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Acoustic wave transmission problems in frequency domain

Geometric setting:

Ω ⊂ R3 bounded Lipschitz domain with boundary Γ,

Ω1 ∪ ΓJ ∪ Ω2 subdomains and jump interface,
Γ = ΓD ∪ ΓN ∪ ΓI: Dirichlet-, Neumann, impedance part of the boundary,
Γ1 := ∂Ω1 and Γ2 := ∂Ω2.



PDE:

− div
(
Aj∇uj

)
+ p2

js
2uj = 0 in Ωj, j = 1, 2.

[γDu]ΓJ
= [γA]ΓJ

= 0 on ΓJ,

γDu = gD on ΓD,
γAu = dN on ΓN,

γAu+ sTu = dI on ΓI,



Assumption on the coeffi cients

Assumption. For j = 1, 2, the coeffi cients in the PDE satisfy

1. Aj ∈ L∞>0

(
Ωj,R3×3

sym

)
,

2. pj ∈ L∞>0

(
Ωj
)
,

3. s ∈ C>0 := {ζ ∈ C | Re ζ > 0} and |s| ≥ s0 for some s0 > 0.



Goal:

Introduce a transform of the PDE to an integral equation on the skeleton
Σ := ∂Ω1 ∪ ∂Ω2 such that

a) the resulting skeleton equation is coercive and elliptic,

b) the explicit knowledge of a fundamental solution/Green’s function is not
required.

Remark: There are many approaches to transform boundary value problems
to integral equations:
a) direct/indirect method
b) first kind/second kind integral equation
c) scalar equation/symmetric coupling/non-symmetric coupling

and the proof of well-posedness can be a subtle issue.



Abstract layer potentials:

Sesquilinear forms:

` : H1 (Ω)×H1 (Ω)→ C ` (s) (u, v) :=
〈
A∇u,∇v

〉
R3 +

〈
pjs

2u, v
〉
R3 .

`j : H1
(

Ωj
)
×H1

(
Ωj
)
→ C `j (s) (u, v) :=

〈
Aj∇u,∇v

〉
Ωj

+
〈
pjs

2u, v
〉

Ωj
.



Coercivity and continuity of ` (·, ·), `j (·, ·)

Lemma (Bamberger/Ha-Duong 1986), . For j = 1, 2 and µ := s/ |s| :

|` (s) (v, w)| ≤ Λ |||v|||R3;s |||w|||R3;s Re `j (s) (v, µv) ≥ λRe s
|s| |||v|||

2
R3;s ,

∣∣∣`j (s)
(
vj, wj

)∣∣∣ ≤ Λ
∣∣∣∣∣∣∣∣∣vj∣∣∣∣∣∣∣∣∣Ωj;s

∣∣∣∣∣∣∣∣∣wj∣∣∣∣∣∣∣∣∣Ωj;s Re `j (s)
(
vj, µvj

)
≥ λRe s

|s|
∣∣∣∣∣∣∣∣∣vj∣∣∣∣∣∣∣∣∣2Ωj;s ,

with
λ := min {λ (p) , λ (A)} and Λ := max {Λ (p) ,Λ (A)} .

and

|||w|||Ω;s :=
(
‖∇w‖2

L2(Ω) + |s|2 ‖w‖2
L2(Ω)

)1/2
.



Associated operators:

L : H1
(
R3
)
→ H−1

(
R3
)

(Lu) (v) := ` (u, v) ,

Lj : H1
(
R3
)
→ H−1

(
R3
)
,

(
Lju

)
(v) := `j

(
u|Ωj , v|Ωj

)
,

H1
j;0

(
R3
)

:=
{
w ∈ H1

(
R3
)

: w|Γj = 0
}

H−1
j

(
R3
)

:=
(
H1
j;0

(
R3
))′

.

LD;j (s) : H1
(

Ωj
)
→ H−1

j

(
R3
) 〈

LD;j (s) v, w
〉
R3 = `j (s)

(
v, w|Ωj

)
∀w ∈ H1

j;0

(
R3
)
.



Corollary. The operator LD;j (s) applied to functions v ∈ H1
(

Ωj,Aj
)
⊂

H1
(

Ωj
)
is the piecewise application of the differential operator in Ωj :

LD;j (s) v :=

{
− div

(
Aj∇v

)
+ pjs

2v in Ωj,

0 in R3\Ωj.

Remark. Since the PDE has zero right-hand side, the solution satisfies uj ∈
H1

(
Ωj,Aj

)
. The operator form of this equation is given by

LD;j (s)uj = 0 in Ωj, j = 1, 2.



Layer potentials:

a) Single layer potential

We employ the approach by A. Barton, Elect. J. Diff. Eq., 2017, for our

setting.

Definition. The solution operator (acoustic Newton potential) N (s) :

H−1
(
R3
)
→ H1

(
R3
)
is given by the relation

` (s) (N (s) f, w) = 〈f, w〉R3 ∀f ∈ H−1
(
R3
)
, ∀w ∈ H1

(
R3
)
.



Lemma. The Newton potential is a left inverse of L (s), i.e.,

v = N (s) ◦ L (s) v = N (s) ◦ L1 (s) v + N (s) ◦ L2 (s) v ∀v ∈ H1
(
R3
)

and satisfies the estimate

|||N (s) f |||R3;s ≤
|s|

λRe s ‖f‖H−1(R3);s ∀f ∈ H−1
(
R3
)
.



Definition. For j = 1, 2 and ϕ ∈ H−1/2
(

Γj
)
the single layer potential

Sj (s) : H−1/2
(

Γj
)
→ H1

(
R3
)
is given by

Sj (s)ϕ := N (s)
(
γD;j (s)

)′
ϕ.

Alternative definition:

Lemma. For ϕ ∈ H−1/2
(

Γj
)
, it holds Sj (s)ϕ ∈ H1

(
R3
)
and

` (s)
(
Sj (s)ϕ, v

)
=
〈
ϕ, γD;j (s) v

〉
Γj
∀v ∈ H1

(
R3
)
.



b) Double layer potential.

Definition. Let ϕ ∈ H1/2 (Γ) and f ∈ H1
(
R3
)
such that γD;j (s) f = φ.

Then, the double layer potential Dj (s) : H1/2
(

Γj
)
→ H1

(
Ωj
)
×H1

(
Ωj′

)
(with j′ := 3− j) is given by

Dj (s)ϕ
∣∣∣
Ωj

:= − f |Ωj +
(
N (s) Lj (s) f

)∣∣∣
Ωj
,

Dj (s)ϕ
∣∣∣
Ωj′

:= f |Ωj′ −
(
N (s) Lj (s) f

)∣∣∣
Ωj′

.



These abstract potentials satisfy the homogeneous PDE:

Lemma. For any ϕ ∈ H−1/2
(

Γj
)
, ψ ∈ H1/2

(
Γj
)
it holds for j,m ∈ {1, 2}

LD;j (s) Sm (s)ϕ = LD;j (s)Dm (s)ψ = 0.

Lemma (Green’s representation formula). Let u ∈ H1
(

Ωj,Aj
)
and

LD;j (s)u = 0. Then, the Green’s representation formulae hold

u =
(
Sj (s) γA;j (s)u− Dj (s) γD;j (s)u

)∣∣∣
Ωj
,

0 =
(
Sj (s) γA;j′ (s)u− Dj (s) γD;j (s)u

)∣∣∣
Ωj′

.



Lemma. For any ϕ ∈ H−1/2
(

Γj
)
and ψ ∈ H1/2

(
Γj
)
the jump relations

hold:

[(
Sj (s)ϕ

)]
D;j

(s) = 0,
[(
Sj (s)ϕ

)]
A;j

(s) = −ϕ,

[(
Dj (s)ψ

)]
D;j

(s) = ψ,
[(
Dj (s)ψ

)]
A;j

(s) = 0.



Calderón operators:

The application of the Cauchy trace to Green’s representation formula results
in the Calderón identity on the domain skeleton.

Definition. For j = 1, 2, the skeleton operators are given by

Vj (s) : H−1/2
(

Γj
)
→ H1/2

(
Γj
)

Vj (s)ϕ := {{Sj (s)ϕ}}D;j (s) ,

Kj (s) : H1/2
(

Γj
)
→ H1/2

(
Γj
)

Kj (s)ψ := {{Dj (s)ψ}}D;j (s) ,

K′j (s) : H−1/2
(

Γj
)
→ H−1/2

(
Γj
)
K′j (s)ϕ := {{Sj (s)ϕ}}A;j (s) ,

Wj (s) : H1/2
(

Γj
)
→ H−1/2

(
Γj
)

Wj (s)ψ := −{{Dj (s)ψ}}A;j (s) ,



Cauchy traces and multi-trace space

Xj := H1/2
(

Γj
)
×H−1/2

(
Γj
)

for j = 1, 2

Xmult := X1 ×X2 multi trace space

Remark: The mulit-trace space is multivariate on the interfaces.



Definition. The Calderón operator C (s) : Xmult → Xmult is by

C (s) := diag
[
Cj (s) : j = 1, 2

]
with Cj (s) :=

[
−Kj (s) Vj (s)
Wj (s) K′j (s)

]
.

The sesquilinear form c (s) : Xmult ×Xmult → C associated to the operator
C (s)− 1

2 Id is

c (s) (φ,ψ) :=
2∑
j=1

〈(
−1

2φD − Kj (s)φD +Vj (s)φN

Wj (s)φD −1
2φN + K′j (s)φN

)
,

(
ψN,
ψD

)〉
Γj

.



Multi trace and single trace formulation of the transmission problem:

Multi-trace formulation of original transmission problem (see Claeys et al., ’15):

Find:

umult =
(
umult
j

)2

j=1
=
((
umult

D;j , u
mult
N;j

))2

j=1
∈ Xmult

such that: (
Cj (s)− 1

2 Idj
)
umult
j = 0 in Ωj j = 1, 2,

[
umult

]
1,2

= [β]1,2

umult
D;j

∣∣∣
Γj∩ΓD

= βD;j

∣∣∣
Γj∩ΓD

umult
N;j

∣∣∣
Γj∩ΓN

= βN;j

∣∣∣
Γj∩ΓN

 j = 1, 2.



Final step, the single-trace formulation:

A single trace formulation is obtained if the transmission conditions are
incorporated into the multi trace space Xmult.

Advantages:

1) The sesquilinear form c (s) (·, ·) is coercive on Xsingle
0 × Xsingle

0 (but not
on Xmult ×Xmult).

2) The functions on the interfaces become single-valued.



Definition (single trace space)

Xsingle :=

ψ ∈ X
mult |


∃v ∈ H1 (Ω)
s.t. ∀j ∈ {1, 2}

}
: ψD;j = γD;jv

∃w ∈ H (Ω, div)
s.t. ∀j ∈ {1, 2}

}
: ψN;j =

〈
w,nj

〉
 ,

Xsingle
0 :=

ψ ∈ Xsingle | ∀j ∈ {1, 2} :


ψD;j

∣∣∣
Γj∩ΓD

= 0

∧ ψN;j

∣∣∣
Γj∩ΓN

= 0

 .



Set usingle :=
(
umult
j − βj

)nΩ

j=1
and observe that usingle satisfies

(
Cj (s)− 1

2 Idj
)
usingle
j = −

(
Cj (s)− 1

2 Idj
)
βj in Ωj j = 1, 2,

[
usingle

]
1,2

= 0

u
single
D;j

∣∣∣
Γj∩ΓD

= 0

u
single
N;j

∣∣∣
Γj∩ΓN

= 0

 j = 1, 2.

This implies that usingle ∈ Xsingle
0 .



Variational form of the non-local skeleton problem in the single trace space:

Find usingle ∈ Xsingle
0 such that

c (s)
(
usingle,ψ

)
= −c (s) (β,ψ) ∀ψ ∈ Xsingle

0 .

Set umult
j := usingle + β so that Green’s representation formula yields

uj :=
(
Sj (s)umult

N;j − Dj (s)umult
D;j

)∣∣∣
Ωj

j = 1, 2.

The function u =
(
uj
)nΩ

j=1
∈ H (Ω,A) finally solves the original transmission

problem.



Frequency explicit coercivity and continuity estimates:

Lemma (Florian, Hiptmair, STAS, 2022). The layer potentials and skeleton

operators satisfy the coercivity and continuity estimates:

Continuity of layer potentials:∣∣∣∣∣∣∣∣∣Sj (s)ϕ
∣∣∣∣∣∣∣∣∣R3;s

≤ C |s|
3/2

λRe s ‖ϕ‖H−1/2(Γj)
∀ϕ ∈ H−1/2

(
Γj
)
,

∥∥∥Dj (s)ψ
∥∥∥
H1(R3\Γj);s

≤ CΛ
λ
|s|

Re s ‖ψ‖H1/2(Γj)
∀ψ ∈ H1/2

(
Γj
)
.



Coercivity of skeleton operators:
Re
〈
ϕ,Vj (s)ϕ

〉
Γj
≥ cRe s

|s|
λ
Λ2 ‖ϕ‖2

H−1/2(Γj)
∀ϕ ∈ H−1/2

(
Γj
)
,

Re
〈
Wj (s)ψ,ψ

〉
Γj
≥ cRe s
|s|2

λ ‖ψ‖2
H1/2(Γj)

∀ψ ∈ H1/2
(

Γj
)
,

Continuity of skeleton operators:∣∣∣∣〈Vj (s)ϕ,ψ
〉

Γj

∣∣∣∣ ≤ C |s|2
λRe s ‖ϕ‖H−1/2(Γj)

‖ψ‖
H−1/2(Γj)

∀ϕ,ψ ∈ H−1/2
(

Γj
)
,

∥∥∥K′j (s)ϕ
∥∥∥
H−1/2(Γj)

≤ CΛ
λ
|s|3/2

Re s ‖ϕ‖H−1/2(Γj)
∀ϕ ∈ H−1/2

(
Γj
)
,

∥∥∥Kj (s)ψ
∥∥∥
H1/2(Γj)

≤ CΛ
λ
|s|3/2

Re s ‖ψ‖H1/2(Γj)
∀ψ ∈ H1/2

(
Γj
)
,

∣∣∣∣〈Wj (s)ψ,ϕ
〉

Γj

∣∣∣∣ ≤ CΛ2

λ
|s|

Re s ‖ψ‖H1/2(Γj)
‖ϕ‖

H1/2(Γj)
∀ϕ,ψ ∈ H1/2

(
Γj
)
.



Well-posedness of single-trace formulation:

Theorem.

a) The sesquilinear form c (s) (·, ·) : Xsingle
0 × Xsingle

0 → C is coercive and

continuous: for any α ∈ Xsingle
0 and ψ,φ ∈ Xmult it holds

Re c (s) (α,α) ≥ c λ
1+Λ2

Re s
|s|2
‖α‖2

X ,

c (s) (ψ,φ) ≤
(

1
2 + C1+Λ

λ
|s|2
Re s

)
‖ψ‖X ‖φ‖X .



b) For any β ∈ Xmult, the variational skeleton problem has a solution usingle ∈
Xsingle

0 which is unique and satisfies

∥∥∥usingle
∥∥∥X ≤ C |s|4

(Re s)2 ‖β‖X .

Proof: Florian, Hiptmair, STAS, 2022.
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All my best wishes,

Ernst,

for the future!


