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Abstract

Examples of dynamical systems proposed by Z. Artstein and C. M. Dafermos admit non-unique
solutions that track a one parameter family of closed circular orbits contiguous at a single point.
Switching between orbits at this single point produces an infinite number of solutions with the
same initial data. Dafermos appeals to a maximal entropy rate criterion to recover uniqueness.
These results are here interpreted as non-unique Lagrange trajectories on a particular spatial
region. The corresponding velocity is proved consistent with plane steady compressible fluid
flows that for specified pressure and mass density satisfy not only the Euler equations but also
the Navier-Stokes equations for specially chosen volume and (positive) shear viscosities. The
maximal entropy rate criterion recovers uniqueness.
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1 Introduction

This paper derives explicit non-unique continuous Lagrange trajectories related to certain Euler
and Navier-Stokes steady compressible plane fluid flow. The orbits tracked by the trajectories
belong to a one parameter family of closed contiguous circular paths. Non-uniqueness occurs when
trajectories switch orbits at the common point of intersection. Even so, uniqueness follows for the
problems considered here by appeal to an entropy rate criterion that isolates a single preferred
trajectory.

The non-unique behaviour is not dissimilar to that occurring in the convex integration inves-
tigations by De Lellis and Szèkelyhidi [8, 9] and Buckmaster and Vicol [4] for the incompressible
Euler and Navier-Stokes systems. It is therefore reasonable to speculate whether a unique solution
also might be selected by application of an entropy rate criterion. Brief comment on this aspect is
given in Section 5.

The present analysis is partly inspired by an example in control theory proposed by Artstein [1,
see eqn. (6.1)] who, rather than non-uniqueness, emphasises non-existence of suitable controls that
otherwise stabilise the system and ensure solutions asymptotically approach zero. The primary
motivation, however, comes from what Dafermos [7] refers to as an artificial example of a nonlinear
oscillator governed by an ordinary differential equation. The associated trajectories considered
by both Artstein and Dafermos are circular, and touch at their common point of intersection
taken to be the origin. Consequently, trajectories can be switched at the origin by instantaneous
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variation of an entropy function that is constant along individual trajectories. In this manner,
irrespective of initial conditions, an uncountable set of different solutions can be chosen to establish
non-uniqueness.

Dafermos [7] recovers uniqueness by selecting that particular solution which dissipates entropy at
maximum rate. Such a solution is not only unique but physically relevant in the sense of Hadamard’s
definition of well-posedness. Similar entropy rate criteria, originally formulated to treat shock
wave propagation, include the maximal entropy rate proposed by Ziegler [23] and the minimum
entropy rate due to Prigogine [18, Chapt. V]. Both principles are reviewed in the monograph by
Moroz [16, Chapt. 1]. Glimm, Lazarev and Chen [12] remark that the subtle difference between
these two principles may cause confusion. Ziegler’s principle is relevant to closed thermodynamic
systems while Prigogine’s principle applies to open thermodynamic systems. Evidently, Dafermos’s
investigation relates to a closed system.

Dafermos’s example, however, is far from trivial. It is shown in this paper that solutions, in-
terpreted as steady Lagrange trajectories (particle paths), are related to steady plane flows for
compressible Euler and Navier-Stokes equations with variable mass density and positive shear vis-
cosity. The extension to fluid problems demonstrates that tracking arbitrarily prescribed discrete
entropy profiles produces an infinite number of continuous Lagrange trajectories with the same
initial conditions. Consequently, trajectories are not unique. Nevertheless, a single unique trajec-
tory is identified by the maximal entropy rate admissibility criterion proposed by Dafermos [7].
An interpretation of this result is that “wild” initial data can be produced for steady solutions to
an initial boundary problem for both the Euler and Navier-Stokes equations. The term “wild” is
understood in the sense that there are an infinite number of Lagrange trajectories for the same
initial conditions. The entropy rate criterion identifies a unique trajectory and renders the notion
of “wildness” redundant.

The conclusion contrasts with the uniqueness results for weak solutions to the incompressible
Navier-Stokes equations obtained by Robinson and Sadowski [19, 20]. These authors show for
sufficiently regular velocity that the Lagrange trajectories are unique and smooth in time for almost
every initial data. On the other hand, the velocity for the Lagrange trajectories considered here
lacks Lipschitz continuity at one point and therefore does not satisfy the continuity conditions
imposed by Robinson and Sadowski.

An alternative admissibility procedure, introduced by Brenier [3], relies upon the concave maxi-
mization of a certain functional to derive smooth solutions to Euler’s equation. Further procedures
include that by Lasarzik [14] who adopts a maximal entropy rate to conclude that “dissipative
solutions” as defined by P.-L. Lions [15] exist, are unique, and depend continuously upon initial
data for both the Euler and Navier-Stokes equations of incompressible fluid dynamics. It must
be noted, however, that such dissipative solutions are not in general weak solutions. A different
notion of dissipative solution is treated by Breit, Feireisl and Hofmanova [2] who replace the con-
cept of a weak solution by a semi-flow satisfying a maximal entropy rate production criterion. By
construction, the semi-flow implies modified well-posedness of the Euler system.

Also of importance is whether the maximal entropy rate criterion can be accurately simulated
by numerical analysis. Glimm, Lazarev and Chen [12] note that this comparatively delicate issue
is of substantial physical importance. A numerical method that preserves qualitative behaviour is
required and, in fact, it is shown in Section 4 that the symplectic Euler method successfully ensures
convergence to the unique solution selected by the criterion. The explicit Euler method fails in this
respect.

As already remarked, based upon the Artstein-Dafermos examples, the non-uniqueness de-
scribed in this paper for the Euler and Navier-Stokes equations is due to the corresponding La-
grange trajectories switching at the origin from one circular path to another along each of which
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there is different constant entropy. Arbitrary prescription of these entropies and the order in which
the trajectories are described results in an uncountable number of distinct solutions satisfying the
same initial conditions. The behaviour has features in common with that respectively established
by De Lellis and Szèkelyhidi [8, 9] and by Buckmaster and Vicol [4] for weak solutions on a torus
to the incompressible Euler and Navier-Stokes equations. These authors use convex integration
techniques to prove that an arbitrary number of such weak solutions exist possessing both the
same assigned smooth global energy and the same initial conditions. Consequently, non-uniqueness
is established. (Extension to the compressible Euler equations is due to Chiodaroli and Kreml [6],
and to Feireisl [11]).

Arbitrary specification of an appropriate profile is thus common to both developments and
invites exploration of the possible application of a maximal entropy rate criterion to identify a
unique solution from among the many weak solutions determined by convex integration methods.

Of separate interest is the physical relevance of weak solutions obtained by convex integration to
the Euler and Navier-Stokes equations. Such solutions are the limit of increasingly high frequency
oscillatory perturbations that eventually may contravene the basic continuum hypotheses assumed
in the derivation of the equations. In this respect, the Lagrange trajectories considered here are
explicit and indeed are continuously differentiable except at the origin. Clearly, apart from this
singularity, they accord with continuum hypotheses.

Section 2 commences with Dafermos’s construction of non-unique orbits for a nonlinear oscillator
that involves the arbitrary prescription of an entropy function constant on each path. A theorem
conveniently summarises relevant conclusions. Two admissibility criteria proposed by Dafermos are
then described that recover a physically meaningful unique trajectory. The first criterion augments
the system of equations by a friction term. Solutions to the penalised system tend to a unique
solution in the limit as friction tends to zero. The second, or maximal entropy rate, criterion
requires maximum dissipation of the individual entropies as trajectories are successively switched
and leads to the same path obtained by the limiting friction argument. Section 3 establishes that the
velocity occurring in the nonlinear oscillator satisfies the plane compressible Euler equations with
specified pressure and particular non-uniform mass density. Moreover, the corresponding Lagrange
trajectories are geometrically similar to those obtained from the nonlinear oscillator and therefore
possess similar non-uniqueness features. Isolation of a unique trajectory follows from the maximal
entropy rate criterion. The analysis is extended to the corresponding plane compressible Navier-
Stokes equations with specially chosen (positive) shear and volume viscosities. These viscosity
coefficients are computed in the Appendices. Section 4 discusses the numerical approximations of
solutions to the Dafermos system considered in Section 2. The objective is to employ a numerical
method that not only preserves the qualitative behaviour of constant entropy along individual
trajectories, but is also capable of simulating trajectories selected by the maximal entropy rate
criterion. Convergence to a unique solution would then be implied. The symplectic Euler method
satisfies these requirements since it determines the approximation to the entropy function to within
an error of the order of the step size h > 0. The approach is diagramatically illustrated and
arguments are given that the discrete flow selects the solution given by the entropy rate admissibility
criterion. Section 5 comments on the resemblance between the results of Section 3 and those in the
convex integration literature that for a given smooth global energy construct an infinite number of
solutions to the Euler equations on a torus. A final brief remark concerns the fundamental issue of
whether the eventual irregularity of such solutions contravenes basic continuum hypotheses.

Standard notation is employed throughout the main text apart from Remark 3.1 where bold type
indicates vectors. The Appendices introduce an indicial notation accompanied by the summation
and comma conventions.
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2 Motivation and admissibility criteria

This section reviews previous contributions that inspired the present generalisation to the Euler
and Navier-Stokes equations. The discussion also explains how an entropy rate criterion recovers a
unique solution.

Let (x(t), y(t)) ∈ IR2, t ∈ IR, be state variables corresponding to the Cartesian coordinates of a
point moving in the plane as time varies. Dafermos [7] studies motions whose state variables satisfy
the system of ordinary differential equations for a nonlinear oscillator given by

ẋ = y, (2.1)

ẏ =
(y2 − x2)

2x
, (2.2)

where a superposed dot indicates differentiation with respect to time t.
Initial data are specified by

(x(0), y(0)) = (x0, y0), (2.3)

where (x0, y0) are prescribed.
The velocity component (2.1) is continuously differentiable everywhere but the component (2.2)

is not continuous at the origin. Dynamics are best understood from an integrated form of the
equations given below.

It is immediate from (2.1) and (2.2) that the entropy function H(x, y), defined by

H(x, y) :=
(x2 + y2)

2x
, (2.4)

is invariant with respect to time t; that is

dH(x(t), y(t))

dt
= 0, (2.5)

or
H(x, y) = c (2.6)

for positive constant c.
Note that H(x, y) is not to be confused with the (kinetic) energy. The relationship between

these quantities is presented in Section 5.
The constant entropy function (2.4) implies that the state variables traverse the one parameter

family of closed circular orbits
x2 + y2 = 2xc. (2.7)

Consequently,
(x− c)2 + y2 = c2, (2.8)

and consequently 0 ≤ x(t) ≤ 2c, −c ≤ y(t) ≤ c. Moreover, (2.1) implies that x(t) increases or
decreases as y(t) is positive or negative so that the closed circular orbits are traversed clockwise.
For varying c ≥ 1 they touch each other at their common point of intersection located at the origin.
Since solutions trace the family of orbits (2.8), equation (2.2) may be alternatively written as

ẏ = (c− x). (2.9)

Artstein’s study [1, eqn. 6.1] is within the broader context of a control problem in which (2.1)
and (2.9) are generalised to the family

ẋ = (2xy)w, (2.10)

ẏ = (y2 − x2)w, (2.11)
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where w(x, y) is a scalar control chosen to ensure stabilisability of the equilibrium state x = y = 0.
It follows immediately that since

dx

2xy
=

dy

(y2 − x2)
, (2.12)

the paths followed by solutions to (2.10) and (2.11) are given by the family of circular closed
orbits (2.8) or alternatively (2.7), and consequently the function H(x, t) is constant along each
path. Dependent upon the choice of w, the Lipschitz condition may fail which would imply lack of
uniqueness for paths with given initial data and which we now examine.

Particular choices of the control function w(x, y) deserve attention.
First, set

w = x−α, α > 0. (2.13)

Substitution in (2.10) and (2.11) after appeal to (2.7) yields

ẋ = 2x(
3
2
−α)(2c− x)1/2, (2.14)

ẏ = 2x(1−α)(c− x). (2.15)

Hence (2.7), (2.14) represent an integrated form of (2.10), (2.14) where conservation of H given
(2.6) is extended by continuity to the origin. It is here that lack of Lipschitz continuity of the
right hand side of (2.14) makes itself apparent and the usual loss of uniqueness occurs in x for
1 ≤ α < 3/2 (see, for example, Burkill [5]), while y is well defined from the choice of x. As stated
below, α = 1 is the value adopted by Dafermos [7].

As second choice, put

w =
1

2x2
, (2.16)

to obtain from (2.10) and (2.11) the Hamiltonian system

ẋ =
y

x
, (2.17)

ẏ =
(y2 − x2)

2x2
, (2.18)

whose Hamiltonian is the function H(x, y).
Finally, consider

w =
1

2x
(2.19)

which reduces (2.10) and (2.11) to the system (2.1) and (2.2) considered by Dafermos [7]. Explicit
solutions, of interest when interpreted in Section 3 as Lagrange trajectories, are easily derived.
Details are presented in Appendix A. Express (2.8) as

ẋ(t) = y(t) = ±
√
x(2c0 − x),

where c has assumed the particular value c0 specified from initial data according to

c0 =
(x20 + y20)

2x0
. (2.20)

It is supposed that initial data are such that c0 ≥ 1. Choose the positive square root to obtain by
integration

x(t)− c0 = c0 cos (−t+ θ0). (2.21)

5



The corresponding expression for y(t), obtained by differentiation of the last relation, becomes

y(t) = c0 sin (−t+ θ0), (2.22)

and shows that the constant θ0 is determined from initial data to be

tan θ0 =
y0

x0 − c0
. (2.23)

The circular orbits (2.21) and (2.22) may otherwise be derived by integration of (2.1) and (2.9).
They are centred at (c0, 0), where c0 is determined from initial conditions (2.20), and are restricted
to the set parametrized by 1 ≤ c0 ≤ R sketched in Figure 1.

x

y

1

Figure 1: Phase portrait for (2.21) and (2.22).

Orbits tracked by the state variables, as predicted by (2.8), are centred at (c0, 0) and pass
through the origin at times (−t + θ0) = −(2n + 1)π, n = 0, 1, 2, . . . . Each circular orbit is
completed in the same time 2π but at speeds dependent upon the radius:(

ẋ2 + ẏ2
)1/2

= c0,

corresponding to rigid body rotation.
Further properties are derived upon conversion to polar coordinates (r, θ). Set x = r cos θ, y =

r sin θ so that (2.1) and (2.2) become

θ̇ = −1

2
, (2.24)

ṙ =
1

2
r tan θ, (2.25)

which by integration lead to

θ(t) = − t

2
+ θ0/2, (2.26)

r(t) cos (θ0/2) = r0 cos θ(t), (2.27)
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where θ0 satisfies (2.23) and (r0, θ0/2), the initial values of (r(t), θ(t)), accordingly are given by

r0 =
(
x20 + y20

)1/2
, tan (θ0/2) =

y0
x0

,

and
r0 = 2c0 cos (θ0/2).

The last expression inserted into (2.27) gives

r(t) = 2c0 cos θ(t), (2.28)

which is the circular orbit previously obtained.
The state variables expressed by either (2.21) and (2.22), or by (2.26) and (2.28), indicate the

explicit manner in which orbits pass through the origin (0, 0).
The calculations so far suppose that c ≥ 1. To include the region c < 1, Dafermos [7] considers

the modified system

ẋ = y, ẏ =
(y2 − x2)

2x
, for (x− 1)2 + y2 ≥ 1, (2.29)

ẋ = y, ẏ = (1− x), (x− 1)2 + y2 < 1. (2.30)

Solutions to (2.30) are of the same form as (2.21) and (2.22) and indicate that corresponding
trajectories move clockwise on circles

(x− 1)2 + y2 = a2, a < 1, (2.31)

of radius a < 1 centred at (1, 0) when c < 1 in (2.6).
Of special interest is the circle of unit radius for which a = c = 1.
Irrespective of prescribed initial conditions, each member of the family of orbits created by a

sequence of different constants c ≥ 1 possess the common property of lying in the positive half-
plane and passing through the coordinate origin where they are mutually tangential. Dafermos [7]
observes that global uniqueness of solutions to (2.1)-(2.2) is violated on allowing switching at the
origin between orbits of different entropy levels H(x, y) defined by (2.6). Specifically, a trajectory
with initial conditions such that

H(x0, y0) :=
(x20 + y20)

2x0
= c0 > 1, (2.32)

on reaching the origin switches to another trajectory for which

H(x, y) = c1 > 1, c1 ̸= c0. (2.33)

The composite trajectory is clearly continuous in the time variable t and satisfies (2.29) for
almost all t; in fact for all t for which (x(t), y(t)) ̸= (0, 0). From (2.9) the jump in the acceleration
ẍ = ẏ at the origin is given by

[ẍ](0, 0) = [ẏ](0, 0) = c1 − c0. (2.34)

Hence, ẏ is bounded for all t and y is Lipschitz continuous.
Trajectories for which c < 1 remain interior to the circle of radius 1 and do not pass through

the origin. Consequently, switching is not possible.
The following theorem summarises for convenience these non-uniqueness results which are also

applicable to the general control problem (2.10) and (2.11). In Section 5 the conclusion is compared
to the non-uniqueness theorem of Buckmaster and Vicol [4] for the Navier-Stokes equations.
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RΩ2

Ω1

x

y

1

Figure 2: The region Ω = Ω1 ∪ Ω2.

Theorem 2.1. For R > 1, define the plane region Ω = Ω1 ∪ Ω2, depicted in Figure 2, by

Ω1 :=
{
(x, y) ∈ IR2 : 1 ≤ (x− 1)2 + y2, (x−R)2 + y2 ≤ R2

}
, (2.35)

Ω2 :=
{
(x, y) ∈ IR2 : (x− 1)2 + y2 < 1

}
(2.36)

and let e(t) denote the piece-wise constant function

e(t) =

{
c0, 0 ≤ t ≤ t1, 0 ≤ t1 < 2π,

cn, tn = t1 + 2(n− 1)π ≤ t < tn + 2π,
(2.37)

for n = 1, 2, . . . and 0 ≤ t < ∞.
Then for any sequence cn ≥ 1, there exists a Lipschitz continuous solution to (2.1) and (2.2).

Trivially, the initial value problem with initial data (x(0) = x0, y(0) = y0) ∈ Ω1 possesses an
infinite number of Lipschitz continuous solutions.

Dafermos [7] regains uniqueness by suggesting two admissibility criteria. The first asserts that
the physically meaningful solution to (2.29) and (2.30) on Ω = Ω1 ∪ Ω2 is the limit as γ → 0+ of
solutions (xγ , yγ) to the system with friction:

ẋγ = yγ , (2.38)

ẏγ = g(xγ , yγ)− γyγ , (2.39)

where

g(x, y) =

{
(y2−x2)

2x , (x− 1)2 + y2 ≥ 1,

(1− x), (x− 1)2 + y2 < 1.

Solutions (xγ , yγ) to (2.38) and (2.39) possess the limit (xγ , yγ) → (x, y) as γ → 0+ where

(i) (xγ(0), yγ(0)) → (x0, y0) and

c0 =
(x20 + y20)

2x0
.

(ii) The limit (x, y) moves clockwise on the circle radius c0 until it reaches the origin x = 0, y = 0.

(iii) Upon reaching the origin, the solution switches once to the circle with entropy e = 1 of radius
1 centred at (x, y) = (1, 0). It remains on this circle moving clockwise.
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The second criterion proposed by Dafermos is the entropy rate admissibility criterion which,
although not applied directly to the present problem, requires that physically admissible solutions
should have not only non-increasing entropy e(t), but that the entropy should decrease at maximum
possible rate. A simple illustration of the criterion for the system (2.29) and (2.30) is sketched in
Figures 3-4 for possible entropy profiles (2.37).

Let δ > 0 and in Figure 3 select the point τ1 = t1 − δ such that 0 < τ1 = t1 − δ < t1 and τ1 lies
within the first interval specified in (2.37) and therefore locates a point on the branch e = c0.

t

e(t)

t1 t1 + 2π t1 + 4π t1 + 6π t1 + 8π

c0

c1

c3

c2

1

×

×

×

×

×

Figure 3: Discrete energy profile.

Subsequent points given by τn = t1 − δ + 2πn, n = 1, 2, . . . are chosen to lie in the interval
(tn, tn + 2π) so that τn is a point on e = cn. On joining the points τn, n = 1, 2, . . . a piecewise
linear graph is produced whose piecewise linear approximation is the original entropy function
e(t). The usual entropy criterion stipulates decay of energy and accordingly the piecewise linear
graph must be non-increasing. This, however, still permits an infinite number of profiles. A single
preferred profile follows from the entropy rate admissibility criterion which identifies a single profile
corresponding to the graph of maximal negative slope shown in Figure 4. Thus, the entropy rate
criterion leads to the single solution derived by the limiting friction argument.

t

e(t)

c0

1

×

×

Figure 4: Energy profile with maximal negative slope.

An immediate conclusion is that while it is possible for a smooth solution to (2.29) and (2.30)
with initial data in Ω1 to remain on the circle of radius c0, the admissible unique solution given by
either the limiting friction method or entropy rate criterion, though continuous, is not smooth in
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the sense of (2.34). Consequently, the nonlinear oscillator considered by Dafermos contradicts the
conjecture that to achieve uniqueness only smooth solutions should be admitted.

The notion of smoothness is crucial not only here but for the discussion in Section 5 of the
entropy rate criterion in relation to the theorems to be there stated of Buckmaster and Vicol [4]
and of De Lellis and Szèkelyhidi [8, 9]. Consider, for example, the profile e(t), e(0) ̸= 0 shown in
Figure 5.

t

e(t)

Figure 5: Smooth energy profile.

The entropy rate criterion selects the preferred profile as that having maximal decreasing deriva-
tive e′(t). Consequently, for any fixed energy profile e(t) there will always be one with a more
rapidly decreasing profile. Hence all non-zero smooth profiles given by the results of Buckmaster
and Vicol [4] and by De Lellis and Szèkelyhidi [9,10] are inadmissible according to the entropy rate
criterion. But clearly the limit of such profiles is the maximal profile e(t) = e(0)H(t) where H(t)
satisfies H(0) = 1 and H(t) = 0 for t > 0. This maximal profile is neither smooth nor even a weak
solution. A similar argument used by Feireisl [11] proves inadmissibility of weak solutions to the
compressible Euler equations derived by convex integration methods. On the other hand, when
e(0) = 0, the maximal entropy rate yields the trivial admissible profile e(t) = 0, t ≥ 0. This remark
indicates that the profile found by Scheffer [21] and by Shnirelmann [22] for the Euler equations is
inadmissible.

Remark 2.1 (Regular oscillations). As noted by Dafermos [7], the entropy rate admissibility cri-
terion applied to the nonlinear oscillator implies that starting from any initial data, the oscillation
after once having passed through the origin subsequently is regularly periodic for all time.

The next task is to interpret the solution to (2.1) and (2.2) as Lagrange trajectories appropriate
to certain steady plane fluid flows satisfying either the Euler or Navier-Stokes equations.

3 Plane Euler and Navier-Stokes equations

This section examines implications of Theorem 2.1 for compressible steady flows governed by Euler
and Navier-Stokes equations on the plane region Ω1 exterior to the unit circle defined by (2.35)
and on the region Ω = Ω1 ∪ Ω2. (See Figure 2.) It is supposed that (2.29) represents Lagrange
trajectories of fluid particles and that for both the Euler and Navier-Stokes equations the velocity
vector has cartesian components

u(x, y) = y, (3.1)

v(x, y) =
(y2 − x2)

2x
, (3.2)

for which the entropy H(x, y) defined by (2.6) is constant.

Remark 3.1 (Lagrange trajectories and Euler’s equation.). Throughout this Remark, vector quan-
tities are denoted in bold type. Lagrange trajectories and the Euler equations represent two distinct
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methods for describing fluid motion. Lagrange trajectories trace the motion of a fluid particle in
space and time and consequently the vector velocity field v is a function of initial spatial position
x0 and time t. The position vector x(t) = x(x0, t) and velocitiy vector v(x, t) = v(x0, t) are related
by the system of ordinary differential equations:

ẋ = v(x0, t), x(0) = x0, (3.3)

and for a solution to exist and to be unique it is sufficient that v is Lipschitz continuous. There
are, however, conditions under which the solution may neither exist nor be unique.

The same velocity field v occurs in the Euler description except that the motion is considered at
fixed spatial position x and at varying time. The governing equations are the Euler system of partial
differential equations subject to prescribed initial and boundary data. Existence and uniqueness of
a solution follow from theorems in partial differential equations and depend upon function spaces
and definition of solution. The solution, however defined, may be non-unique, but can be used as
the velocity in the ordinary differential equations (3.3) to derive the Lagrange trajectories which
likewise may be non-unique for given initial data. The procedure may be reversed and the possible
non-unique Lagrange trajectories first computed for specified velocity field. This velocity is then
substituted in the Euler equations and the corresponding pressure, density, and initial and boundary
data calculated. The initial boundary problem obtained by this semi-inverse method may be non-
unique and solutions may exist additional to the velocity used in the system (3.3).

The interrelation between solutions for Lagrange trajectories and for the Euler system is re-
marked upon by Robinson and Sadowky [19, 20]. The semi-inverse procedure is adopted in what
follows.

Similar remarks apply to the connexion between Lagrange trajectories and the Navier-Stokes
equations examined later in this Section.

It is noted that Lagrange trajectories have recently found applications in oceanography, atmo-
spherics and biology.

The following lemmas establish that the particular component velocities on the right of (3.1)
and (3.2) satisfy the compressible Euler equations with mass density

ρ(x) = x−1. (3.4)

Remark 3.2. The conclusion, however, is not confined to velocity components (3.1) and (3.2), nor
to the mass density (3.4). Appendix D explains how a certain general class of velocities derived from
a conservative system of Lagrange trajectories also satisfies Euler’s equations for suitable choice of
mass density and pressure.

Lemma 3.1. In the interior of Ω1, defined by (2.35), the velocity components (3.1) and (3.2)
satisfy the continuity equation

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0. (3.5)

Proof : By direct substitution. Note, however, that since

∂u

∂x
+

∂v

∂y
=

y

x
, x ̸= 0, (3.6)

the fluid is compressible except possibly on y = 0, x ̸= 0.
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Lemma 3.2. On ∂Ω1\ {(0, 0)}, the boundary condition

(un1 + vn2) = 0, (x, y) ∈ ∂Ω1\(0, 0), (3.7)

holds, where n1, n2 are the cartesian components of any normal vector on the boundary.

Proof : The inner boundary given by

(x− 1)2 + y2 = 1, (x, y) ̸= (0, 0), (3.8)

has unit normal whose components are ((x− 1), y). Moreover, on (3.8)

u(x, y) = y, v(x, y) = (1− x),

and (3.7) is immediate when (x, y) ̸= (0, 0). The same argument applies to the outer boundary

(x−R)2 + y2 = R2, R > 1. (3.9)

Condition (3.7) trivially implies tangential flow at the boundary.

Lemma 3.3. The given velocity and density on the interior of Ω1 satisfy the balance of steady
linear momentum

∂

∂x

(
ρu2

)
+

∂

∂y
(ρuv) +

∂p

∂x
= 0, (3.10)

∂

∂x
(ρuv) +

∂

∂y

(
ρv2

)
+

∂p

∂y
= 0, (3.11)

subject to the specified pressure

p(x, y) :=
(x2 + y2)

2x
− 1 = H − 1. (3.12)

As H is constant along trajectories, we hence have the pressure p constant along trajectories.

Proof : Insertion of velocity and density into the balance of steady linear momentum (3.10) after
integration yields

p(x, y) =
(x2 + y2)

2x
+ f(y),

where f is an arbitrary function. On the other hand, (3.11) leads to

p(x, y) =
y2

2x
+ g(x),

for arbitrary function g. Set f ≡ 0 and g = (x/2 + b) for arbitrary constant b taken to be b = −1
to ensure that p(x, y) vanishes on the inner boundary (3.8).

Lemma 3.1, Lemma 3.7 and Lemma 3.3 establish the following theorem,

Theorem 3.1. When the velocity, density and pressure satisfy (3.1), (3.2), (3.4), and (3.12), the
fluid flow with Lagrange particle trajectories (2.29) and (2.30) in Ω1 satisfy the continuity equation
(3.5), balance of steady linear momentum (3.10) and (3.11), and the boundary condition (3.7).
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Note that the velocity field (3.1) and (3.2) generates Lagrange trajectories that are non-unique
for initial data specified in Ω1. A unique Lagrange trajectory is obtained from the entropy rate
admissibility criterion employed in accordance with the construction of the previous section.

The region Ω1 occupied by the fluid may be enlarged to include the interior of the unit circle
(x− 1)2 + y2 = 1 as proposed by Dafermos; see (2.30). As before (see (2.36)), denote the unit disc
by

Ω2 :=
{
(x, y) : (x− 1)2 + y2 ≤ 1

}
. (3.13)

Then for (x, y) ∈ Ω2 put

ρ(x, y) = 1, (3.14)

u(x, y) = y, (3.15)

v = (1− x). (3.16)

It follows from mass conservation, or directly, that(
∂u

∂x
+

∂v

∂y

)
= 0, (x, y) ∈ Ω2, (3.17)

and the flow is incompressible. Expressions for balance of steady linear momentum become

∂

∂x
(u2) +

∂

∂y
(uv) +

∂p

∂x
= 0, (x, y) ∈ Ω2,

∂

∂x
(uv) +

∂

∂y
(v2) +

∂p

∂y
= 0, (x, y) ∈ Ω2,

and are satisfied for pressure p(x, y) given by

p(x, y) =
(x2 + y2 − 2x)

2
, (x, y) ∈ Ω2, (3.18)

which vanishes on ∂Ω2. In consequence, the pressure in Ω = Ω1 ∪ Ω2 is continuous across the
inner boundary ∂Ω2 (the unit circle (3.8)) except at the origin (0, 0). In this respect, an arbitrary
constant can be added to the pressure (3.12) inside Ω1 provided the same constant is added to the
pressure (3.18) in Ω2.

The vector field (3.15) and (3.16) on the unit circle satisfies the boundary condition

(un1 + vn2) = 0, (x, y) ∈ ∂Ω2, (3.19)

and fluid particles inside Ω2 flow tangential to ∂Ω2 and cannot penetrate into Ω1. Equally, particles
flowing inside Ω1 can never reach inside Ω2, but as already shown, flow tangential to ∂Ω2. It may
be easily checked by direct computation that the Rankine-Hugoniot jump conditions are satisfied
across the inner boundary ∂Ω2.

The Lagrange trajectories in Ω2 are circles centred at (1, 0) and of radius c, 0 ≤ c ≤ 1 and are
uniquely defined by initial data. An admissibility criterion is therefore required only for trajec-
tories in the region Ω1 and as previously shown leads to the unique trajectory in which particles
steadily traverse the unit cirle (3.8). Fluid behaviour in the composite region Ω = Ω1 ∪Ω2 subject
respectively to the velocities (3.1),(3.2), (3.15), (3.16) and pressures (3.12) and (3.18) in Ω1 and
Ω2 results in the fluid in Ω1 rapidly becoming a steady swirling motion entirely confined clockwise
to the unit circle (3.8). The inner region Ω2 remains fully occupied by incompressible fluid moving
with velocity (3.15) and (3.16) subject to pressure (3.18).

Similar conclusions to Theorem 3.1 are valid for the plane compressible steady flow satisfying
the Navier-Stokes equations.
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Theorem 3.2. Let the velocity, density and pressure satisfy (3.1), (3.2), (3.4), and (3.12) in the
region Ω1 . Then for viscosity coefficients µ, λ given by

µ = 4 cos2 θ, (3.20)

λ = −4θ cot θ − 4 cos2 θ, (3.21)

where x = r cos θ, y = r sin θ, the particle trajectories (2.29) in Ω1 are solutions to the Navier-Stokes
equations specified by the continuity equation (3.5), the balance of steady linear momentum

∂(ρu2)

∂x
+

∂(ρuv)

∂y
=

∂Σ11

∂x
+

∂Σ21

∂y
, (3.22)

∂(ρuv)

∂x
+

∂(ρv2)

∂y
=

∂Σ21

∂x
+

∂Σ22

∂y
, (3.23)

where

Σαβ = −pδαβ + σαβ, α, β = 1, 2, (3.24)

σ11 = (λ+ 2µ)
∂u

∂x
+ λ

∂v

∂y
, (3.25)

σ22 = (λ+ 2µ)
∂v

∂y
+ λ

∂u

∂x
, (3.26)

σ12 = µ

(
∂u

∂y
+

∂v

∂x

)
, (3.27)

and the boundary condition (3.7). Here, δαβ denotes the standard Kronecker delta.

Proof : By direct substitution of the stated expressions.

Theorem 3.2 has similar implications to Theorem 3.1 for the relationship between Lagrange
trajectories and the Navier-Stokes equations. A given velocity that solves the compressible Navier-
Stokes equations in Ω1 leads to corresponding non-unique Lagrange trajectories for the same initial
data. The entropy rate admissibility criterion, however, distinguishes a unique trajectory.

By comparison, it is shown by Robertson and Sadowkski [19,20] for the incompressible Navier-
Stokes equations on a bounded three-dimensional region subject to Dirichlet boundary data, that
for sufficiently regular velocities the Lagrange trajectories are unique for almost all initial data.

As before, the analysis may be extended to the enlarged region Ω = Ω1∪Ω2 employing (3.15) and
(3.16) as velocity components in the unit disc Ω2. Besides the incompressibility condition (3.17),
the gradient of the velocity components (3.15) and (3.16) for (x, y) ∈ Ω2 satisfy the relations

∂u

∂x
=

∂v

∂y
= 0, (3.28)

and therefore σαβ = 0 for α, β = 1, 2. That is, the viscous contribution vanishes identically, and
the Navier-Stokes equations are satisfied for all viscosity coefficients λ, µ inside the unit disc Ω2.
Accordingly, Lagrange trajectories in Ω2 exhibit the same properties as those noted for the Euler
equations implying that the fluid particles in Ω1 and Ω2 cannot interpenetrate. The entropy rate
admissibility criterion establishes that the unique motion in Ω1 is again concentrated solely on the
unit circle around which it continuously swirls clockwise.

A final important observation is that in the problems of this section the density ρ(x) = x−1 in Ω1

becomes singular on the y−axis leading to density blow-up. Fluid particle aggregation is therefore
to be expected and occurs for the entropy rate admissible trajectories but not for the “wild” non-
admissible ones. In fact, this expectation is reflected in numerical computations presented in the
next section.

14



4 Numerical approximation

This section discusses the numerical approximation of solutions to the system (2.29) and (2.30) rele-
vant for Lagrange trajectories in the combined region Ω = Ω1∪Ω2. Of special interest are numerical
methods which preserve the qualitative behaviour of the flow in phase space and induce conver-
gence to the solution selected by the entropy rate admissibility criterion. The basic example of such
geometric numerical integrators (see [13]) is the symplectic Euler method applied here.A constant
step size h > 0 is used to compute approximations (xn, yn) of the solution (x(nh), y(nh)), n ∈ N
to (2.29) and (2.30). As before, denote initial conditions by (x0, y0) := (x(0), y(0)) and define
xn, yn by

yn+1 = yn + hy2n−x2
n

2xn
, xn+1 = xn + hyn+1, for (xn − 1)2 + y2n ≥ 1,

yn+1 = yn + h(1− xn), xn+1 = xn + hyn+1, for (xn − 1)2 + y2n < 1.

}
(4.1)

As described in [13, Chapt. IX], the symplectic Euler method determines a flow that preserves an
approximation to the entropy function H(x, y), defined in (2.4), to an error of order h.

Figure 6: Trajectories of symplectic Euler discretisation for different initial conditions.

Figure 6 illustrates trajectories of (4.1) corresponding to four initial conditions (x0, y0) satisfying
(x0 − 1)2 + y20 > 1, when h = 10−4. In all cases, the numerical trajectories traverse the level sets of
H to high accuracy. Near the origin (0, 0), the trajectories switch to the unit circle (x−1)2+y2 = 1
as expected from the entropy rate admissibility criterion. The black trajectory, which corresponds
to the initial condition (x0, y0) = (12 ,

9
8), is further analysed below.

Figure 7 shows the behaviour near the origin in varying detail depending upon step size: h =
2.5 × 10−4(blue), h = 5 × 10−4(red), h = 10−3(black). All trajectories start from the same initial
condition (x0, y0), cross the x−axis at a positive value x ∼ h2 and then follow the unique solution
close to the unit circle. The well-known analysis of the symplectic Euler method of the linear
equation in the domain (x− 1) + y2 < 1 shows that the trajectory remains in a neighbourhood of
the unit circle of order h. The rigorous analysis presented in [13, Chapt. 11], however, is required
to establish that trajectories always cross the x−axis at points x > 0, and thereafter enter and
remain near the unit circle. In fact, for small h, the level sets of H are perturbed to the right near
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Figure 7: Trajectories for symplectic Euler discretisation near (0, 0) for h = 2.5 × 10−4(blue);
h = 5× 10−4(red); h = 10−3(black). The unit circle (x− 1)2 + y2 = 1 in green.

the origin. The geometry of the discrete flow explains the selection of the solution obtained by the
entropy rate admissibility criterion.
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Figure 8: H(x, y) as function of t for initial condition (x0, y0) = (12 ,
9
8).

Figure 8 depicts the numerically computed entropy profile t 7→ H(x(t), y(t)) for initial condition
(x0, y0) = (12 ,

9
8) introduced above. Again take h = 10−4. When the trajectory first passes through

the origin, H drops to a value near 1 and then remains approximately constant.
Figure 9 indicates the discretisation error in the entropy profile t 7→ [H(x(t), y(t))− 1] . The

error is of size less than 10−4 = O(h) except for floating point errors when (x, y) is near the origin
where H possesses a singularity.

It has thus been shown how geometric properties in phase space of the symplectic Euler method
select the solution to the system (2.29) and (2.30) according to the entropy rate admissibility
criterion. Numerical methods without such properties are not expected to select these solutions.

Figure 10 shows the trajectory computed by the explicit Euler method again for initial condition
(x0, y0) = (12 ,

9
8). For this discretisation, the numerical solution moves to a larger circle with

increased entropy H, even with smaller step size h = 10−5.
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Figure 9: Error (H(x, y)− 1) as function of t for initial condition (x0, y0) = (12 ,
9
8).
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Figure 10: Trajectory of explicit Euler discretisation for initial condition (x0, y0) = (12 ,
9
8).

5 Relevant convex integration results

Section 2 describes how the entropy rate admissibility criterion applied to the constant functions
(2.6) selects a unique orbit from the infinitely many circular paths generated by the Dafermos
equations (2.1) and (2.2). A piecewise non-increasing linear graph of maximal negative slope leads
to the requisite single profile. A notable feature of the construction, stated in Theorem 2.1, is the
uncountable number of profiles that can be arbitrarily chosen for prescribed initial conditions.

This feature resembles results of Buckmaster and Vicol [4] and of De Lellis and Szèkelyhidi [10]
which for convenience are recalled in the following theorem.

Theorem 5.1. There exists β > 0 such that for any non-negative smooth function E(t) : [0, T ] →
IR≥0 there exists a weak vector solution v ∈ C0

t

(
[0, T ];Hβ

x (IT
3)
)
of the Navier-Stokes equations such

that ∫
IT3

|v(x, t)|2 dx = E(t),

for all t ∈ [0, T ]. Moreover, the associated vorticity ∇× v lies in C0
t

(
[0, T ];L1

x(IT
3)
)
, where IT3 =

IR3\2πZ3 denotes the unit cube with periodic boundary conditions.

It is apparent that arbitrary prescription of the energy E(t) produces an infinite number of
solutions in the given class for the same initial conditions. An admissibility criterion is required to
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identify a single physically relevant velocity. Whether an entropy rate admissibility criterion of the
type considered here is appropriate in this respect remains an important open question.

A detailed comparison with the analysis of Section 3 reveals distinct differences and any analogy
between the two treatments is likely to be superficial. Indeed, the entropy H(x, y) used in Section 3
is not a local (kinetic) energy function η(t) defined by

η(t) :=
ρ

2

(
ẋ2 + ẏ2

)
(5.1)

where ρ(x, y) is a specified density. The relation to H(x, y) is obtained by substitution of (2.10)
and (2.11) in (5.1) and is given by

η(t) = 2x2w2(x, y)ρ(x, y)H2(x, y). (5.2)

Consequently, functions η and H2 are identical only when 2x2w2ρ = 1.
Finally, note that uniqueness properties arising in convex integration studies refer to solutions

of the respective equations and not to the associated Lagrange trajectories. Whether there are
non-unique trajectories for certain non-unique convex integration solutions remains a second open
question.
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[9] De Lellis, C. and Szèkelyhidi, L. (2010). On admissibility criteria for weak solutions of the
Euler equations. Arch. Rational Mech. Anal., 195(1), 225-260.

18
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Appendices

A State variables.

Let state variables (x(t), y(t)) satisfy (2.1) and (2.2) in region Ω1 defined by (2.35). Consider for
x ̸= 0, y ̸= 0, the expression

d

dt

(
y2

x

)
=

y

x2
(2ẏx− yẋ)

=
y

x2
(
y2 − x2 − yẋ

)
=

y

x2
(
yẋ− x2 − yẋ

)
= −y

= −ẋ,

which on integration gives (cp., (2.20))

y2

x
+ x =

y20
x0

+ x0 ≡ 2c0 (A.1)

or
(x− c0)

2 + y2 = c20,

which may be rewritten as
y(t) = ±

√
x(2d− x) (= ẋ).

On setting c0z(t) = (x(t)− c0) the last expression becomes

ż(t) = ±
√

(1− z2),

so that
z(t) = ± cos (∓t+ sin−1 z0),

and therefore
x(t) = c0 ± c0 cos (∓t+ sin−1 z0). (A.2)

A corresponding expression for y(t) obtained on differentiation of the last relation is

y(t) = ±c0 sin (∓t+ sin−1 z0). (A.3)

The positive root in (A.2) and (A.3) yields (2.21) and (2.22) with θ0 = sin−1 z0 given by (cp.,
(2.23))

tan θ0 =
y0

(x0 − c0)
.

Alternatively, elimination of the dependent variable y between (2.1) and (2.9) leads to a differ-
ential equation for x whose solution is

x(t)− c0 = A cos (t) +B sin (t), (A.4)

and consequently
y(t) = −A sin (t) +B cos (t), (A.5)

where A, B, constants determined by initial conditions (x0, y0), are given by

A = x0 − c0, (A.6)

B = y0, (A.7)

and c0 is specified by (A.1). Expressions (A.4) and (A.5) are equivalent to (A.2) and (A.3).

20



B Navier-Stokes equations.

Throughout Appendix B and Appendix C a suffix notation and summation convention are adopted
together with a subscript comma to denote partial differentiation. Components of vectors, unless
otherwise stated, are with respect to a given Cartesian coordinate system.

Consider a compressible fluid (of variable density) in plane steady motion that satisfies the
isotropic Navier-Stokes equation for a given velocity field having Cartesian components (v1, v2).
The aim, using a semi-inverse method, is to determine the viscosity coefficients λ(x1, x2) and
µ(x1, x2) that ensure the corresponding stress distribution is in equilibrium subject to zero body
force. The region occupied by the fluid is not defined at this stage. Nor are boundary conditions
considered.

The compatible strain rate components, given by

eαβ =
1

2
(vα,β + vβ,α) , α, β = 1, 2, (B.1)

are related to the stress components by (3.25)-(3.27) concisely written as

σαβ = λeγγδαβ + 2µeαβ, (B.2)

where δαβ denotes the Kronecker delta. The viscosity coefficients λ(x1, x2), µ(x1, x2) are functions
of position to be determined such that the stress is in equilibrium under zero body force; that is

σαβ,β = 0. (B.3)

In consequence, the Navier-Stokes equations (3.25) and (3.26) reduce to the Euler equations (3.10)
and (3.11).

Easy deductions from (B.2) are the trace relation

σαα = 2(λ+ µ)eαα, (B.4)

and

2µ =
(σ11 − σ22)

(e11 − e22)
=

σ12
e12

, (B.5)

which represents an additional fundamental constraint between stress and strain rate explicitly
independent of viscosity coefficients. Trivial rearrangement of (B.5) gives

(σ11 − σ22)

σ12
=

(e11 − e22)

e12
. (B.6)

It is well-known that a solution to the system (B.3) expressed in terms of the Airy stress function
χ(x, y) is represented by:

σ11 = −χ,22, σ22 = −χ,11, σ12 = χ,12. (B.7)

Substitution of (B.7) in (B.6) yields

χ,11 − χ,22 − Λ(x1, x2)χ,12 = 0, Λ :=
(e11 − e22)

e12
, (B.8)

which is the partial differential equation satisfied by the Airy stress function χ(x, y) explicitly
independent of viscosity coefficients λ, µ.

On the assumption that (B.8) can be solved for general (v1, v2) and therefore Λ, the solution
may be used to derive the equilibrium stress components and consequently the viscosity coefficient
µ from (B.5)3. Furthermore, it follows from (B.7) and (B.4) that

χ,αα = −2(λ+ µ)(e11 + e22), (B.9)

which may be used to determine (λ+ µ) and therefore λ(x1, x2).
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C Derivation of viscosity coefficients in Theorem 3.2

Derivation of expressions (3.20) and (3.21) for the viscosity coefficients stipulated in Theorem 3.2
is conveniently described in terms of the complex variable z and its conjugate z̄ defined by

z = (x1 + ix2), z̄ = (x1 − ix2). (C.1)

Details of the following computations are contained in standard texts; e.g., Muskhelishvili [17].
Differentiation with respect to z and z̄ is defined to be

∂

∂z
:=

1

2

(
∂

∂x
− i

∂

∂y

)
, (C.2)

∂

∂z̄
:=

1

2

(
∂

∂x
+ i

∂

∂y

)
. (C.3)

The particular velocity components (2.1) and (2.2) of present concern, repeated for convenience

v1 = x2, v2 =
(x22 − x21)

2x1
, (x1, x2) ∈ Ω1, (C.4)

are the real and imaginary parts of the (non-analytic) velocity field v(z, z̄) represented by

v = v1 + iv2 = −i
z2

(z + z̄)
. (C.5)

The corresponding strain rate components become

e11 = 0, (C.6)

e22 = i
(z̄ − z)

(z + z̄)
, (C.7)

e12 =
1

2

(
z2 + z̄2

)
(z + z̄)2

. (C.8)

Insertion into the formula for Λ(z, z̄) (see (B.8)2) gives

Λ = 2i

(
z2 − z̄2

)
(z2 + z̄2)

. (C.9)

Consequently, (B.8) assumes the form

(χ,zz + χ,z̄z̄)
(
z2 + z̄2

)
+ (χ,zz − χ,z̄z̄)

(
z2 − z̄2

)
= 0, (C.10)

which upon rearrangement simplifies to

z2χ,zz + z̄2χ,z̄z̄ = 0. (C.11)

Among the possible solutions to (C.11), select that obtained from setting

z2χ,zz = k = −z̄2χ,z̄z̄, (C.12)

for real constant k. Integration of the equation on the left gives

χ(z, z̄) = −k log z + zf(z̄) + q(z̄), (C.13)
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where f(.), q(.) are arbitrary functions. Similarly, integration of the equation on the right of (C.12)
yields

χ(z, z̄) = k log z̄ + z̄g(z) + p(z), (C.14)

where g(.), p(.) are arbitrary functions. Choose

p(z) = −k log z, q(z̄) = k log z̄,

g(z) = 2z log z, f(z̄) = −2z̄ log z̄.

to derive respectively from (C.13) and (C.14) the equivalent expressions

χ(z, z̄) = −k log
z

z̄
− 2zz̄ log z̄,

χ(z, z̄) = −k log
z

z̄
+ 2zz̄ log z,

and consequently the final form for the Airy stress function χ(z, z̄) is:

χ(z, z̄) = (zz̄ − k) log
z

z̄
. (C.15)

Substitution in (B.7) determines the equilibrium stress components as

σ11(z, z̄) = i

[
(zz̄ + k)

(z2 − z̄2)

(zz̄)2
+ 2 log

z

z̄

]
, (C.16)

σ22(z, z̄) = i

[
(zz̄ + k)

(z̄2 − z2)

(zz̄)2
+ 2 log

z

z̄

]
, (C.17)

σ12(z, z̄) =
(zz̄ + k)(z2 + z̄2)

(zz̄)2
, (C.18)

while the viscosity coefficient µ(z, z̄) from (B.5)3 and (C.8) is given by

µ =
(zz̄ + k)(z + z̄)2

(zz̄)2
. (C.19)

In view of (C.6), (C.6),(C.7) and (C.16), the viscosity coefficient λ(z, z̄) is

λ =
σ11
e22

=
2(z + z̄)

(z̄ − z)
log

z

z̄
− (zz̄ + k)(z + z̄)2

(zz̄)2
.

In terms of polar coordinates (r, θ), where

z = r exp (iθ), z̄ = r exp (−iθ),
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these expressions are written as

σ11 = −2

[
2θ +

(
(r2 + k)

r2
sin 2θ

)]
,

σ22 = 2

[
−2θ +

(
(r2 + k)

r2
sin 2θ

)]
,

σ12 = 2

(
(r2 + k)

r2

)
cos 2θ,

e11 = 0,

e22 = tan θ,

e12 =
cos 2θ

4 cos2 θ
,

µ = 4
(r2 + k)

r2
cos2 θ,

λ = −4θ cot θ − 4

(
(r2 + k)

r2

)
cos2 θ.

It may easily be checked by direct substitution that the stress is in equilibrium under zero body
force and that

vαnα = 0

at all points on ∂Ω1\(0, 0).
The proof of (3.20) and (3.21) is complete on taking k = 0 in the above expressions.

D Conservative Lagrange trajectories

Let (x, y) be the rectangular coordinates of a point moving with respect to time and suppose that
the differentiable function G(x, y) is conserved so that G(x(t), y(t)) is constant. Examples are
the entropy in an adiabatic system or a one parameter family of plane closed curves discussed in
Section 2. Define velocities (u, v) by

u(x, t) := ẋ, (D.1)

v(x, t) := ẏ, (D.2)

to obtain from
dG(x(t), y(t))

dt
= 0

the relation
∂G

∂x
u+

∂G

∂y
v = 0. (D.3)

Consequently, any u determines v from the expression

v = −∂G

∂x

(
∂G

∂y

)−1

u (D.4)

such that the system (D.1) and (D.2) is conservative with G(x, y) as first integral.
The particular choice

u(x, y) =
∂G

∂y
(D.5)
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yields a Hamiltonian system for which

v = −∂G

∂x
. (D.6)

It follows that the incompressibity condition

∂u

∂x
+

∂v

∂y
= 0 (D.7)

holds provided the order of the second partial derivatives of G can be reversed.
For fluids with variable mass density, the continuity equation is satisfied by modifying the

definition of u. Thus, suppose

u :=
∂G

∂y
w(x, y), (D.8)

where w(x, y) is some sufficiently smooth function, and G(x, y) continues to be the first integral
of the conservative system (D.1) and (D.2). Accordingly, v(x, y) is modified to

v := −∂G

∂x
w(x, y), (D.9)

and the continuity equation
∂

∂x
(ρu) +

∂

∂y
(ρv) = 0, (D.10)

is satisfied provided when (i) the mass density ρ(x, y) is chosen to be ρ = Dw−1, for constant D,
and (ii) the order of the second partial derivatives of G can be reversed.

Remark D.1. Apart from differentiability of G, no further assumptions have been introduced on
either G(x, y) or w(x, y), whose choice clearly determines the smoothness of the mass density
ρ(x, y).

Remark D.2. Lagrange trajectories corresponding to the system (3.1) and (3.2) are a special case
of (D.1) and (D.2) upon selecting w(x, y) = x and setting

G(x, y) =
(x2 + y2)

2x
(= H(x, y)) . (D.11)

The mass density becomes ρ = x−1 and

∂G

∂x
=

(x2 − y2)

2x2
,

∂G

∂y
=

y

x
. (D.12)

which on insertion into (D.8) and (D.9) yields the required velocity components. Note that

∂2G

∂x∂y
̸= ∂2G

∂y∂x
for (x, y) = (0, 0).

Remark D.3. Substitution of (D.8) and (D.9) in the Euler equations yields equations for the
partial derivatives of the pressure which can be solved for the pressure. Consequently, for any con-
served quantity G(x, y) and any choice of w(x, y) the Euler equations can be solved for appropriate
pressure determined semi-inversely.

When w = x the pressure is given by (3.12) which to within a constant is the conserved quantity
G(x, y) given by (D.11).

Remark D.4. For the choice w(x, y) = xα, 0 < α < 1, the density becomes ρ = x−α and though
singular at the origin, is integrable on the region Ω and computations involving mass density are
valid.
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