The skeleton equation method
for acoustic transmission problems with varying coefficients

Stefan A. Sauter
Institut für Mathematik, Universität Zürich

August 2022
joint work with F. Florian (U Zürich), R. Hiptmair (ETH Zürich)

Acoustic wave transmission problems in frequency domain
Geometric setting:

$\Omega \subset \mathbb{R}^{3}$ bounded Lipschitz domain with boundary Γ,
$\Omega_{1} \cup \Gamma_{j} \cup \Omega_{2}$ subdomains and jump interface,
$\Gamma=\Gamma_{\mathrm{D}} \cup \Gamma_{\mathrm{N}} \cup \Gamma_{\mathrm{I}}$: Dirichlet-, Neumann, impedance part of the boundary, $\Gamma_{1}:=\partial \Omega_{1}$ and $\Gamma_{2}:=\partial \Omega_{2}$.

PDE:

$$
\begin{array}{cl}
-\operatorname{div}\left(\mathbb{A}_{j} \nabla u_{j}\right)+p_{j}^{2} s^{2} u_{j}=0 & \text { in } \Omega_{j}, \quad j=1,2 . \\
{\left[\gamma_{\mathrm{D}} u\right]_{\Gamma_{J}}=\left[\gamma_{\mathbb{A}}\right]_{\Gamma_{J}}=0} & \text { on } \Gamma_{J}, \\
\gamma_{\mathrm{D}} u=g_{\mathrm{D}} & \text { on } \Gamma_{\mathrm{D}} \\
\gamma_{\mathbb{A}} u=d_{\mathrm{N}} & \text { on } \Gamma_{\mathrm{N}}, \\
\gamma_{\mathbb{A}} u+s T u=d_{\mathbf{I}} & \text { on } \Gamma_{\mathrm{I}},
\end{array}
$$

Assumption on the coefficients

Assumption. For $j=1,2$, the coefficients in the PDE satisfy

1. $\mathbb{A}_{j} \in \mathbb{L}_{>0}^{\infty}\left(\Omega_{j}, \mathbb{R}_{\text {sym }}^{3 \times 3}\right)$,
2. $p_{j} \in L_{>0}^{\infty}\left(\Omega_{j}\right)$,
3. $s \in \mathbb{C}_{>0}:=\{\zeta \in \mathbb{C} \mid \operatorname{Re} \zeta>0\}$ and $|s| \geq s_{0}$ for some $s_{0}>0$.

Goal:

Introduce a transform of the PDE to an integral equation on the skeleton $\Sigma:=\partial \Omega_{1} \cup \partial \Omega_{2}$ such that
a) the resulting skeleton equation is coercive and elliptic,
b) the explicit knowledge of a fundamental solution/Green's function is not required.

Remark: There are many approaches to transform boundary value problems to integral equations:
a) direct/indirect method
b) first kind/second kind integral equation
c) scalar equation/symmetric coupling/non-symmetric coupling
and the proof of well-posedness can be a subtle issue.

Abstract layer potentials:

Sesquilinear forms:

$$
\begin{aligned}
& \ell: H^{1}(\Omega) \times H^{1}(\Omega) \rightarrow \mathbb{C} \quad \ell(s)(u, v):=\langle\mathbb{A} \nabla u, \overline{\nabla v}\rangle_{\mathbb{R}^{3}}+\left\langle p_{j} s^{2} u, \bar{v}\right\rangle_{\mathbb{R}^{3}} \\
& \ell_{j}: H^{1}\left(\Omega_{j}\right) \times H^{1}\left(\Omega_{j}\right) \rightarrow \mathbb{C} \quad \ell_{j}(s)(u, v):=\left\langle\mathbb{A}_{j} \nabla u, \overline{\nabla v}\right\rangle_{\Omega_{j}}+\left\langle p_{j} s^{2} u, \bar{v}\right\rangle_{\Omega_{j}}
\end{aligned}
$$

Coercivity and continuity of $\ell(\cdot, \cdot), \ell_{j}(\cdot, \cdot)$
Lemma (Bamberger/Ha-Duong 1986), . For $j=1,2$ and $\mu:=s /|s|$:

$$
\begin{aligned}
& |\ell(s)(v, w)| \leq \Lambda\left|\left\|v \left|\left\|_{\mathbb{R}^{3} ; s}\right\|\left\|w\left|\left\|_{\mathbb{R}^{3} ; s} \quad{\operatorname{Re} \ell_{j}(s)}(v, \mu v) \geq \lambda \frac{\operatorname{Re} s}{|s|}\right\|\right| v\right\|_{\mathbb{R}^{3} ; s}^{2}\right.\right.\right. \\
& \left|\ell_{j}(s)\left(v_{j}, w_{j}\right)\right| \leq \Lambda\left|\left\|v_{j}\right\|\left\|_{\Omega_{j} ; s} \mid\right\| w_{j}\| \|_{\Omega_{j} ; s}\right. \\
& \operatorname{Re} \ell_{j}(s)\left(v_{j}, \mu v_{j}\right) \geq \lambda \frac{\operatorname{Re} s}{|s|}\left\|v_{j}\right\|_{\Omega_{j} ; s}^{2}
\end{aligned}
$$

with

$$
\lambda:=\min \{\lambda(p), \lambda(\mathbb{A})\} \quad \text { and } \quad \Lambda:=\max \{\Lambda(p), \Lambda(\mathbb{A})\}
$$

and

$$
\left\|\|w\|_{\Omega ; s}:=\left(\|\nabla w\|_{L^{2}(\Omega)}^{2}+|s|^{2}\|w\|_{L^{2}(\Omega)}^{2}\right)^{1 / 2}\right.
$$

Associated operators:

$$
\begin{array}{lr}
\mathrm{L}: H^{1}\left(\mathbb{R}^{3}\right) \rightarrow H^{-1}\left(\mathbb{R}^{3}\right) & (L u)(v):=\ell(u, v) \\
L_{j}: H^{1}\left(\mathbb{R}^{3}\right) \rightarrow H^{-1}\left(\mathbb{R}^{3}\right), & \left(L_{j} u\right)(v):=\ell_{j}\left(\left.u\right|_{\Omega_{j}},\left.v\right|_{\Omega_{j}}\right) \\
H_{j ; 0}^{1}\left(\mathbb{R}^{3}\right):=\left\{w \in H^{1}\left(\mathbb{R}^{3}\right):\left.w\right|_{\Gamma_{j}}=0\right\} & H_{j}^{-1}\left(\mathbb{R}^{3}\right):=\left(H_{j ; 0}^{1}\left(\mathbb{R}^{3}\right)\right)^{\prime} \\
L_{\mathrm{D} ; j}(s): H^{1}\left(\Omega_{j}\right) \rightarrow H_{j}^{-1}\left(\mathbb{R}^{3}\right) & \left\langle L_{\mathrm{D} ; j}(s) v, \bar{w}\right\rangle_{\mathbb{R}^{3}}=\ell_{j}(s)\left(v,\left.w\right|_{\Omega_{j}}\right) \\
& \forall w \in H_{j ; 0}^{1}\left(\mathbb{R}^{3}\right)^{\prime}
\end{array}
$$

Corollary. The operator $\mathrm{L}_{\mathrm{D} ; j}(s)$ applied to functions $v \in H^{1}\left(\Omega_{j}, \mathbb{A}_{j}\right) \subset$ $H^{1}\left(\Omega_{j}\right)$ is the piecewise application of the differential operator in Ω_{j} :

$$
\mathrm{L}_{\mathrm{D} ; j}(s) v:= \begin{cases}-\operatorname{div}\left(\mathbb{A}_{j} \nabla v\right)+p_{j} s^{2} v & \text { in } \Omega_{j}, \\ 0 & \text { in } \mathbb{R}^{3} \backslash \overline{\Omega_{j}} .\end{cases}
$$

Remark. Since the PDE has zero right-hand side, the solution satisfies $u_{j} \in$ $H^{1}\left(\Omega_{j}, \mathbb{A}_{j}\right)$. The operator form of this equation is given by

$$
\mathrm{L}_{\mathrm{D} ; j}(s) u_{j}=0 \quad \text { in } \Omega_{j}, \quad j=1,2 .
$$

Layer potentials:
a) Single layer potential

We employ the approach by A. Barton, Elect. J. Diff. Eq., 2017, for our setting.

Definition. The solution operator (acoustic Newton potential) $\mathrm{N}(s)$: $H^{-1}\left(\mathbb{R}^{3}\right) \rightarrow H^{1}\left(\mathbb{R}^{3}\right)$ is given by the relation

$$
\ell(s)(\mathbb{N}(s) f, w)=\langle f, \bar{w}\rangle_{\mathbb{R}^{3}} \quad \forall f \in H^{-1}\left(\mathbb{R}^{3}\right), \quad \forall w \in H^{1}\left(\mathbb{R}^{3}\right)
$$

Lemma. The Newton potential is a left inverse of $\mathrm{L}(s)$, i.e.,

$$
v=\mathrm{N}(s) \circ \mathrm{L}(s) v=\mathrm{N}(s) \circ \mathrm{L}_{1}(s) v+\mathrm{N}(s) \circ \mathrm{L}_{2}(s) v \quad \forall v \in H^{1}\left(\mathbb{R}^{3}\right)
$$

and satisfies the estimate

$$
\left\|\|\mathrm{N}(s) f\|_{\mathbb{R}^{3} ; s} \leq \frac{|s|}{\lambda \operatorname{Re} s}\right\| f \|_{H^{-1}\left(\mathbb{R}^{3}\right) ; s} \quad \forall f \in H^{-1}\left(\mathbb{R}^{3}\right)
$$

Definition. For $j=1,2$ and $\varphi \in H^{-1 / 2}\left(\Gamma_{j}\right)$ the single layer potential $\mathrm{S}_{j}(s): H^{-1 / 2}\left(\Gamma_{j}\right) \rightarrow H^{1}\left(\mathbb{R}^{3}\right)$ is given by

$$
\mathrm{S}_{j}(s) \varphi:=\mathrm{N}(s)\left(\gamma_{\mathrm{D} ; j}(s)\right)^{\prime} \varphi
$$

Alternative definition:

Lemma. For $\varphi \in H^{-1 / 2}\left(\Gamma_{j}\right)$, it holds $\mathrm{S}_{j}(s) \varphi \in H^{1}\left(\mathbb{R}^{3}\right)$ and

$$
\ell(s)\left(\mathrm{S}_{j}(s) \varphi, v\right)=\left\langle\varphi, \gamma_{\mathrm{D} ; j}(s) \bar{v}\right\rangle_{\Gamma_{j}} \quad \forall v \in H^{1}\left(\mathbb{R}^{3}\right)
$$

b) Double layer potential.

Definition. Let $\varphi \in H^{1 / 2}(\Gamma)$ and $f \in H^{1}\left(\mathbb{R}^{3}\right)$ such that $\gamma_{\mathrm{D} ; j}(s) f=\phi$. Then, the double layer potential $\mathrm{D}_{j}(s): H^{1 / 2}\left(\Gamma_{j}\right) \rightarrow H^{1}\left(\Omega_{j}\right) \times H^{1}\left(\Omega_{j^{\prime}}\right)$ (with $j^{\prime}:=3-j$) is given by

$$
\begin{aligned}
& \left.\mathrm{D}_{j}(s) \varphi\right|_{\Omega_{j}}:=-\left.f\right|_{\Omega_{j}}+\left.\left(\mathrm{N}(s) \mathrm{L}_{j}(s) f\right)\right|_{\Omega_{j}}, \\
& \left.\mathrm{D}_{j}(s) \varphi\right|_{\Omega_{j^{\prime}}}:=\left.f\right|_{\Omega_{j^{\prime}}}-\left.\left(\mathrm{N}(s) \mathrm{L}_{j}(s) f\right)\right|_{\Omega_{j^{\prime}}} .
\end{aligned}
$$

These abstract potentials satisfy the homogeneous PDE:
Lemma. For any $\varphi \in H^{-1 / 2}\left(\Gamma_{j}\right), \psi \in H^{1 / 2}\left(\Gamma_{j}\right)$ it holds for $j, m \in\{1,2\}$

$$
\mathrm{L}_{\mathrm{D} ; j}(s) \mathrm{S}_{m}(s) \varphi=\mathrm{L}_{\mathrm{D} ; j}(s) \mathrm{D}_{m}(s) \psi=0
$$

Lemma (Green's representation formula). Let $u \in H^{1}\left(\Omega_{j}, \mathbb{A}_{j}\right)$ and $\mathrm{L}_{\mathrm{D} ; j}(s) u=0$. Then, the Green's representation formulae hold

$$
\begin{aligned}
& u=\left.\left(\mathrm{S}_{j}(s) \gamma_{\mathbb{A} ; j}(s) u-\mathrm{D}_{j}(s) \gamma_{\mathrm{D} ; j}(s) u\right)\right|_{\Omega_{j}} \\
& 0=\left.\left(\mathrm{S}_{j}(s) \gamma_{\mathbb{A} ; j^{\prime}}(s) u-\mathrm{D}_{j}(s) \gamma_{\mathrm{D} ; j}(s) u\right)\right|_{\Omega_{j^{\prime}}}
\end{aligned}
$$

Lemma. For any $\varphi \in H^{-1 / 2}\left(\Gamma_{j}\right)$ and $\psi \in H^{1 / 2}\left(\Gamma_{j}\right)$ the jump relations hold:

$$
\begin{array}{ll}
{\left[\left(\mathrm{S}_{j}(s) \varphi\right)\right]_{\mathrm{D} ; j}(s)=0,} & {\left[\left(\mathrm{~S}_{j}(s) \varphi\right)\right]_{\mathbb{A} ; j}(s)=-\varphi} \\
{\left[\left(\mathrm{D}_{j}(s) \psi\right)\right]_{\mathrm{D} ; j}(s)=\psi,} & {\left[\left(\mathrm{D}_{j}(s) \psi\right)\right]_{\mathbb{A} ; j}(s)=0}
\end{array}
$$

Calderón operators:

The application of the Cauchy trace to Green's representation formula results in the Calderón identity on the domain skeleton.

Definition. For $j=1,2$, the skeleton operators are given by

$$
\begin{aligned}
& \mathrm{V}_{j}(s): H^{-1 / 2}\left(\Gamma_{j}\right) \rightarrow H^{1 / 2}\left(\Gamma_{j}\right) \quad \mathrm{V}_{j}(s) \varphi:=\left\{\mathrm{S}_{j}(s) \varphi\right\}_{\mathrm{D} ; j}(s) \\
& \mathrm{K}_{j}(s): H^{1 / 2}\left(\Gamma_{j}\right) \rightarrow H^{1 / 2}\left(\Gamma_{j}\right) \quad \mathrm{K}_{j}(s) \psi:=\left\{\mathrm{D}_{j}(s) \psi\right\}_{\mathrm{D} ; j}(s) \\
& \mathrm{K}_{j}^{\prime}(s): H^{-1 / 2}\left(\Gamma_{j}\right) \rightarrow H^{-1 / 2}\left(\Gamma_{j}\right) \quad \mathrm{K}_{j}^{\prime}(s) \varphi:=\left\{\left\{\mathrm{S}_{j}(s) \varphi\right\}_{\mathbb{A} ; j}(s),\right. \\
& \mathrm{W}_{j}(s): H^{1 / 2}\left(\Gamma_{j}\right) \rightarrow H^{-1 / 2}\left(\Gamma_{j}\right) \quad \mathrm{W}_{j}(s) \psi:=-\left\{\mathrm{D}_{j}(s) \psi\right\}_{\mathbb{A} ; j}(s),
\end{aligned}
$$

Cauchy traces and multi-trace space

$$
\begin{gathered}
\mathbf{X}_{j}:=H^{1 / 2}\left(\Gamma_{j}\right) \times H^{-1 / 2}\left(\Gamma_{j}\right) \text { for } j=1,2 \\
\mathbf{X}^{\mathrm{mult}}:=\mathbf{X}_{1} \times \mathbf{X}_{2} \quad \text { multi trace space }
\end{gathered}
$$

Remark: The mulit-trace space is multivariate on the interfaces.

Definition. The Calderón operator $\mathrm{C}(s): \mathbf{X}^{\text {mult }} \rightarrow \mathbf{X}^{\text {mult }}$ is by

$$
\mathrm{C}(s):=\operatorname{diag}\left[\mathrm{C}_{j}(s): j=1,2\right] \quad \text { with } \quad \mathrm{C}_{j}(s):=\left[\begin{array}{cc}
-\mathrm{K}_{j}(s) & \mathrm{V}_{j}(s) \\
\mathrm{W}_{j}(s) & \mathrm{K}_{j}^{\prime}(s)
\end{array}\right]
$$

The sesquilinear form $c(s): \mathbf{X}^{\text {mult }} \times \mathbf{X}^{\text {mult }} \rightarrow \mathbb{C}$ associated to the operator $\mathrm{C}(s)-\frac{1}{2} \mathrm{ld}$ is

$$
c(s)(\phi, \psi):=\sum_{j=1}^{2}\left\langle\left(\begin{array}{rl}
-\frac{1}{2} \phi_{\mathrm{D}}-\mathrm{K}_{j}(s) \phi_{\mathrm{D}} & +\mathrm{V}_{j}(s) \phi_{\mathrm{N}} \\
\mathrm{~W}_{j}(s) \phi_{\mathrm{D}} & -\frac{1}{2} \phi_{\mathrm{N}}+\mathrm{K}_{j}^{\prime}(s) \phi_{\mathrm{N}}
\end{array}\right),\left(\frac{\overline{\psi_{\mathrm{N}}}}{\psi_{\mathrm{D}}}\right)\right\rangle_{\Gamma_{j}}
$$

Multi trace and single trace formulation of the transmission problem:
Multi-trace formulation of original transmission problem (see Claeys et al., '15):

Find:

$$
\mathbf{u}^{\text {mult }}=\left(\mathbf{u}_{j}^{\text {mult }}\right)_{j=1}^{2}=\left(\left(u_{\mathrm{D} ; j}^{\text {mult }}, u_{\mathrm{N} ; j}^{\text {mult }}\right)\right)_{j=1}^{2} \in \mathbf{X}^{\text {mult }}
$$

such that:

$$
\left.\begin{array}{l}
\left(\mathrm{C}_{j}(s)-\frac{1}{2} \mathrm{Id} d_{j}\right) \mathbf{u}_{j}^{\text {mult }}=0 \quad \text { in } \Omega_{j} \quad j=1,2, \\
{\left[\mathbf{u}^{\text {mult }}\right]_{1,2}=[\beta]_{1,2}} \\
\left.\begin{array}{l}
u_{\mathrm{D} ; j}^{\mathrm{mult}}
\end{array}\right|_{\Gamma_{j \cap \Gamma_{\mathrm{D}}}}=\left.\left.\beta_{\mathrm{D} ; j}\right|_{\Gamma_{j \cap \Gamma_{\mathrm{D}}}} u_{\mathrm{N} ; j}\right|_{\Gamma_{j \cap \Gamma_{\mathrm{N}}}}=\left.\beta_{\mathrm{N} ; j}\right|_{\Gamma_{j} \cap \Gamma_{\mathrm{N}}}
\end{array}\right\} \quad j=1,2.2
$$

Final step, the single-trace formulation:

A single trace formulation is obtained if the transmission conditions are incorporated into the multi trace space $\mathbf{X}^{\text {mult }}$.

Advantages:

1) The sesquilinear form $c(s)(\cdot, \cdot)$ is coercive on $\mathbf{X}_{0}^{\text {single }} \times \mathbf{X}_{0}^{\text {single }}$ (but not on $\mathbf{X}^{\text {mult }} \times \mathbf{X}^{\text {mult }}$).
2) The functions on the interfaces become single-valued.

Definition (single trace space)

$$
\left.\begin{array}{l}
\mathbf{X}^{\text {single }}:=\left\{\psi \in \mathbf{X}^{\text {mult }} \left\lvert\,\left\{\begin{array}{l}
\exists v \in H^{1}(\Omega) \\
\text { s.t. } \forall j \in\{1,2\} \\
\exists \mathbf{w} \in \mathbf{H}(\Omega, \text { div }) \\
\text { s.t. } \forall j \in\{1,2\}
\end{array}\right\}\right.: \quad \psi_{\mathrm{D} ; j}=\gamma_{\mathrm{D} ; j} v\right. \\
\psi_{\mathrm{N} ; j}=\left\langle\mathbf{w}, \mathbf{n}_{j}\right\rangle
\end{array}\right\},
$$

Set $\mathbf{u}^{\text {single }}:=\left(\mathbf{u}_{j}^{\text {mult }}-\boldsymbol{\beta}_{j}\right)_{j=1}^{n_{\Omega}}$ and observe that $\mathbf{u}^{\text {single }}$ satisfies

$$
\begin{aligned}
& \left(\mathrm{C}_{j}(s)-\frac{1}{2} \mathrm{Id} \mathbf{d}_{j}\right) \mathbf{u}_{j}^{\text {single }}=-\left(\mathrm{C}_{j}(s)-\frac{1}{2} \mathrm{Id}_{j}\right) \boldsymbol{\beta}_{j} \text { in } \Omega_{j} \quad j=1,2, \\
& {\left[\mathbf{u}^{\text {single }}\right]_{1,2}=0} \\
& \left.\begin{array}{c}
\left.u_{\mathrm{D} ; j}^{\text {single }}\right|_{\Gamma_{j \cap \Gamma_{\mathrm{D}}}}=0 \\
\left.u_{\mathrm{N} ; j}^{\text {single }}\right|_{\Gamma_{j} \cap \Gamma_{\mathrm{N}}}=0
\end{array}\right\}
\end{aligned}
$$

This implies that $\mathbf{u}^{\text {single }} \in \mathbf{X}_{0}^{\text {single }}$.
$\underline{\text { Variational form of the non-local skeleton problem in the single trace space: }}$
Find $\mathbf{u}^{\text {single }} \in \mathbf{X}_{0}^{\text {single }}$ such that

$$
c(s)\left(\mathbf{u}^{\text {single }}, \boldsymbol{\psi}\right)=-c(s)(\boldsymbol{\beta}, \boldsymbol{\psi}) \quad \forall \boldsymbol{\psi} \in \mathbf{X}_{0}^{\text {single }}
$$

Set $\mathbf{u}_{j}^{\text {mult }}:=\mathbf{u}^{\text {single }}+\boldsymbol{\beta}$ so that Green's representation formula yields

$$
u_{j}:=\left.\left(\mathrm{S}_{j}(s) u_{\mathrm{N} ; j}^{\mathrm{mult}}-\mathrm{D}_{j}(s) u_{\mathrm{D} ; j}^{\mathrm{mult}}\right)\right|_{\Omega_{j}} \quad j=1,2 .
$$

The function $\mathbf{u}=\left(u_{j}\right)_{j=1}^{n_{\Omega}} \in \mathbf{H}(\Omega, \mathbb{A})$ finally solves the original transmission problem.

Frequency explicit coercivity and continuity estimates:

Lemma (Florian, Hiptmair, STAS, 2022). The layer potentials and skeleton operators satisfy the coercivity and continuity estimates:

Continuity of layer potentials:

$$
\begin{array}{ll}
\left\|\mathrm{S}_{j}(s) \varphi\right\|_{\mathbb{R}^{3} ; s} \leq C \frac{|s|^{3 / 2}}{\lambda \operatorname{Re} s}\|\varphi\|_{H^{-1 / 2}\left(\Gamma_{j}\right)} \quad \forall \varphi \in H^{-1 / 2}\left(\Gamma_{j}\right), \\
\left\|\mathrm{D}_{j}(s) \psi\right\|_{H^{1}\left(\mathbb{R}^{3} \backslash \Gamma_{j}\right) ; s} \leq C \frac{\Lambda}{\lambda} \frac{|s|}{\operatorname{Re} s}\|\psi\|_{H^{1 / 2}\left(\Gamma_{j}\right)} \quad \forall \psi \in H^{1 / 2}\left(\Gamma_{j}\right)
\end{array}
$$

Coercivity of skeleton operators:
$\operatorname{Re}\left\langle\varphi, \overline{V_{j}(s) \varphi}\right\rangle_{\Gamma_{j}} \geq c \frac{\operatorname{Re} s}{|s|} \frac{\lambda}{\Lambda^{2}}\|\varphi\|_{H^{-1 / 2}\left(\Gamma_{j}\right)}^{2}$
$\forall \varphi \in H^{-1 / 2}\left(\Gamma_{j}\right)$,
$\operatorname{Re}\left\langle\mathrm{W}_{j}(s) \psi, \bar{\psi}\right\rangle_{\Gamma_{j}} \geq c \frac{\operatorname{Re} s}{|s|^{2}} \lambda\|\psi\|_{H^{1 / 2}\left(\Gamma_{j}\right)}^{2}$
Continuity of skeleton operators:
$\left|\left\langle\mathrm{V}_{j}(s) \varphi, \bar{\psi}\right\rangle_{\Gamma_{j}}\right| \leq C \frac{|s|^{2}}{\lambda \operatorname{Re} s}\|\varphi\|_{H^{-1 / 2}\left(\Gamma_{j}\right)}\|\psi\|_{H^{-1 / 2}\left(\Gamma_{j}\right)} \quad \forall \varphi, \psi \in H^{-1 / 2}\left(\Gamma_{j}\right)$,
$\left\|\mathrm{K}_{j}^{\prime}(s) \varphi\right\|_{H^{-1 / 2}\left(\Gamma_{j}\right)} \leq C \frac{\Lambda}{\lambda} \frac{|s|^{3 / 2} \operatorname{Re} s}{\operatorname{Re}}\|\varphi\|_{H^{-1 / 2}\left(\Gamma_{j}\right)}$
$\left\|\mathrm{K}_{j}(s) \psi\right\|_{H^{1 / 2}\left(\Gamma_{j}\right)} \leq C \frac{\Lambda}{\lambda} \frac{|s|^{3 / 2}}{\operatorname{Re} s}\|\psi\|_{H^{1 / 2}\left(\Gamma_{j}\right)}$
$\left|\left\langle\mathrm{W}_{j}(s) \psi, \bar{\varphi}\right\rangle_{\Gamma_{j}}\right| \leq C \frac{\Lambda^{2}}{\lambda} \frac{|s|}{\operatorname{Re} s}\|\psi\|_{H^{1 / 2}\left(\Gamma_{j}\right)}\|\varphi\|_{H^{1 / 2}\left(\Gamma_{j}\right)} \quad \forall \varphi, \psi \in H^{1 / 2}\left(\Gamma_{j}\right)$.

Well-posedness of single-trace formulation:

Theorem.

a) The sesquilinear form $c(s)(\cdot, \cdot): \mathbf{X}_{0}^{\text {single }} \times \mathbf{X}_{0}^{\text {single }} \rightarrow \mathbb{C}$ is coercive and continuous: for any $\boldsymbol{\alpha} \in \mathbf{X}_{0}^{\text {single }}$ and $\boldsymbol{\psi}, \phi \in \mathbf{X}^{\text {mult }}$ it holds

$$
\begin{aligned}
& \operatorname{Re} c(s)(\boldsymbol{\alpha}, \boldsymbol{\alpha}) \geq c \frac{\lambda}{1+\Lambda^{2}} \frac{\operatorname{Re} s}{|s|^{2}}\|\boldsymbol{\alpha}\|_{\mathbb{X}}^{2} \\
& c(s)(\psi, \boldsymbol{\phi}) \leq\left(\frac{1}{2}+C \frac{1+\Lambda}{\lambda} \frac{|s|^{2}}{\operatorname{Re} s}\right)\|\boldsymbol{\psi}\|_{\mathbb{X}}\|\boldsymbol{\phi}\|_{\mathbb{X}} .
\end{aligned}
$$

b) For any $\boldsymbol{\beta} \in \mathbf{X}^{\text {mult }}$, the variational skeleton problem has a solution $\mathbf{u}^{\text {single }} \in$ $\mathbf{X}_{0}^{\text {single }}$ which is unique and satisfies

$$
\left\|\mathbf{u}^{\text {single }}\right\|_{\mathbb{X}} \leq C \frac{|s|^{4}}{(\operatorname{Re} s)^{2}}\|\boldsymbol{\beta}\|_{\mathbb{X}}
$$

Proof: Florian, Hiptmair, STAS, 2022.

References

[1] A. Barton: Layer potentials for general linear elliptic systems Electron. J. Differential Equations 2017.
[2] L. Banjai, C. Lubich, F.-J. Sayas: Stable numerical coupling of exterior and interior problems for the wave equation, Numer. Math., 129 (2015).
[3] X. Claeys, R. Hiptmair, C. Jerez-Hanckes, S. Pintarelli: Novel multitrace boundary integral equations for transmission boundary value problems; in: Unified Transform for Boundary Value Problems, SIAM, 2015
[4] S. Eberle, F. Florian, R. Hiptmair, S. Sauter: A Stable Boundary Integral Formulation of an Acoustic Wave Transmission Problem with Mixed Boundary Conditions; SIAM J. Math. Anal., Vol. 53(2), (2021),
[5] F. Florian, R. Hiptmair, S. Sauter: The skeleton equation method for acoustic transmission problems with varying coefficients, in prep..

All my best wishes, Ernst,
 for the future!

