \mathrm{d}z\right) = \frac{1}{2\pi i} \int_{\partial B_r(z_0)} \frac{Tu(z)}{z - z_0} \, \mathrm{d}z$$

Hence Cauchys integral formula holds for Tu so Tu is holomorphic.

- Tu bounded on $\overline{\Omega}$: We know $||u(z)||_E \leq C$ for all $z \in \overline{\Omega}$ so by boundedness of T we get $||Tu(z)||_{\tilde{E}} \leq ||T|| ||u(z)||_E \leq C ||T||$.
- $Tu(1+iy) \in \tilde{F}$: We know $u(1+iy) \in F$ and $T: F \to \tilde{F}$.
- $||Tu(1+iy)||_{\tilde{F}}$ bounded: T bounded $F \to \tilde{F}$ (continuous and linear) so $||Tu(1+iy)||_{\tilde{F}} \le ||T|| ||u(1+iy)||_{F} \le ||T|| \tilde{C}$.

Hence $Tu \in \mathcal{H}_{\tilde{E},\tilde{F}}(\Omega)$ so $Tx = Tu(\theta) \in [\tilde{E},\tilde{F}]_{\theta}$ as wanted. It remains to show continuity:

$$\begin{split} \|Tu(\theta)\|_{[\tilde{E},\tilde{F}]_{\theta}} &= \inf_{v(\theta)=0} \|Tu+v\|_{\mathcal{H}_{\tilde{E},\tilde{F}}} \leq \inf_{v'=Tv(\theta),v(\theta)=0} \|Tu+v'\|_{\mathcal{H}_{\tilde{E},\tilde{F}}} \\ &= \inf_{v(\theta)=0} \|T(u+v)\|_{\mathcal{H}_{\tilde{E},\tilde{F}}} \\ &= \inf_{v(\theta)=0} \left(\sup_{y\in\mathbb{R}} \|T(u+v)(iy)\|_{\tilde{E}} + \sup_{y\in\mathbb{R}} \|T(u+v)(1+iy)\|_{\tilde{F}} \right) \\ &\leq C \inf_{v(\theta)=0} \left(\sup_{y\in\mathbb{R}} \|(u+v)(iy)\|_{E} + \sup_{y\in\mathbb{R}} \|(u+v)(1+iy)\|_{F} \right) \\ &= C \inf_{v(\theta)=0} \|u+v\|_{\mathcal{H}_{E,F}} = C \|u(\theta)\|_{[E,F]_{\theta}} \end{split}$$

where $C = \max\{||T||_{E \to E}, ||T||_{F \to F}\}.$

Next: *H* Hilbert space, $\mathcal{D}(A)$ the domain of a closed operator *A* on *H* (Banach space with the graph norm). Want to identify $[H, \mathcal{D}(A)]_{\theta}$.

We will consider operators on the form $A = U^{-1}BU$ where $U : H \to L^2(X,\mu)$ is unitary and B is a multiplication operator on $L^2(X,\mu)$ for some measure space (X,μ) , that is

$$Bu(x) = M_b u(x) = b(x)u(x)$$

for some function b. (For example, A could be a positive selfadjoint operator (by the Spectral Theorem).) Here $\mathcal{D}(B) = \{u \in L^2 \mid bu \in L^2\}$. Since $AU^{-1} = U^{-1}B$ we have that $\mathcal{D}(A) = U^{-1}\mathcal{D}(B)$. We will assume that $b(x) \geq 1$. Since $b(x) \in \mathbb{R}$ it can be shown that B is selfadjoint which implies that it is also closed (DifFun1). (That B is selfadjoint is clear if b is bounded, but not clear in general.)

For $n \in \mathbb{N}$ we clearly have that $A^n = U^{-1}B^n U$. For $z \in \mathbb{C}$ we define $A^z = U^{-1}B^z U$ where $B^z u(x) = b(x)^z u(x)$. Then $\mathcal{D}(A^z) = U^{-1}\mathcal{D}(B^z)$ where $\mathcal{D}(B^z) = \{u \in L^2 \mid b^z u \in L^2\}$.

Proposition 3. Let A be as above. For $\theta \in [0,1]$: $[H, \mathcal{D}(A)]_{\theta} = \mathcal{D}(A^{\theta})$.

Proof. \supseteq : Let $v \in \mathcal{D}(A^{\theta})$. Want to find $u \in \mathcal{H}_{H,\mathcal{D}(A)}(\Omega)$ such that $u(\theta) = v$. Define $u(z) = A^{-z+\theta}v$. Then $u(\theta) = v$. Check that $u \in \mathcal{H}_{H,\mathcal{D}(A)}(\Omega)$:

• $u: \Omega \to H$ welldefined (i.e. $v \in \mathcal{D}(A^{-z+\theta})$): Note that

$$u(z) = A^{-z+\theta}v = U^{-1}B^{-z+\theta}Uv = U^{-1}B^{-z}B^{\theta}Uv$$

 $v \in \mathcal{D}(A^{\theta}) = U^{-1}\mathcal{D}(B^{\theta})$ by assumption. Hence $Uv \in \mathcal{D}(B^{\theta})$ so $B^{\theta}Uv \in L^2$. It remains to show that $B^{\theta}Uv \in \mathcal{D}(B^{-z})$. We have that $|b(x)^{-z}| = |b(x)|^{-\operatorname{Re}(z)} \leq 1$ since $b(x) \geq 1$ and $\operatorname{Re} z \geq 0$ on Ω . Hence $b^{-z}w \in L^2$ for all $w \in L^2$ so $B^{\theta}Uv \in L^2 \subseteq \mathcal{D}(B^{-z})$. Thus u is welldefined and maps Ω to H.

- u continuous on $\overline{\Omega}$ and holomorphic on Ω : easy to see since A is essentially a multiplication operator.
- u bounded on $\overline{\Omega}$: Put b = Uv. Then $b \in \mathcal{D}(B^{\theta})$. We have that

$$\begin{aligned} \|u(z)\|_{H} &= \|U^{-1}B^{-z+\theta}Uv\|_{H} = \|U^{-1}B^{-z}B^{\theta}b\|_{H} \\ &= \|B^{-z}B^{\theta}b\|_{L^{2}} \le \|B^{-z}\|\|B^{\theta}b\|_{L^{2}} \le \|B^{\theta}b\|_{L^{2}} = C < \infty \end{aligned}$$

since $||B^{-z}|| \le 1$ as above.

• $u(1+iy) \in \mathcal{D}(A)$: We need to show that $Au(1+iy) \in H$.

$$Au(1+iy) = AA^{-1-iy+\theta}v = A^{-iy}A^{\theta}v$$

We have that $A^{\theta}v \in H$ since $v \in \mathcal{D}(A^{\theta})$. The result follows if we can show that $\mathcal{D}(A^{-iy}) = H$ or equivalently that $\mathcal{D}(B^{-iy}) = L^2$. We have that $|b^{-iy}| = |b|^{-\operatorname{Re}(iy)} = |b|^0 = 1$. Hence $b^{-iy}w \in L^2$ for all $w \in L^2$ as wanted.

• $||u(1+iy)||_{\mathcal{D}(A)}$ bounded:

$$\|u(1+iy)\|_{\mathcal{D}(A)} = \|u(1+iy)\|_{H} + \|Au(1+iy)\|_{H} < \infty$$

since u bounded on $\overline{\Omega}$ in $\|\cdot\|_H$ and we just showed that $\|Au(1+iy)\|_H = \|A^{-iy}A^{\theta}v\|_H \le \|A^{\theta}v\| < \infty$.

 \subseteq : Suppose $v \in [H, \mathcal{D}(A)]_{\theta}$ i.e. $v = u(\theta)$ for some $u \in \mathcal{H}_{H, \mathcal{D}(A)}$. We need to show that $A^{\theta}u(\theta) \in H$.

We would like to use the maximum modulus principle on the function $A^z u(z)$. Problem: Ω is not bounded. Instead of $A^z u(z)$ we will look at $A^z (1+i\varepsilon A)^{-1}u(z)$, which turns out to be a bounded function, and then let $\varepsilon \to 0$.

We first show that $A^{z}(1 + i\varepsilon A)^{-1}u(z)$ is bounded on Ω :

$$A^{z}(1+i\varepsilon A)^{-1}u(z) = U^{-1}B^{z}U(U^{-1}(1+i\varepsilon B)U)^{-1}u(z) = U^{-1}B^{z}(1+i\varepsilon B)^{-1}Uu(z)$$

We know that Uu(z) is a bounded holomorphic function $\Omega \to L^2$ since u by assumption is a bounded holomorphic function on Ω . Moreover, $B^z(1 + i\varepsilon B)^{-1}$ is bounded since

$$\left|\frac{b^z}{1+i\varepsilon b}\right| = \frac{|b|^{\operatorname{Re} z}}{\sqrt{1+\varepsilon^2 b^2}} \le \frac{|b|}{\sqrt{1+\varepsilon^2 b^2}} \le \frac{|b|}{\sqrt{\varepsilon^2 b^2}} = \frac{1}{\varepsilon}$$

Here, we used that $\operatorname{Re} z \in [0, 1]$ since $z \in \overline{\Omega}$. Hence $U^{-1}B^{z}(1+i\varepsilon B)^{-1}Uu(z)$ is a bounded holomorphic function from Ω into H so we can use the maximum modulus principle:

$$\sup_{z\in\bar{\Omega}} \|A^{z}(1+i\varepsilon A)^{-1}u(z)\|_{H} = \sup_{y\in\mathbb{R}} \max\left\{\|A^{iy}(1+i\varepsilon A)^{-1}u(iy)\|_{H}, \|A^{1+iy}(1+i\varepsilon A)^{-1}u(1+iy)\|_{H}\right\}$$

We need this to be bounded independently of ε .

The left boundary: We saw earlier that A^{iy} is bounded on H. Since U is unitary we have that $\|(1+i\varepsilon A)^{-1}\| = \|(1+i\varepsilon B)^{-1}\|$. Since $\left|\frac{1}{1+i\varepsilon b}\right| = \frac{1}{\sqrt{1+\varepsilon^2b^2}} \leq 1$, we thus get that $\|(1+i\varepsilon A)^{-1}\| \leq 1$ for all ε . Hence

$$||A^{iy}(1+i\varepsilon A)^{-1}u(iy)||_{H} \le C||u(iy)||_{H}$$

for some C independent of ε .

The right boundary: An easy calculation shows that $A^{1+iy}(1+i\varepsilon A)^{-1}u(1+iy) = A^{iy}(1+i\varepsilon A)^{-1}Au(1+iy)$ (since multiplication operators commute). We saw before that $A^{iy}(1+i\varepsilon A)^{-1}$ is bounded by C. Since $u \in \mathcal{H}_{H,\mathcal{D}(A)}$ we have that $u(1+iy) \in \mathcal{D}(A)$ so

$$\|A^{iy}(1+i\varepsilon A)^{-1}Au(1+iy)\|_{H} \le C\|Au(1+iy)\|_{H} \le C\|u(1+iy)\|_{\mathcal{D}(A)}$$

We conclude that

$$\sup_{z\in\bar{\Omega}} \|A^z(1+i\varepsilon A)^{-1}u(z)\|_H \le \sup_{y\in\mathbb{R}} \max\left\{C\|u(iy)\|_H, C\|u(1+iy)\|_{\mathcal{D}(A)}\right\} \le \tilde{C}$$

for some \tilde{C} independent of ε . By letting $\varepsilon \to 0$ we get that $A^z u(z) \in H$ with $||A^z u(z)|| \leq \tilde{C}$ for all $z \in \bar{\Omega}$. In particular, if we let $z = \theta$ we get $A^{\theta} u(\theta) \in H$ as wanted. \Box

Application:

Recall from DifFun:

$$H^{s}(\mathbb{R}^{n}) = \{ u \in \mathcal{S}'(\mathbb{R}^{n}) \mid \langle \xi \rangle^{s} \hat{u}(\xi) \in L^{2}(\mathbb{R}^{n}) \}, \quad s \in \mathbb{R} \\ = \{ u \in \mathcal{S}'(\mathbb{R}^{n}) \mid \mathcal{F}^{-1} \langle \xi \rangle^{s} \hat{u}(\xi) \in L^{2} \}$$

Put $\Lambda^s := \mathcal{F}^{-1}M_{\langle \xi \rangle^s}\mathcal{F}$ with $\mathcal{D}(\Lambda^s) = \{ u \in \mathcal{S}' \mid \Lambda^s u \in L^2 \}$. Then

$$H^{s}(\mathbb{R}^{n}) = \{ u \in \mathcal{S}'(\mathbb{R}^{n}) \mid \Lambda^{s} u \in L^{2}(\mathbb{R}^{n}) \} = \mathcal{D}(\Lambda^{s})$$

If $s \ge 0$ then we know from DifFun that $H^s \subseteq L^2$ so Λ^s is an operator on L^2 . Hence it satisfies all of the assumptions of the above proposition so we get that

$$[L^{2}(\mathbb{R}^{n}), H^{s}(\mathbb{R}^{n})]_{\theta} = H^{k\theta}(\mathbb{R}^{n}), \quad \theta \in [0, 1]$$

for $s \geq 0$.

More generally, we can show that for any $\sigma, t \in \mathbb{R}$ $(t \ge \sigma)$:

$$[H^{\sigma}(\mathbb{R}^n), H^t(\mathbb{R}^n)]_{\theta} = H^{\theta t + (1-\theta)\sigma}(\mathbb{R}^n), \quad \theta \in [0, 1]$$

Proof. We saw in DifFun1 that Λ^s is an isometry $H^t \to H^{t-s}$ for all $s, t \in \mathbb{R}$. We must then have that

$$\Lambda^s[E,F]_{\theta} = [\Lambda^s E, \Lambda^s F]_{\theta}$$
$$(\Lambda^s[E,F]_{\theta} = \{\Lambda^s u(\theta)\} \text{ and } [\Lambda^s E, \Lambda^s F]_{\theta} = \{(\Lambda^s u)(\theta)\}.)$$

We are looking at $E = L^2 = H^0$, $F = H^k$. Then $\Lambda^s E = H^{-s}$ and $\Lambda^s F = H^{k-s}$. We get

$$[H^{-s}, H^{k-s}]_{\theta} = \Lambda^s [L^2, H^k]_{\theta} = \Lambda^s H^{k\theta} = H^{k\theta-s}$$

Given σ and t from above, we choose $s = -\sigma$ and $k = t - \sigma$. Then the above result yields

$$[H^{\sigma}, H^t]_{\theta} = H^{(t-\sigma)\theta+\sigma} = H^{\theta t + (1-\theta)\sigma}$$

as wanted.

As an application of this, we can look at the multiplication operator M_{φ} given by $(M_{\varphi}u)(x) = \varphi(x)u(x)$. If $\varphi \in C_{L_{\infty}}^{\infty}$ (i.e. $D^{\alpha}\varphi \in L^{\infty}$ for all α) then it is clear that M_{φ} maps H^k to H^k if $k \in \mathbb{Z}$ (follows by Leibniz' rule for positive integers and by duality for negative integers). If $k \in \mathbb{R}$ is not an integer this is not clear. However, it easily follows from complex interpolation:

Given $s \in \mathbb{R}$ we know that $s \in [n, n + 1]$ for some $n \in \mathbb{Z}$, so we can write $s = \theta n + (1 - \theta)(n + 1)$ for some $\theta \in [0, 1]$. We know that M_{φ} maps H^n to H^n and H^{n+1} to H^{n+1} so by Proposition 2.3 it follows that M_{φ} maps $[H^n, H^{n+1}]_{\theta}$ to itself. But we just saw that $[H^n, H^{n+1}]_{\theta} = H^{\theta n + (1-\theta)(n+1)} = H^s$ so the result follows.

We can also use interpolation to generalize the definition of Sobolev spaces to arbitrary domains (so far only defined for $s \in \mathbb{N}_0$): Let $s \ge 0$ and let $\Omega \subseteq \mathbb{R}^n$ be open. Define

$$H^{s}(\Omega) = [L^{2}(\Omega), H^{k}(\Omega)]_{\theta}, \quad s = \theta k$$

Note: One has to prove that this does not depend on the choise of k, θ . It can be shown that

$$H^{s}(\Omega) \simeq H^{s}(\mathbb{R}^{n}) / \{ u \in H^{s}(\mathbb{R}^{n}) : u|_{\Omega} = 0 \}$$

This characterization can be used to define $H^s(\Omega)$ when $s \leq 0$.

We now want to define interpolation spaces for Banach spaces which are not contained in eachother. Let E, F be Banach spaces and suppose that they are both continuously injected into a locally convex topological vector space V. Put $G = E + F = \{e + f \mid e \in E, f \in F\}$. This is a Banach space with the norm

$$||a||_G = \inf\{||e||_E + ||f||_F \mid a = e + f, e \in E, f \in F\}$$

As before we define

$$\mathcal{H}_{E,F}(\Omega) = \{ u \in C_b(\Omega, G) \mid u \text{ holomorphic on } \Omega, \|u(iy)\|_E \text{ and} \\ \|u(1+iy)\|_F \text{ bounded for } y \in \mathbb{R} \}$$

Note that if $F \subseteq E$, this is the same definition as before since then G = E (and we can choose V = E). The definition of the interpolation spaces is exactly the same as before:

$$[E, F]_{\theta} = \{ u(\theta) \mid u \in \mathcal{H}_{E,F}(\Omega) \}, \quad \theta \in [0, 1]$$

We can use this on L^p spaces, which are typically not contained in eachother (we can use $V = G = L^p + L^q$ when interpolating between L^p and L^q). We have the following result which I will not prove:

Proposition 4. Let (X, μ) be a measure space. For $0 < \theta < 1$:

$$[L^{p_0}(X,\mu), L^{p_1}(X,\mu)]_{\theta} = L^{p_{\theta}}(X,\mu)$$

where $\frac{1}{p_{\theta}} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}$.

We have a similar proposition as before:

Proposition 5. Let $(E, F), (\tilde{E}, \tilde{F})$ be as above. Suppose $T : G \to \tilde{G}$ is linear such that $T : E \to \tilde{E}$ is bounded and $T : F \to \tilde{F}$ is bounded. Then for all $\theta \in [0, 1]$: $T : [E, F]_{\theta} \to [\tilde{E}, \tilde{F}]_{\theta}$ is bounded.

Remark 1. Proposition 4 and Proposition 5 give us Riesz-Thorin as stated in the lecture: If T is bounded $L^{p_0} \to L^{q_0}$ and $L^{p_1} \to L^{q_1}$, then Proposition 5 says that $T : [L^{p_0}, L^{p_1}]_{\theta} \to [L^{q_0}, L^{q_1}]_{\theta}$ for all $\theta \in [0, 1]$. By Proposition 4: $T : L^{p_{\theta}} \to L^{q_{\theta}}$.