
Faculty of Science

The Method of Stationary Phase

Kim Petersen
Department of Mathematical Sciences

23/05/2011



Oscillatory integrals of the first kind

Given n ∈ N we will study

Iu,ϕ(λ) =

∫

Rn

u(x) eiλϕ(x) dx

for u ∈ C∞
c (Rn), ϕ ∈ C∞(Rn;R) and λ ∈ R.
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Oscillatory integrals of the first kind

Given n ∈ N we will study

Iu,ϕ(λ) =

∫

Rn

u(x) eiλϕ(x) dx

for u ∈ C∞
c (Rn), ϕ ∈ C∞(Rn;R) and λ ∈ R.

Example

When n = 1 and ϕ = −id we have

Iu,−id(λ) =

∫ ∞

−∞

u(x) e−iλx dx = Fu(λ).
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Oscillatory integrals of the first kind

Given n ∈ N we will study

Iu,ϕ(λ) =

∫

Rn

u(x) eiλϕ(x) dx

for u ∈ C∞
c (Rn), ϕ ∈ C∞(Rn;R) and λ ∈ R.

Example

When n = 1 and ϕ = −id we have

Iu,−id(λ) =

∫ ∞

−∞

u(x) e−iλx dx = Fu(λ).

Riemann-Lebesgue lemma: Iu,−id(λ) → 0 as λ→ ±∞.
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Key question

How does Iu,ϕ(λ) behave as λ→ ±∞ for general ϕ?
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Key question

How does Iu,ϕ(λ) behave as λ→ +
(−)∞ for general ϕ?

Iu,ϕ(λ) =

∫

Rn

u(x) eiλϕ(x) dx =

∫

Rn

u(x)e−iλϕ(x) dx = Iu,ϕ(−λ).
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Key question

How does Iu,ϕ(λ) behave as λ→ +
(−)∞ for general ϕ?

Iu,ϕ(λ) =

∫

Rn

u(x) eiλϕ(x) dx =

∫

Rn

u(x)e−iλϕ(x) dx = Iu,ϕ(−λ).

Example

Setting n = 1, u > 0 and ϕ = 1 gives

Iu,1(λ) =

∫

Rn

u(x)eiλ dx = eiλ‖u‖L1(R)
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Principle of non-stationary phase

Theorem

Let u ∈ C∞
c (Rn) and let ϕ ∈ C∞(Rn;R) such that ∇ϕ is non-zero

on supp(u).
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Principle of non-stationary phase

Theorem

Let u ∈ C∞
c (Rn) and let ϕ ∈ C∞(Rn;R) such that ∇ϕ is non-zero

on supp(u). Then

|Iu,ϕ(λ)| ≤ CN,u,ϕλ
−N for all N ∈ N0 and λ > 0.
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Proof: On the blackboard (see exercise 3.1).
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Principle of non-stationary phase

Theorem

Let u ∈ C∞
c (Rn) and let ϕ ∈ C∞(Rn;R) such that ∇ϕ is non-zero

on supp(u). Then

|Iu,ϕ(λ)| ≤ CN,u,ϕλ
−N for all N ∈ N0 and λ > 0.

Proof: On the blackboard (see exercise 3.1).

Consequence: The essential contributions to the asymptotic

behavior of Iu,ϕ(λ) come from the stationary points of ϕ (i.e.

points y with ∇ϕ(y) = 0)
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Principle of non-stationary phase

Theorem

Let u ∈ C∞
c (Rn) and let ϕ ∈ C∞(Rn;R) such that ∇ϕ is non-zero

on supp(u). Then

|Iu,ϕ(λ)| ≤ CN,u,ϕλ
−N for all N ∈ N0 and λ > 0.

Proof: On the blackboard (see exercise 3.1).

Consequence: The essential contributions to the asymptotic

behavior of Iu,ϕ(λ) come from the stationary points of ϕ (i.e.

points y with ∇ϕ(y) = 0)

Assumption: The stationary points y ∈ supp(u) of ϕ are

non-degenerate (i.e. det(∂i∂jϕ(y))ij 6= 0).
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The Morse Lemma

Lemma

Let x0 ∈ R
n be a non-degenerate stationary point of

ϕ ∈ C∞(Rn;R). Then there exist neighbourhoods V of x0 and U

of 0 ∈ R
n, numbers ε1, . . . , εn ∈ {±1} and a diffeomorphism

H : V → U with H(x0) = 0 such that

ϕ ◦ H−1(x) = ϕ(x0) + ε1x2
1 + · · ·+ εnx2

n
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The Morse Lemma

Lemma

Let x0 ∈ R
n be a non-degenerate stationary point of

ϕ ∈ C∞(Rn;R). Then there exist neighbourhoods V of x0 and U

of 0 ∈ R
n, numbers ε1, . . . , εn ∈ {±1} and a diffeomorphism

H : V → U with H(x0) = 0 such that

ϕ ◦ H−1(x) = ϕ(x0) + ε1x2
1 + · · ·+ εnx2

n = ϕ(x0) + 〈x, Ex〉

with E = diag(ε1, . . . , εn).
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The Morse Lemma

Lemma

Let x0 ∈ R
n be a non-degenerate stationary point of

ϕ ∈ C∞(Rn;R). Then there exist neighbourhoods V of x0 and U

of 0 ∈ R
n, numbers ε1, . . . , εn ∈ {±1} and a diffeomorphism

H : V → U with H(x0) = 0 such that

ϕ ◦ H−1(x) = ϕ(x0) + ε1x2
1 + · · ·+ εnx2

n = ϕ(x0) + 〈x, Ex〉

with E = diag(ε1, . . . , εn).

Remark: It can be shown that the number of +1’s amongst

ε1, . . . , εn is equal to the number of positive eigenvalues of

(∂i∂jϕ(x0))ij
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Proof of the Morse Lemma

Without loss of generality assume that x0 = 0 and ϕ(0) = 0.
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Proof of the Morse Lemma

Without loss of generality assume that x0 = 0 and ϕ(0) = 0.

After proving the case with x0 = 0 and ϕ(0) = 0, apply the

obtained result to the function x 7→ (ϕ(x + x0)− ϕ(x0)).
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Proof of the Morse Lemma

Without loss of generality assume that x0 = 0 and ϕ(0) = 0.

On the blackboard we will show the following statement:
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Proof of the Morse Lemma

Without loss of generality assume that x0 = 0 and ϕ(0) = 0.

For all N ∈ {1, . . . , n + 1} there exist neighbourhoods

VN ,UN ⊂ R
n of 0, a diffeomorphism HN : VN → UN with

HN(0) = 0, numbers εm ∈ {±1} and a set of functions
{

q
(N)
ij

∣
∣ i, j ∈ N,N ≤ i, j ≤ n

}
with

(iN) q
(N)
ij ∈ C∞(VN),

(iiN) q
(N)
ij = q

(N)
ji ,

(iiiN) q
(N)
ℓk (0) 6= 0 for some ℓ, k

such that

ϕ ◦ H−1
N (x) =

N−1∑

m=1

εmx2
m +

∑

N≤i,j≤n

q
(N)
ij (x)xixj.
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Proof of the Morse Lemma

Without loss of generality assume that x0 = 0 and ϕ(0) = 0.

For all N ∈ {1, . . . , n + 1} there exist neighbourhoods

VN ,UN ⊂ R
n of 0, a diffeomorphism HN : VN → UN with

HN(0) = 0, numbers εm ∈ {±1} and a set of functions
{

q
(N)
ij

∣
∣ i, j ∈ N,N ≤ i, j ≤ n

}
with

(iN) q
(N)
ij ∈ C∞(VN),

(iiN) q
(N)
ij = q

(N)
ji ,

(iiiN) q
(N)
ℓk (0) 6= 0 for some ℓ, k

such that

ϕ ◦ H−1
N (x) =

N−1∑

m=1

εmx2
m +

∑

N≤i,j≤n

q
(N)
ij (x)xixj.

= 0 if N = 1
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Proof of the Morse Lemma
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Consequences of the Morse Lemma

Corollary

A non-degenerate stationary point x0 of ϕ ∈ C∞(Rn;R) is an

isolated stationary point.
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Consequences of the Morse Lemma

Corollary

A non-degenerate stationary point x0 of ϕ ∈ C∞(Rn;R) is an

isolated stationary point.

The compact set supp(u)
can only contain finitely

many non-degenerate

stationary points of ϕ.
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Consequences of the Morse Lemma

Corollary

A non-degenerate stationary point x0 of ϕ ∈ C∞(Rn;R) is an

isolated stationary point.

Let {Oj}
N
j=0 be a

bounded open cover of

supp(u) such that Oj

contains precisely one

stationary point of ϕ.
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Consequences of the Morse Lemma

Corollary

A non-degenerate stationary point x0 of ϕ ∈ C∞(Rn;R) is an

isolated stationary point.

Let {Oj}
N
j=0 be a

bounded open cover of

supp(u) such that Oj

contains precisely one

stationary point of ϕ.

Partition of unity:
∑N

j=0 ψj = 1 on supp(u) and ψj ∈ C∞
c (Oj; [0, 1]).
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Consequences of the Morse Lemma

Corollary

A non-degenerate stationary point x0 of ϕ ∈ C∞(Rn;R) is an

isolated stationary point.

Let {Oj}
N
j=0 be a

bounded open cover of

supp(u) such that Oj

contains precisely one

stationary point of ϕ.

Partition of unity:
∑N

j=0 ψj = 1 on supp(u) and ψj ∈ C∞
c (Oj; [0, 1]).

Iu,ϕ(λ) =

N∑

j=0

∫

Rn

ψj(x)u(x)e
iλϕ(x) dx =

N∑

j=0

Iuψj,ϕ(λ), uψj ∈ C∞
c (Oj),
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Consequences of the Morse Lemma

Corollary

A non-degenerate stationary point x0 of ϕ ∈ C∞(Rn;R) is an

isolated stationary point.

Let {Oj}
N
j=0 be a

bounded open cover of

supp(u) such that Oj

contains precisely one

stationary point of ϕ.

Partition of unity:
∑N

j=0 ψj = 1 on supp(u) and ψj ∈ C∞
c (Oj; [0, 1]).

Iu,ϕ(λ) =

N∑

j=0

∫

Rn

ψj(x)u(x)e
iλϕ(x) dx =

N∑

j=0

Iuψj,ϕ(λ), uψj ∈ C∞
c (Oj),

Can assume: ϕ has precisely one stationary point in supp(u).

Kim Petersen (Department of Mathematical Sciences) — Stationary Phase — 23/05/2011

Slide 7/12



Special Case: Quadratic Forms

The Morse Lemma inspires us to consider the case ϕ = 〈·,A·〉,
where A is a real, symmetric and invertible n × n-matrix.
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Special Case: Quadratic Forms

The Morse Lemma inspires us to consider the case ϕ = 〈·,A·〉,
where A is a real, symmetric and invertible n × n-matrix.

Proposition

Let A be a real, symmetric and invertible n × n-matrix. Then for

all u ∈ C∞
c (Rn), λ > 0 and all integers k > 0 and s > n

2
we have

∣
∣
∣Iu,〈·,A·〉(λ)−

(

det
( A

πi

))− 1
2

k−1∑

j=0

〈D,A−1D〉ju(0)

(4i)jj!
λ−

n
2
−j
∣
∣
∣

≤ Ck

(‖A−1‖

λ

) n
2
+k ∑

|α|≤s+2k

‖Dαu‖L2 ,

where D = 1
i
(∂1, . . . , ∂n).

Proof: On the blackboard
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Principle of Stationary Phase

Theorem

Let u ∈ C∞
c (Rn) and consider a ϕ ∈ C∞(Rn;R) with precisely

one stationary point x0 ∈ supp(u), which is non-degenerate.

Then for all λ > 0 and all k ∈ N we have

∣
∣
∣Iu,ϕ(λ)− eiλϕ(x0)

k−1∑

j=0

Tju(0)λ
− n

2
−j
∣
∣
∣ ≤ Ck,n,u,ϕλ

− n
2
−k,

where Tj is a differential operator of order 2j with

C∞-coefficients.

Kim Petersen (Department of Mathematical Sciences) — Stationary Phase — 23/05/2011

Slide 9/12



Principle of Stationary Phase

Theorem

Let u ∈ C∞
c (Rn) and consider a ϕ ∈ C∞(Rn;R) with precisely

one stationary point x0 ∈ supp(u), which is non-degenerate.

Then for all λ > 0 and all k ∈ N we have

∣
∣
∣Iu,ϕ(λ)− eiλϕ(x0)

k−1∑

j=0

Tju(0)λ
− n

2
−j
∣
∣
∣ ≤ Ck,n,u,ϕλ

− n
2
−k,

where Tj is a differential operator of order 2j with

C∞-coefficients.

Proof: Let H : V → U and E be as in the Morse lemma.
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Principle of Stationary Phase

Theorem

Let u ∈ C∞
c (Rn) and consider a ϕ ∈ C∞(Rn;R) with precisely

one stationary point x0 ∈ supp(u), which is non-degenerate.

Then for all λ > 0 and all k ∈ N we have

∣
∣
∣Iu,ϕ(λ)− eiλϕ(x0)

k−1∑

j=0

Tju(0)λ
− n

2
−j
∣
∣
∣ ≤ Ck,n,u,ϕλ

− n
2
−k,

where Tj is a differential operator of order 2j with

C∞-coefficients.

Proof: Let H : V → U and E be as in the Morse lemma.

Choose χ ∈ C∞
c (V) with

χ = 1 near x0.
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Principle of Stationary Phase (proof)
Then

Iu,ϕ(λ)

=

∫

R
n

eiλϕ(x)(χu)(x) dx +

∫

Rn

eiλϕ(x)[(1 − χ)u](x) dx
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Principle of Stationary Phase (proof)
Then

Iu,ϕ(λ)

=

∫

V

eiλϕ(x)(χu)(x) dx +

∫

Rn

eiλϕ(x)[(1 − χ)u](x) dx

=

∫

U

eiλϕ ◦ H−1(x) (χu) ◦ H−1(x) |detJH−1(x)|dx + I(1−χ)u,ϕ(λ)
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Principle of Stationary Phase (proof)
Then

Iu,ϕ(λ)

=

∫

V

eiλϕ(x)(χu)(x) dx +

∫

Rn

eiλϕ(x)[(1 − χ)u](x) dx

=

∫

U
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Principle of Stationary Phase (proof)
Then

Iu,ϕ(λ)

=

∫

V

eiλϕ(x)(χu)(x) dx +

∫

Rn

eiλϕ(x)[(1 − χ)u](x) dx

=

∫

U

eiλ (ϕ(x0) + 〈x, Ex〉)(χu) ◦ H−1(x) |detJH−1(x)|
︸ ︷︷ ︸

= fu(x)∈ C∞

c (Rn)

dx + I(1−χ)u,ϕ(λ)
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Principle of Stationary Phase (proof)
Then
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V
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∫

Rn
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Principle of Stationary Phase (proof)
Then

Iu,ϕ(λ)

=

∫

V

eiλϕ(x)(χu)(x) dx +

∫

Rn

eiλϕ(x)[(1 − χ)u](x) dx

=

∫

U

eiλ (ϕ(x0) + 〈x, Ex〉) fu(x) dx + I(1−χ)u,ϕ(λ)

= eiλϕ(x0)Ifu,〈·,E·〉(λ) + I(1−χ)u,ϕ(λ)
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Principle of Stationary Phase (proof)
Then

Iu,ϕ(λ) = eiλϕ(x0)Ifu,〈·,E·〉(λ) + I(1−χ)u,ϕ(λ)
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Principle of Stationary Phase (proof)
Then

Iu,ϕ(λ) = eiλϕ(x0)Ifu,〈·,E·〉(λ) + I(1−χ)u,ϕ(λ)

so by setting Tju =
(
det

(
E
πi

))− 1
2 〈D,E−1D〉jfu

(4i)jj! and letting s be the

smallest integer > n
2

we get

∣
∣
∣Iu,ϕ(λ)− eiλϕ(x0)

k−1∑

j=0

Tju(0)λ
− n

2
−j
∣
∣
∣

≤
∣
∣
∣Ifu,〈·,E·〉(λ)−

k−1∑

j=0

Tju(0) λ−
n
2
−j
∣
∣
∣+

∣
∣I(1−χ)u,ϕ(λ)

∣
∣
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2

we get

∣
∣
∣Iu,ϕ(λ)− eiλϕ(x0)

k−1∑

j=0

Tju(0)λ
− n

2
−j
∣
∣
∣

≤
∣
∣
∣Ifu,〈·,E·〉(λ)−

k−1∑

j=0

Tju(0) λ−
n
2
−j
∣
∣
∣+

∣
∣I(1−χ)u,ϕ(λ)

∣
∣
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The simplest asymptotic expansion of Iu,ϕ(λ)

Remembering the definitions of Tju and fu,

Tju =
(

det
( E

πi

))− 1
2 〈D, E−1D〉jfu

(4i)jj!

and

fu =
[
(χu) ◦ H−1

]
·
∣
∣detJH−1

∣
∣,

we see that

T0u(0) =
(

det
( E

πi

))− 1
2

fu(0) =
(

det
( E

πi

))− 1
2 ∣
∣detJH−1(0)

∣
∣ u(x0)
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− n
2
−1.

Kim Petersen (Department of Mathematical Sciences) — Stationary Phase — 23/05/2011

Slide 11/12



Final remarks

Topics for further studies

• Considering Iu,ϕ(λ) with complex λ or complex φ,
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