# Complex Interpolation 

Anna Sofie Krogager

May 30, 2012

Motivation: Generalization of Riesz-Thorin to general Banach spaces. Recall that Riesz-Thorin said that given a linear map $T$ which is bounded between two pairs of $L^{p_{-}}$ spaces, say from $L^{p_{0}}$ to $L^{q_{0}}$ and from $L^{p_{1}}$ to $L^{q_{1}}$, then it will also be bounded between all the pairs in between, i.e. from $L^{p_{\theta}}$ to $L^{q_{\theta}}, \theta \in[0,1]$. For general Banach spaces we will define interpolation spaces for a given $\theta \in(0,1)$. The main result is then that if $T$ is bounded between two pairs of Banach spaces, then it will also be bounded between all of the interpolation spaces.

Let $E, F$ be Banach spaces. We first consider the case where $F \subseteq E$ continuously injected. Put

$$
\Omega:=\{z \in \mathbb{C} \mid 0<\operatorname{Re} z<1\}
$$

Define

$$
\begin{array}{r}
\mathcal{H}_{E, F}(\Omega)=\left\{u \in C_{b}(\bar{\Omega}, E) \mid u \text { holomorphic on } \Omega, u(1+i y) \in F\right. \text { and } \\
\left.\exists C:\|u(1+i y)\|_{F} \leq C, \forall y \in \mathbb{R}\right\}
\end{array}
$$

(For future notation, I will just write $\mathcal{H}_{E, F}$ ).
Definition 1. For $\theta \in[0,1]$ we define the interpolation space $[E, F]_{\theta}$ by

$$
[E, F]_{\theta}=\left\{u(\theta) \mid u \in \mathcal{H}_{E, F}\right\}
$$

Proposition 1. $[E, F]_{\theta}$ is a Banach space.
Proof. As vector spaces, we clearly have that $[E, F]_{\theta} \cong \mathcal{H}_{E, F} /\{u: u(\theta)=0\}$ (by the isomorphism $u(\theta) \mapsto[u])$. We will show that $\mathcal{H}_{E, F}$ is a Banach space and that $\{u$ : $u(\theta)=0\}$ is a closed subspace. Then we know that the quotient is also a Banach space.

For $u \in \mathcal{H}_{E, F}$, define

$$
\|u\|_{\mathcal{H}_{E, F}}=\sup _{y \in \mathbb{R}}\|u(i y)\|_{E}+\sup _{y \in \mathbb{R}}\|u(1+i y)\|_{F}
$$

We need to check that this is a norm. It is easy to see that it satisfies the triangle inequality and behaves well under multiplication with scalars. It remains to check that $\|u\|_{\mathcal{H}_{E, F}}=0$ implies $u=0$. If $\|u\|_{\mathcal{H}}=0$, then $u(i y)=0$ and $u(1+i y)=0$ for all $y \in \mathbb{R}$ by definition of the norm. Recall Lindelöf's Theorem from the lectures: If $v$ is bounded by $A$ on the left boundary of $\Omega$ and by $B$ on the right boundary, and if $v$ doesn't grow
too fast, then $\|v(\theta+i t)\| \leq A^{1-\theta} B^{\theta}$ for all $\theta \in[0,1]$. In this case, we have that $u$ is bounded by 0 on the boundaries so it follows that $u=0$ everywhere.

We proceed to show that $\mathcal{H}_{E, F}$ is complete with this norm (hence a Banach space). Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a Cauchy sequence in $\mathcal{H}_{E, F}$. Since $\|\cdot\|_{F} \geq\|\cdot\|_{E}$, we get by Lindelöf's Theorem that

$$
\|u\|_{\mathcal{H}_{E, F}} \geq \sup _{y \in \mathbb{R}}\|u(i y)\|_{E}+\sup _{y \in \mathbb{R}}\|u(1+i y)\|_{E} \geq \sup _{z \in \bar{\Omega}}\|u(z)\|_{E}
$$

Hence $\left(u_{n}\right)$ is also a Cauchy sequence in $C_{b}(\bar{\Omega}, E)$, and since we know that this is a Banach space, we get that $u_{n}$ converges to some $u \in C_{b}(\bar{\Omega}, E)$. We will show that $u \in \mathcal{H}_{E, F}$ and that $u_{n} \rightarrow u$ in $\mathcal{H}_{E, F}$. For every $z \in \bar{\Omega}$ we have that $u_{n}(z) \rightarrow u(z)$ in $E$. Note that for every $y \in \mathbb{R}$ we have that $\left(u_{n}(1+i y)\right)$ is a Cauchy sequence in $F$, hence converges to a limit $\tilde{u}(1+i y) \in F$ (hence also in $E$ ). By uniqueness of limits, we get that $u(1+i y)=\tilde{u}(1+i y) \in F$. Moreover, for $\varepsilon>0$ :

$$
\|u(1+i y)\|_{F} \leq\left\|u(1+i y)-u_{n}(1+i y)\right\|_{F}+\left\|u_{n}(1+i y)\right\|_{F} \leq C+\varepsilon
$$

if $n$ is big enough. Hence $\|u(1+i y)\|_{F} \leq C$. It remains to show that $u$ is holomorphic. By the Cauchy Integral Theorem we have that

$$
u_{n}\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{\partial B_{r}\left(z_{0}\right)} \frac{u_{n}(z)}{z_{0}-z} \mathrm{~d} z \rightarrow \frac{1}{2 \pi i} \int_{\partial B_{r}\left(z_{0}\right)} \frac{u(z)}{z_{0}-z} \mathrm{~d} z
$$

as $n \rightarrow \infty$ since $u_{n}$ converges uniformly to $u$. Hence $u$ satisfies the Cauchy Integral Theorem so $u$ is holomorphic. Thus $u \in \mathcal{H}_{E, F}$ and it is clear that $u_{n} \rightarrow u$ in $\mathcal{H}_{E, F}$ (since we have pointwise convergence).

Finally, we prove that $U=\left\{u \in \mathcal{H}_{E, F} \mid u(\theta)=0\right\}$ is a closed subspace of $\mathcal{H}_{E, F}$. Let $\left(u_{n}\right)$ be a sequence in $U$ that converges to $u \in \mathcal{H}_{E, F}$. We saw above that this implies that $u_{n}$ converges uniformly to $u$, in particular $u_{n}(\theta)=0$ converges to $u(\theta)$ so $u(\theta)=0$ and hence $u \in U$.

Note that for $\theta=0$ we have that $[E, F]_{0}=E$ and for $\theta=1$ we have that $[E, F]_{1}=F$ so we can interpret the spaces $[E, F]_{\theta}$ as being the spaces lieing in between $E$ and $F$.
Proposition 2. Let $(E, F)$ and $(\tilde{E}, \tilde{F})$ be as above. Let $T: E \rightarrow \tilde{E}$ be continuous and linear such that $T: F \rightarrow \tilde{F}$ continuously. Then for all $\theta \in[0,1]: T:[E, F]_{\theta} \rightarrow[\tilde{E}, \tilde{F}]_{\theta}$ continuously.
Proof. Let $x \in[E, F]_{\theta}$. There exists a $u \in \mathcal{H}_{E, F}(\Omega)$ such that $u(\theta)=x$. I want to show that $T u \in \mathcal{H}_{\tilde{E}, \tilde{F}}$.

- $T u: \bar{\Omega} \rightarrow \tilde{E}$ continuous: clear
- Tu holomorphic: From KomAn: $u$ holomorphic $\Leftrightarrow$ Cauchy integral formula holds. Hence we can write $u\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{\partial B_{r}\left(z_{0}\right)} \frac{u(z)}{z-z_{0}} \mathrm{~d} z$ where $\overline{B_{r}\left(z_{0}\right)} \subseteq \Omega$. The integral is a limit of sums so since $T$ is linear and continuous we get that

$$
T u\left(z_{0}\right)=T\left(\frac{1}{2 \pi i} \int_{\partial B_{r}\left(z_{0}\right)} \frac{u(z)}{z-z_{0}} \mathrm{~d} z\right)=\frac{1}{2 \pi i} \int_{\partial B_{r}\left(z_{0}\right)} \frac{T u(z)}{z-z_{0}} \mathrm{~d} z
$$

Hence Cauchys integral formula holds for $T u$ so $T u$ is holomorphic.

- $T u$ bounded on $\bar{\Omega}$ : We know $\|u(z)\|_{E} \leq C$ for all $z \in \bar{\Omega}$ so by boundedness of $T$ we get $\|T u(z)\|_{\tilde{E}} \leq\|T\|\|u(z)\|_{E} \leq C\|T\|$.
- $T u(1+i y) \in \tilde{F}:$ We know $u(1+i y) \in F$ and $T: F \rightarrow \tilde{F}$.
- $\|T u(1+i y)\|_{\tilde{F}}$ bounded: $T$ bounded $F \rightarrow \tilde{F}$ (continuous and linear) so $\| T u(1+$ $i y)\left\|_{\tilde{F}} \leq\right\| T\left\|\|u(1+i y)\|_{F} \leq\right\| T \| \tilde{C}$.

Hence $T u \in \mathcal{H}_{\tilde{E}, \tilde{F}}(\Omega)$ so $T x=T u(\theta) \in[\tilde{E}, \tilde{F}]_{\theta}$ as wanted. It remains to show continuity:

$$
\begin{aligned}
\|T u(\theta)\|_{[\tilde{E}, \tilde{F}]_{\theta}} & =\inf _{v(\theta)=0}\|T u+v\|_{\mathcal{H}_{\tilde{E}, \tilde{F}}} \leq \inf _{v^{\prime}=T v(\theta), v(\theta)=0}\left\|T u+v^{\prime}\right\|_{\mathcal{H}_{\tilde{E}, \tilde{F}}} \\
& =\inf _{v(\theta)=0}\|T(u+v)\|_{\mathcal{H}_{\tilde{E}, \tilde{F}}} \| \\
& =\inf _{v(\theta)=0}\left(\sup _{y \in \mathbb{R}}\|T(u+v)(i y)\|_{\tilde{E}}+\sup _{y \in \mathbb{R}}\|T(u+v)(1+i y)\|_{\tilde{F}}\right) \\
& \leq C \inf _{v(\theta)=0}\left(\sup _{y \in \mathbb{R}}\|(u+v)(i y)\|_{E}+\sup _{y \in \mathbb{R}}\|(u+v)(1+i y)\|_{F}\right) \\
& =C \inf _{v(\theta)=0}\|u+v\|_{\mathcal{H}_{E, F}}=C\|u(\theta)\|_{[E, F]_{\theta}}
\end{aligned}
$$

where $C=\max \left\{\|T\|_{E \rightarrow E},\|T\|_{F \rightarrow F}\right\}$.

Next: $H$ Hilbert space, $\mathcal{D}(A)$ the domain of a closed operator $A$ on $H$ (Banach space with the graph norm). Want to identify $[H, \mathcal{D}(A)]_{\theta}$.

We will consider operators on the form $A=U^{-1} B U$ where $U: H \rightarrow L^{2}(X, \mu)$ is unitary and $B$ is a multiplication operator on $L^{2}(X, \mu)$ for some measure space $(X, \mu)$, that is

$$
B u(x)=M_{b} u(x)=b(x) u(x)
$$

for some function $b$. (For example, $A$ could be a positive selfadjoint operator (by the Spectral Theorem).) Here $\mathcal{D}(B)=\left\{u \in L^{2} \mid b u \in L^{2}\right\}$. Since $A U^{-1}=U^{-1} B$ we have that $\mathcal{D}(A)=U^{-1} \mathcal{D}(B)$. We will assume that $b(x) \geq 1$. Since $b(x) \in \mathbb{R}$ it can be shown that $B$ is selfadjoint which implies that it is also closed (DifFun1). (That $B$ is selfadjoint is clear if $b$ is bounded, but not clear in general.)

For $n \in \mathbb{N}$ we clearly have that $A^{n}=U^{-1} B^{n} U$. For $z \in \mathbb{C}$ we define $A^{z}=U^{-1} B^{z} U$ where $B^{z} u(x)=b(x)^{z} u(x)$. Then $\mathcal{D}\left(A^{z}\right)=U^{-1} \mathcal{D}\left(B^{z}\right)$ where $\mathcal{D}\left(B^{z}\right)=\left\{u \in L^{2} \mid b^{z} u \in\right.$ $\left.L^{2}\right\}$.
Proposition 3. Let $A$ be as above. For $\theta \in[0,1]:[H, \mathcal{D}(A)]_{\theta}=\mathcal{D}\left(A^{\theta}\right)$.
Proof. $\supseteq$ : Let $v \in \mathcal{D}\left(A^{\theta}\right)$. Want to find $u \in \mathcal{H}_{H, \mathcal{D}(A)}(\Omega)$ such that $u(\theta)=v$. Define $u(z)=A^{-z+\theta} v$. Then $u(\theta)=v$. Check that $u \in \mathcal{H}_{H, \mathcal{D}(A)}(\Omega)$ :

- $u: \Omega \rightarrow H$ welldefined (i.e. $v \in \mathcal{D}\left(A^{-z+\theta}\right)$ ): Note that

$$
u(z)=A^{-z+\theta} v=U^{-1} B^{-z+\theta} U v=U^{-1} B^{-z} B^{\theta} U v
$$

$v \in \mathcal{D}\left(A^{\theta}\right)=U^{-1} \mathcal{D}\left(B^{\theta}\right)$ by assumption. Hence $U v \in \mathcal{D}\left(B^{\theta}\right)$ so $B^{\theta} U v \in L^{2}$. It remains to show that $B^{\theta} U v \in \mathcal{D}\left(B^{-z}\right)$. We have that $\left|b(x)^{-z}\right|=|b(x)|^{-\operatorname{Re}(z)} \leq 1$ since $b(x) \geq 1$ and $\operatorname{Re} z \geq 0$ on $\Omega$. Hence $b^{-z} w \in L^{2}$ for all $w \in L^{2}$ so $B^{\theta} U v \in L^{2} \subseteq$ $\mathcal{D}\left(B^{-z}\right)$. Thus $u$ is welldefined and maps $\Omega$ to $H$.

- $u$ continuous on $\bar{\Omega}$ and holomorphic on $\Omega$ : easy to see since $A$ is essentially a multiplication operator.
- $u$ bounded on $\bar{\Omega}$ : Put $b=U v$. Then $b \in \mathcal{D}\left(B^{\theta}\right)$. We have that

$$
\begin{aligned}
\|u(z)\|_{H} & =\left\|U^{-1} B^{-z+\theta} U v\right\|_{H}=\left\|U^{-1} B^{-z} B^{\theta} b\right\|_{H} \\
& =\left\|B^{-z} B^{\theta} b\right\|_{L^{2}} \leq\left\|B^{-z}\right\|\left\|B^{\theta} b\right\|_{L^{2}} \leq\left\|B^{\theta} b\right\|_{L^{2}}=C<\infty
\end{aligned}
$$

since $\left\|B^{-z}\right\| \leq 1$ as above.

- $u(1+i y) \in \mathcal{D}(A)$ : We need to show that $A u(1+i y) \in H$.

$$
A u(1+i y)=A A^{-1-i y+\theta} v=A^{-i y} A^{\theta} v
$$

We have that $A^{\theta} v \in H$ since $v \in \mathcal{D}\left(A^{\theta}\right)$. The result follows if we can show that $\mathcal{D}\left(A^{-i y}\right)=H$ or equivalently that $\mathcal{D}\left(B^{-i y}\right)=L^{2}$. We have that $\left|b^{-i y}\right|=$ $|b|^{-\operatorname{Re}(i y)}=|b|^{0}=1$. Hence $b^{-i y} w \in L^{2}$ for all $w \in L^{2}$ as wanted.

- $\|u(1+i y)\|_{\mathcal{D}(A)}$ bounded:

$$
\|u(1+i y)\|_{\mathcal{D}(A)}=\|u(1+i y)\|_{H}+\|A u(1+i y)\|_{H}<\infty
$$

since $u$ bounded on $\bar{\Omega}$ in $\|\cdot\|_{H}$ and we just showed that $\|A u(1+i y)\|_{H}=\left\|A^{-i y} A^{\theta} v\right\|_{H} \leq$ $\left\|A^{\theta} v\right\|<\infty$.
$\subseteq:$ Suppose $v \in[H, \mathcal{D}(A)]_{\theta}$ i.e. $v=u(\theta)$ for some $u \in \mathcal{H}_{H, \mathcal{D}(A)}$. We need to show that $A^{\theta} u(\theta) \in H$.

We would like to use the maximum modulus principle on the function $A^{z} u(z)$. Problem: $\Omega$ is not bounded. Instead of $A^{z} u(z)$ we will look at $A^{z}(1+i \varepsilon A)^{-1} u(z)$, which turns out to be a bounded function, and then let $\varepsilon \rightarrow 0$.

We first show that $A^{z}(1+i \varepsilon A)^{-1} u(z)$ is bounded on $\Omega$ :

$$
A^{z}(1+i \varepsilon A)^{-1} u(z)=U^{-1} B^{z} U\left(U^{-1}(1+i \varepsilon B) U\right)^{-1} u(z)=U^{-1} B^{z}(1+i \varepsilon B)^{-1} U u(z)
$$

We know that $U u(z)$ is a bounded holomorphic function $\Omega \rightarrow L^{2}$ since $u$ by assumption is a bounded holomorphic function on $\Omega$. Moreover, $B^{z}(1+i \varepsilon B)^{-1}$ is bounded since

$$
\left|\frac{b^{z}}{1+i \varepsilon b}\right|=\frac{|b|^{\operatorname{Re} z}}{\sqrt{1+\varepsilon^{2} b^{2}}} \leq \frac{|b|}{\sqrt{1+\varepsilon^{2} b^{2}}} \leq \frac{|b|}{\sqrt{\varepsilon^{2} b^{2}}}=\frac{1}{\varepsilon}
$$

Here, we used that $\operatorname{Re} z \in[0,1]$ since $z \in \bar{\Omega}$. Hence $U^{-1} B^{z}(1+i \varepsilon B)^{-1} U u(z)$ is a bounded holomorphic function from $\Omega$ into $H$ so we can use the maximum modulus principle:

$$
\begin{array}{r}
\sup _{z \in \bar{\Omega}}\left\|A^{z}(1+i \varepsilon A)^{-1} u(z)\right\|_{H}=\sup _{y \in \mathbb{R}} \max \left\{\left\|A^{i y}(1+i \varepsilon A)^{-1} u(i y)\right\|_{H},\right. \\
\left.\left\|A^{1+i y}(1+i \varepsilon A)^{-1} u(1+i y)\right\|_{H}\right\}
\end{array}
$$

We need this to be bounded independently of $\varepsilon$.
The left boundary: We saw earlier that $A^{i y}$ is bounded on $H$. Since $U$ is unitary we have that $\left\|(1+i \varepsilon A)^{-1}\right\|=\left\|(1+i \varepsilon B)^{-1}\right\|$. Since $\left|\frac{1}{1+i \varepsilon b}\right|=\frac{1}{\sqrt{1+\varepsilon^{2} b^{2}}} \leq 1$, we thus get that $\left\|(1+i \varepsilon A)^{-1}\right\| \leq 1$ for all $\varepsilon$. Hence

$$
\left\|A^{i y}(1+i \varepsilon A)^{-1} u(i y)\right\|_{H} \leq C\|u(i y)\|_{H}
$$

for some $C$ independent of $\varepsilon$.
The right boundary: An easy calculation shows that $A^{1+i y}(1+i \varepsilon A)^{-1} u(1+i y)=$ $A^{i y}(1+i \varepsilon A)^{-1} A u(1+i y)$ (since multiplication operators commute). We saw before that $A^{i y}(1+i \varepsilon A)^{-1}$ is bounded by $C$. Since $u \in \mathcal{H}_{H, \mathcal{D}(A)}$ we have that $u(1+i y) \in \mathcal{D}(A)$ so

$$
\left\|A^{i y}(1+i \varepsilon A)^{-1} A u(1+i y)\right\|_{H} \leq C\|A u(1+i y)\|_{H} \leq C\|u(1+i y)\|_{\mathcal{D}(A)}
$$

We conclude that

$$
\sup _{z \in \bar{\Omega}}\left\|A^{z}(1+i \varepsilon A)^{-1} u(z)\right\|_{H} \leq \sup _{y \in \mathbb{R}} \max \left\{C\|u(i y)\|_{H}, C\|u(1+i y)\|_{\mathcal{D}(A)}\right\} \leq \tilde{C}
$$

for some $\tilde{C}$ independent of $\varepsilon$. By letting $\varepsilon \rightarrow 0$ we get that $A^{z} u(z) \in H$ with $\left\|A^{z} u(z)\right\| \leq$ $\tilde{C}$ for all $z \in \bar{\Omega}$. In particular, if we let $z=\theta$ we get $A^{\theta} u(\theta) \in H$ as wanted.

## Application:

Recall from DifFun:

$$
\begin{aligned}
H^{s}\left(\mathbb{R}^{n}\right) & =\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \mid\langle\xi\rangle^{s} \hat{u}(\xi) \in L^{2}\left(\mathbb{R}^{n}\right)\right\}, \quad s \in \mathbb{R} \\
& =\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \mid \mathcal{F}^{-1}\langle\xi\rangle^{s} \hat{u}(\xi) \in L^{2}\right\}
\end{aligned}
$$

Put $\Lambda^{s}:=\mathcal{F}^{-1} M_{\langle\xi\rangle^{s}} \mathcal{F}$ with $\mathcal{D}\left(\Lambda^{s}\right)=\left\{u \in \mathcal{S}^{\prime} \mid \Lambda^{s} u \in L^{2}\right\}$. Then

$$
H^{s}\left(\mathbb{R}^{n}\right)=\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \mid \Lambda^{s} u \in L^{2}\left(\mathbb{R}^{n}\right)\right\}=\mathcal{D}\left(\Lambda^{s}\right)
$$

If $s \geq 0$ then we know from DifFun that $H^{s} \subseteq L^{2}$ so $\Lambda^{s}$ is an operator on $L^{2}$. Hence it satisfies all of the assumptions of the above proposition so we get that

$$
\left[L^{2}\left(\mathbb{R}^{n}\right), H^{s}\left(\mathbb{R}^{n}\right)\right]_{\theta}=H^{k \theta}\left(\mathbb{R}^{n}\right), \quad \theta \in[0,1]
$$

for $s \geq 0$.
More generally, we can show that for any $\sigma, t \in \mathbb{R}(t \geq \sigma)$ :

$$
\left[H^{\sigma}\left(\mathbb{R}^{n}\right), H^{t}\left(\mathbb{R}^{n}\right)\right]_{\theta}=H^{\theta t+(1-\theta) \sigma}\left(\mathbb{R}^{n}\right), \quad \theta \in[0,1]
$$

Proof. We saw in DifFun1 that $\Lambda^{s}$ is an isometry $H^{t} \rightarrow H^{t-s}$ for all $s, t \in \mathbb{R}$. We must then have that

$$
\Lambda^{s}[E, F]_{\theta}=\left[\Lambda^{s} E, \Lambda^{s} F\right]_{\theta}
$$

$\left(\Lambda^{s}[E, F]_{\theta}=\left\{\Lambda^{s} u(\theta)\right\}\right.$ and $\left.\left[\Lambda^{s} E, \Lambda^{s} F\right]_{\theta}=\left\{\left(\Lambda^{s} u\right)(\theta)\right\}.\right)$

We are looking at $E=L^{2}=H^{0}, F=H^{k}$. Then $\Lambda^{s} E=H^{-s}$ and $\Lambda^{s} F=H^{k-s}$. We get

$$
\left[H^{-s}, H^{k-s}\right]_{\theta}=\Lambda^{s}\left[L^{2}, H^{k}\right]_{\theta}=\Lambda^{s} H^{k \theta}=H^{k \theta-s}
$$

Given $\sigma$ and $t$ from above, we choose $s=-\sigma$ and $k=t-\sigma$. Then the above result yields

$$
\left[H^{\sigma}, H^{t}\right]_{\theta}=H^{(t-\sigma) \theta+\sigma}=H^{\theta t+(1-\theta) \sigma}
$$

as wanted.
As an application of this, we can look at the multiplication operator $M_{\varphi}$ given by $\left(M_{\varphi} u\right)(x)=\varphi(x) u(x)$. If $\varphi \in C_{L_{\infty}}^{\infty}$ (i.e. $D^{\alpha} \varphi \in L^{\infty}$ for all $\alpha$ ) then it is clear that $M_{\varphi}$ maps $H^{k}$ to $H^{k}$ if $k \in \mathbb{Z}$ (follows by Leibniz' rule for positive integers and by duality for negative integers). If $k \in \mathbb{R}$ is not an integer this is not clear. However, it easily follows from complex interpolation:

Given $s \in \mathbb{R}$ we know that $s \in[n, n+1]$ for some $n \in \mathbb{Z}$, so we can write $s=$ $\theta n+(1-\theta)(n+1)$ for some $\theta \in[0,1]$. We know that $M_{\varphi}$ maps $H^{n}$ to $H^{n}$ and $H^{n+1}$ to $H^{n+1}$ so by Proposition 2.3 it follows that $M_{\varphi}$ maps $\left[H^{n}, H^{n+1}\right]_{\theta}$ to itself. But we just saw that $\left[H^{n}, H^{n+1}\right]_{\theta}=H^{\theta n+(1-\theta)(n+1)}=H^{s}$ so the result follows.

We can also use interpolation to generalize the definition of Sobolev spaces to arbitrary domains (so far only defined for $s \in \mathbb{N}_{0}$ ): Let $s \geq 0$ and let $\Omega \subseteq \mathbb{R}^{n}$ be open. Define

$$
H^{s}(\Omega)=\left[L^{2}(\Omega), H^{k}(\Omega)\right]_{\theta}, \quad s=\theta k
$$

Note: One has to prove that this does not depend on the choise of $k, \theta$. It can be shown that

$$
H^{s}(\Omega) \simeq H^{s}\left(\mathbb{R}^{n}\right) /\left\{u \in H^{s}\left(\mathbb{R}^{n}\right):\left.u\right|_{\Omega}=0\right\}
$$

This characterization can be used to define $H^{s}(\Omega)$ when $s \leq 0$.
We now want to define interpolation spaces for Banach spaces which are not contained in eachother. Let $E, F$ be Banach spaces and suppose that they are both continuously injected into a locally convex topological vector space $V$. Put $G=E+F=\{e+f \mid e \in$ $E, f \in F\}$. This is a Banach space with the norm

$$
\|a\|_{G}=\inf \left\{\|e\|_{E}+\|f\|_{F} \mid a=e+f, e \in E, f \in F\right\}
$$

As before we define

$$
\begin{aligned}
\mathcal{H}_{E, F}(\Omega)=\left\{u \in C_{b}(\bar{\Omega}, G) \mid u\right. & \text { holomorphic on } \Omega,\|u(i y)\|_{E} \text { and } \\
& \left.\|u(1+i y)\|_{F} \text { bounded for } y \in \mathbb{R}\right\}
\end{aligned}
$$

Note that if $F \subseteq E$, this is the same definition as before since then $G=E$ (and we can choose $V=E$ ). The definition of the interpolation spaces is exactly the same as before:

$$
[E, F]_{\theta}=\left\{u(\theta) \mid u \in \mathcal{H}_{E, F}(\Omega)\right\}, \quad \theta \in[0,1]
$$

We can use this on $L^{p}$ spaces, which are typically not contained in eachother (we can use $V=G=L^{p}+L^{q}$ when interpolating between $L^{p}$ and $L^{q}$ ). We have the following result which I will not prove:

Proposition 4. Let $(X, \mu)$ be a measure space. For $0<\theta<1$ :

$$
\left[L^{p_{0}}(X, \mu), L^{p_{1}}(X, \mu)\right]_{\theta}=L^{p_{\theta}}(X, \mu)
$$

where $\frac{1}{p_{\theta}}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}$.
We have a similar proposition as before:
Proposition 5. Let $(E, F),(\tilde{E}, \tilde{F})$ be as above. Suppose $T: G \rightarrow \tilde{G}$ is linear such that $T: E \rightarrow \tilde{E}$ is bounded and $T: F \rightarrow \tilde{F}$ is bounded. Then for all $\theta \in[0,1]$ : $T:[E, F]_{\theta} \rightarrow[\tilde{E}, \tilde{F}]_{\theta}$ is bounded.

Remark 1. Proposition 4 and Proposition 5 give us Riesz-Thorin as stated in the lecture:
If $T$ is bounded $L^{p_{0}} \rightarrow L^{q_{0}}$ and $L^{p_{1}} \rightarrow L^{q_{1}}$, then Proposition 5 says that $T$ : $\left[L^{p_{0}}, L^{p_{1}}\right]_{\theta} \rightarrow\left[L^{q_{0}}, L^{q_{1}}\right]_{\theta}$ for all $\theta \in[0,1]$. By Proposition 4: $T: L^{p_{\theta}} \rightarrow L^{q_{\theta}}$.

