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Motivation: Generalization of Riesz-Thorin to general Banach spaces. Recall that

Riesz-Thorin said that given a linear map T which is bounded between two pairs of Lp-
spaces, say from Lp0 to Lq0 and from Lp1 to Lq1 , then it will also be bounded between

all the pairs in between, i.e. from Lpθ to Lqθ , θ ∈ [0, 1]. For general Banach spaces we

will de�ne interpolation spaces for a given θ ∈ (0, 1). The main result is then that if T
is bounded between two pairs of Banach spaces, then it will also be bounded between all

of the interpolation spaces.

Let E,F be Banach spaces. We �rst consider the case where F ⊆ E continuously

injected. Put

Ω := {z ∈ C | 0 < Rez < 1}

De�ne

HE,F (Ω) = {u ∈ Cb(Ω̄, E) | u holomorphic on Ω, u(1 + iy) ∈ F and

∃C : ‖u(1 + iy)‖F ≤ C, ∀y ∈ R}

(For future notation, I will just write HE,F ).

De�nition 1. For θ ∈ [0, 1] we de�ne the interpolation space [E,F ]θ by

[E,F ]θ = {u(θ) | u ∈ HE,F }

Proposition 1. [E,F ]θ is a Banach space.

Proof. As vector spaces, we clearly have that [E,F ]θ ∼= HE,F /{u : u(θ) = 0} (by the

isomorphism u(θ) 7→ [u]). We will show that HE,F is a Banach space and that {u :
u(θ) = 0} is a closed subspace. Then we know that the quotient is also a Banach space.

For u ∈ HE,F , de�ne

‖u‖HE,F = sup
y∈R
‖u(iy)‖E + sup

y∈R
‖u(1 + iy)‖F

We need to check that this is a norm. It is easy to see that it satis�es the triangle

inequality and behaves well under multiplication with scalars. It remains to check that

‖u‖HE,F = 0 implies u = 0. If ‖u‖H = 0, then u(iy) = 0 and u(1 + iy) = 0 for all y ∈ R
by de�nition of the norm. Recall Lindelöf's Theorem from the lectures: If v is bounded

by A on the left boundary of Ω and by B on the right boundary, and if v doesn't grow
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too fast, then ‖v(θ + it)‖ ≤ A1−θBθ for all θ ∈ [0, 1]. In this case, we have that u is

bounded by 0 on the boundaries so it follows that u = 0 everywhere.

We proceed to show that HE,F is complete with this norm (hence a Banach space).

Let (un)n∈N be a Cauchy sequence in HE,F . Since ‖ · ‖F ≥ ‖ · ‖E , we get by Lindelöf's

Theorem that

‖u‖HE,F ≥ sup
y∈R
‖u(iy)‖E + sup

y∈R
‖u(1 + iy)‖E ≥ sup

z∈Ω̄

‖u(z)‖E

Hence (un) is also a Cauchy sequence in Cb(Ω̄, E), and since we know that this is a

Banach space, we get that un converges to some u ∈ Cb(Ω̄, E). We will show that

u ∈ HE,F and that un → u in HE,F . For every z ∈ Ω̄ we have that un(z) → u(z) in E.
Note that for every y ∈ R we have that (un(1 + iy)) is a Cauchy sequence in F , hence
converges to a limit ũ(1 + iy) ∈ F (hence also in E). By uniqueness of limits, we get that

u(1 + iy) = ũ(1 + iy) ∈ F . Moreover, for ε > 0:

‖u(1 + iy)‖F ≤ ‖u(1 + iy)− un(1 + iy)‖F + ‖un(1 + iy)‖F ≤ C + ε

if n is big enough. Hence ‖u(1 + iy)‖F ≤ C. It remains to show that u is holomorphic.

By the Cauchy Integral Theorem we have that

un(z0) =
1

2πi

∫
∂Br(z0)

un(z)

z0 − z
dz → 1

2πi

∫
∂Br(z0)

u(z)

z0 − z
dz

as n → ∞ since un converges uniformly to u. Hence u satis�es the Cauchy Integral

Theorem so u is holomorphic. Thus u ∈ HE,F and it is clear that un → u in HE,F (since

we have pointwise convergence).

Finally, we prove that U = {u ∈ HE,F | u(θ) = 0} is a closed subspace of HE,F . Let
(un) be a sequence in U that converges to u ∈ HE,F . We saw above that this implies

that un converges uniformly to u, in particular un(θ) = 0 converges to u(θ) so u(θ) = 0
and hence u ∈ U .

Note that for θ = 0 we have that [E,F ]0 = E and for θ = 1 we have that [E,F ]1 = F
so we can interpret the spaces [E,F ]θ as being the spaces lieing in between E and F .

Proposition 2. Let (E,F ) and (Ẽ, F̃ ) be as above. Let T : E → Ẽ be continuous and

linear such that T : F → F̃ continuously. Then for all θ ∈ [0, 1]: T : [E,F ]θ → [Ẽ, F̃ ]θ
continuously.

Proof. Let x ∈ [E,F ]θ. There exists a u ∈ HE,F (Ω) such that u(θ) = x. I want to show

that Tu ∈ HẼ,F̃ .

• Tu : Ω̄→ Ẽ continuous: clear

• Tu holomorphic: From KomAn: u holomorphic ⇔ Cauchy integral formula holds.

Hence we can write u(z0) = 1
2πi

∫
∂Br(z0)

u(z)
z−z0 dz where Br(z0) ⊆ Ω. The integral is

a limit of sums so since T is linear and continuous we get that

Tu(z0) = T

(
1

2πi

∫
∂Br(z0)

u(z)

z − z0
dz

)
=

1

2πi

∫
∂Br(z0)

Tu(z)

z − z0
dz

Hence Cauchys integral formula holds for Tu so Tu is holomorphic.
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• Tu bounded on Ω̄: We know ‖u(z)‖E ≤ C for all z ∈ Ω̄ so by boundedness of T we

get ‖Tu(z)‖Ẽ ≤ ‖T‖‖u(z)‖E ≤ C‖T‖.

• Tu(1 + iy) ∈ F̃ : We know u(1 + iy) ∈ F and T : F → F̃ .

• ‖Tu(1 + iy)‖F̃ bounded: T bounded F → F̃ (continuous and linear) so ‖Tu(1 +

iy)‖F̃ ≤ ‖T‖‖u(1 + iy)‖F ≤ ‖T‖C̃.

Hence Tu ∈ HẼ,F̃ (Ω) so Tx = Tu(θ) ∈ [Ẽ, F̃ ]θ as wanted. It remains to show continuity:

‖Tu(θ)‖[Ẽ,F̃ ]θ
= inf

v(θ)=0
‖Tu+ v‖HẼ,F̃ ≤ inf

v′=Tv(θ),v(θ)=0
‖Tu+ v′‖HẼ,F̃

= inf
v(θ)=0

‖T (u+ v)‖HẼ,F̃

= inf
v(θ)=0

(
sup
y∈R
‖T (u+ v)(iy)‖Ẽ + sup

y∈R
‖T (u+ v)(1 + iy)‖F̃

)

≤ C inf
v(θ)=0

(
sup
y∈R
‖(u+ v)(iy)‖E + sup

y∈R
‖(u+ v)(1 + iy)‖F

)
= C inf

v(θ)=0
‖u+ v‖HE,F = C‖u(θ)‖[E,F ]θ

where C = max{‖T‖E→E , ‖T‖F→F }.

Next: H Hilbert space, D(A) the domain of a closed operator A on H (Banach space

with the graph norm). Want to identify [H,D(A)]θ.
We will consider operators on the form A = U−1BU where U : H → L2(X,µ) is

unitary and B is a multiplication operator on L2(X,µ) for some measure space (X,µ),
that is

Bu(x) = Mbu(x) = b(x)u(x)

for some function b. (For example, A could be a positive selfadjoint operator (by the

Spectral Theorem).) Here D(B) = {u ∈ L2 | bu ∈ L2}. Since AU−1 = U−1B we have

that D(A) = U−1D(B). We will assume that b(x) ≥ 1. Since b(x) ∈ R it can be shown

that B is selfadjoint which implies that it is also closed (DifFun1). (That B is selfadjoint

is clear if b is bounded, but not clear in general.)

For n ∈ N we clearly have that An = U−1BnU . For z ∈ C we de�ne Az = U−1BzU
where Bzu(x) = b(x)zu(x). Then D(Az) = U−1D(Bz) where D(Bz) = {u ∈ L2 | bzu ∈
L2}.

Proposition 3. Let A be as above. For θ ∈ [0, 1] : [H,D(A)]θ = D(Aθ).

Proof. ⊇: Let v ∈ D(Aθ). Want to �nd u ∈ HH,D(A)(Ω) such that u(θ) = v. De�ne

u(z) = A−z+θv. Then u(θ) = v. Check that u ∈ HH,D(A)(Ω):

• u : Ω→ H wellde�ned (i.e. v ∈ D(A−z+θ)): Note that

u(z) = A−z+θv = U−1B−z+θUv = U−1B−zBθUv

3



v ∈ D(Aθ) = U−1D(Bθ) by assumption. Hence Uv ∈ D(Bθ) so BθUv ∈ L2. It

remains to show that BθUv ∈ D(B−z). We have that |b(x)−z| = |b(x)|−Re(z) ≤ 1
since b(x) ≥ 1 and Rez ≥ 0 on Ω. Hence b−zw ∈ L2 for all w ∈ L2 so BθUv ∈ L2 ⊆
D(B−z). Thus u is wellde�ned and maps Ω to H.

• u continuous on Ω̄ and holomorphic on Ω: easy to see since A is essentially a

multiplication operator.

• u bounded on Ω̄: Put b = Uv. Then b ∈ D(Bθ). We have that

‖u(z)‖H = ‖U−1B−z+θUv‖H = ‖U−1B−zBθb‖H
= ‖B−zBθb‖L2 ≤ ‖B−z‖‖Bθb‖L2 ≤ ‖Bθb‖L2 = C <∞

since ‖B−z‖ ≤ 1 as above.

• u(1 + iy) ∈ D(A): We need to show that Au(1 + iy) ∈ H.

Au(1 + iy) = AA−1−iy+θv = A−iyAθv

We have that Aθv ∈ H since v ∈ D(Aθ). The result follows if we can show

that D(A−iy) = H or equivalently that D(B−iy) = L2. We have that |b−iy| =
|b|−Re(iy) = |b|0 = 1. Hence b−iyw ∈ L2 for all w ∈ L2 as wanted.

• ‖u(1 + iy)‖D(A) bounded:

‖u(1 + iy)‖D(A) = ‖u(1 + iy)‖H + ‖Au(1 + iy)‖H <∞

since u bounded on Ω̄ in ‖·‖H and we just showed that ‖Au(1+iy)‖H = ‖A−iyAθv‖H ≤
‖Aθv‖ <∞.

⊆: Suppose v ∈ [H,D(A)]θ i.e. v = u(θ) for some u ∈ HH,D(A). We need to show

that Aθu(θ) ∈ H.

We would like to use the maximum modulus principle on the function Azu(z). Prob-
lem: Ω is not bounded. Instead of Azu(z) we will look at Az(1+ iεA)−1u(z), which turns

out to be a bounded function, and then let ε→ 0.
We �rst show that Az(1 + iεA)−1u(z) is bounded on Ω:

Az(1 + iεA)−1u(z) = U−1BzU(U−1(1 + iεB)U)−1u(z) = U−1Bz(1 + iεB)−1Uu(z)

We know that Uu(z) is a bounded holomorphic function Ω→ L2 since u by assumption

is a bounded holomorphic function on Ω. Moreover, Bz(1 + iεB)−1 is bounded since∣∣∣∣ bz

1 + iεb

∣∣∣∣ =
|b|Rez√
1 + ε2b2

≤ |b|√
1 + ε2b2

≤ |b|√
ε2b2

=
1

ε

Here, we used that Rez ∈ [0, 1] since z ∈ Ω̄. Hence U−1Bz(1+ iεB)−1Uu(z) is a bounded
holomorphic function from Ω into H so we can use the maximum modulus principle:

sup
z∈Ω̄

‖Az(1 + iεA)−1u(z)‖H = sup
y∈R

max
{
‖Aiy(1 + iεA)−1u(iy)‖H ,

‖A1+iy(1 + iεA)−1u(1 + iy)‖H
}
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We need this to be bounded independently of ε.
The left boundary: We saw earlier that Aiy is bounded on H. Since U is unitary we

have that ‖(1 + iεA)−1‖ = ‖(1 + iεB)−1‖. Since
∣∣∣ 1

1+iεb

∣∣∣ = 1√
1+ε2b2

≤ 1, we thus get that

‖(1 + iεA)−1‖ ≤ 1 for all ε. Hence

‖Aiy(1 + iεA)−1u(iy)‖H ≤ C‖u(iy)‖H

for some C independent of ε.
The right boundary: An easy calculation shows that A1+iy(1 + iεA)−1u(1 + iy) =

Aiy(1 + iεA)−1Au(1 + iy) (since multiplication operators commute). We saw before that

Aiy(1 + iεA)−1 is bounded by C. Since u ∈ HH,D(A) we have that u(1 + iy) ∈ D(A) so

‖Aiy(1 + iεA)−1Au(1 + iy)‖H ≤ C‖Au(1 + iy)‖H ≤ C‖u(1 + iy)‖D(A)

We conclude that

sup
z∈Ω̄

‖Az(1 + iεA)−1u(z)‖H ≤ sup
y∈R

max
{
C‖u(iy)‖H , C‖u(1 + iy)‖D(A)

}
≤ C̃

for some C̃ independent of ε. By letting ε→ 0 we get that Azu(z) ∈ H with ‖Azu(z)‖ ≤
C̃ for all z ∈ Ω̄. In particular, if we let z = θ we get Aθu(θ) ∈ H as wanted.

Application:

Recall from DifFun:

Hs(Rn) = {u ∈ S ′(Rn) | 〈ξ〉sû(ξ) ∈ L2(Rn)}, s ∈ R
= {u ∈ S ′(Rn) | F−1〈ξ〉sû(ξ) ∈ L2}

Put Λs := F−1M〈ξ〉sF with D(Λs) = {u ∈ S ′ | Λsu ∈ L2}. Then

Hs(Rn) = {u ∈ S ′(Rn) | Λsu ∈ L2(Rn)} = D(Λs)

If s ≥ 0 then we know from DifFun that Hs ⊆ L2 so Λs is an operator on L2. Hence it

satis�es all of the assumptions of the above proposition so we get that

[L2(Rn), Hs(Rn)]θ = Hkθ(Rn), θ ∈ [0, 1]

for s ≥ 0.
More generally, we can show that for any σ, t ∈ R (t ≥ σ):

[Hσ(Rn), Ht(Rn)]θ = Hθt+(1−θ)σ(Rn), θ ∈ [0, 1]

Proof. We saw in DifFun1 that Λs is an isometry Ht → Ht−s for all s, t ∈ R. We must

then have that

Λs[E,F ]θ = [ΛsE,ΛsF ]θ

(Λs[E,F ]θ = {Λsu(θ)} and [ΛsE,ΛsF ]θ = {(Λsu)(θ)}.)
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We are looking at E = L2 = H0, F = Hk. Then ΛsE = H−s and ΛsF = Hk−s. We

get

[H−s, Hk−s]θ = Λs[L2, Hk]θ = ΛsHkθ = Hkθ−s

Given σ and t from above, we choose s = −σ and k = t − σ. Then the above result

yields

[Hσ, Ht]θ = H(t−σ)θ+σ = Hθt+(1−θ)σ

as wanted.

As an application of this, we can look at the multiplication operator Mϕ given by

(Mϕu)(x) = ϕ(x)u(x). If ϕ ∈ C∞L∞
(i.e. Dαϕ ∈ L∞ for all α) then it is clear that Mϕ

maps Hk to Hk if k ∈ Z (follows by Leibniz' rule for positive integers and by duality for

negative integers). If k ∈ R is not an integer this is not clear. However, it easily follows

from complex interpolation:

Given s ∈ R we know that s ∈ [n, n + 1] for some n ∈ Z, so we can write s =
θn+ (1− θ)(n+ 1) for some θ ∈ [0, 1]. We know that Mϕ maps Hn to Hn and Hn+1 to

Hn+1 so by Proposition 2.3 it follows that Mϕ maps [Hn, Hn+1]θ to itself. But we just

saw that [Hn, Hn+1]θ = Hθn+(1−θ)(n+1) = Hs so the result follows.

We can also use interpolation to generalize the de�nition of Sobolev spaces to arbitrary

domains (so far only de�ned for s ∈ N0): Let s ≥ 0 and let Ω ⊆ Rn be open. De�ne

Hs(Ω) = [L2(Ω), Hk(Ω)]θ, s = θk

Note: One has to prove that this does not depend on the choise of k, θ. It can be shown

that

Hs(Ω) ' Hs(Rn)/{u ∈ Hs(Rn) : u|Ω = 0}

This characterization can be used to de�ne Hs(Ω) when s ≤ 0.

We now want to de�ne interpolation spaces for Banach spaces which are not contained

in eachother. Let E,F be Banach spaces and suppose that they are both continuously

injected into a locally convex topological vector space V . Put G = E + F = {e+ f | e ∈
E, f ∈ F}. This is a Banach space with the norm

‖a‖G = inf{‖e‖E + ‖f‖F | a = e+ f, e ∈ E, f ∈ F}

As before we de�ne

HE,F (Ω) = {u ∈ Cb(Ω̄, G) | u holomorphic on Ω, ‖u(iy)‖E and

‖u(1 + iy)‖F bounded for y ∈ R}

Note that if F ⊆ E, this is the same de�nition as before since then G = E (and we can

choose V = E). The de�nition of the interpolation spaces is exactly the same as before:

[E,F ]θ = {u(θ) | u ∈ HE,F (Ω)}, θ ∈ [0, 1]

We can use this on Lp spaces, which are typically not contained in eachother (we can

use V = G = Lp + Lq when interpolating between Lp and Lq). We have the following

result which I will not prove:
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Proposition 4. Let (X,µ) be a measure space. For 0 < θ < 1:

[Lp0(X,µ), Lp1(X,µ)]θ = Lpθ(X,µ)

where 1
pθ

= 1−θ
p0

+ θ
p1
.

We have a similar proposition as before:

Proposition 5. Let (E,F ), (Ẽ, F̃ ) be as above. Suppose T : G → G̃ is linear such

that T : E → Ẽ is bounded and T : F → F̃ is bounded. Then for all θ ∈ [0, 1]:
T : [E,F ]θ → [Ẽ, F̃ ]θ is bounded.

Remark 1. Proposition 4 and Proposition 5 give us Riesz-Thorin as stated in the lecture:

If T is bounded Lp0 → Lq0 and Lp1 → Lq1 , then Proposition 5 says that T :
[Lp0 , Lp1 ]θ → [Lq0 , Lq1 ]θ for all θ ∈ [0, 1]. By Proposition 4: T : Lpθ → Lqθ .
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