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1. Acoustics and Elastic model problems (soft scattering)

2. Energetic Boundary Element Method (E-BEM)

3. ACA based E-BEM reduction of computational costs and memory requirements

4. Numerical results

5. Ongoing research
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• Wave propagation into a linear, homogeneous and isotropic unbounded domain Ωe ⊂ ℝ2:

Scattering by 
a closed domain Ω

Γ Ω𝑒 = ℝ2 ∖ ഥΩ

Ω

𝐧

1. ACOUSTIC and ELASTIC MODEL PROBLEMS (SOFT SCATTERING)

Acoustic Parameters
𝜌 mass density
c wave propagation speed

Elastic Parameters
𝜌 mass density
𝜆 Lamé parameter
𝜇 shear modulus

𝑐𝑃 =
𝜆 + 2𝜇

𝜌

𝑐𝑆 =
𝜇

𝜌
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Vectorial Cauchy Equation of motion

u x, 𝑡 = 𝑢1, 𝑢2
⊤ x, 𝑡 acoustic/elastic  unknown field

u x, 0 = ሶu x, 0 = 0 for x ∈ Ω𝑒 and u x, 𝑡 = 𝐠𝒟 x, 𝑡 for x, 𝑡 ∈ Γ × (0, 𝑇]

• Wave propagation into a linear, homogeneous and isotropic unbounded domain Ωe ⊂ ℝ2:

Scattering by 
a closed domain Ω

Γ Ω𝑒 = ℝ2 ∖ ഥΩ

Ω

𝐧

1. ACOUSTIC and ELASTIC MODEL PROBLEMS (SOFT SCATTERING)

𝜌 ሷ𝐮 𝐱, 𝑡 − 𝛻 ⋅ 𝜎 𝐮 𝐱, 𝑡 = 0, 𝐱, 𝑡 ∈ Ω𝑒 × (0, 𝑇] Acoustics: 𝜎 𝐮 = 𝜌𝑐2𝛻𝐮
Elastodynamics: 𝜎 𝐮 = 𝜆 𝛻 ⋅ 𝐮 𝐼 + 𝜇 𝛻𝐮 + 𝛻𝐮⊤
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𝜇 shear modulus
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𝜌
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𝜇

𝜌
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𝜌 ሷ𝐮 𝐱, 𝑡 − 𝛻 ⋅ 𝜎 𝐮 𝐱, 𝑡 = 0, 𝐱, 𝑡 ∈ Ω𝑒 × (0, 𝑇] Acoustics: 𝜎 𝐮 = 𝜌𝑐2𝛻𝐮
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Acoustic Parameters
𝜌 mass density
c wave propagation speed

Elastic Parameters
𝜌 mass density
𝜆 Lamé parameter
𝜇 shear modulus

• We consider an indirect boundary integral representation formula for 𝐮 in Ω𝑒 × (0, 𝑇] :

u x, 𝑡 = V𝚽 𝐱, 𝑡 = න
𝛤

𝐆𝐮𝐮 𝐱 − 𝐲; 𝑡 ⋆(𝑡) 𝚽 𝐲, 𝑡 𝑑Γ𝐲 , 𝐱, 𝑡 ∈ Ω𝑒 × (0, 𝑇]

𝐆𝐮𝐮 is the 2D fundamental  
solution

𝚽 is an unknown density field belonging to the 
functional space of the traction vector 𝐩 = 𝑝1, 𝑝2

⊤:

𝑝𝑖 𝐱, 𝑡 = ෍
ℎ=1

2

𝜎𝑖ℎ 𝐮 𝐱, 𝑡 𝑛ℎ(𝐱) , 𝑖 = 1,2

single layer potential

𝑐𝑃 =
𝜆 + 2𝜇

𝜌

𝑐𝑆 =
𝜇

𝜌
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• The integral representation formula is strictly connected to the definition of the 2D fundamental solution 𝐆𝐮𝐮 = 𝐺𝑖𝑗
𝐮𝐮

𝑖,𝑗=1,2
:

BOUNDARY INTEGRAL EQUATION 

𝐺𝑖𝑗
𝐮𝐮 x − 𝒚; 𝑡 − 𝜏 = elastodynamics 𝑓

𝐻[𝒄𝑷 𝑡 − 𝜏 − 𝑟]

2𝜋𝜌𝒄𝑷

𝑟𝑖𝑟𝑗

𝑟4

2𝒄𝑷
2 𝑡 − 𝜏 2 − 𝑟2

𝒄𝑷
2 𝑡 − 𝜏 2 − 𝑟2

−
𝛿𝑖𝑗

𝑟2
𝒄𝑷

2 𝑡 − 𝜏 2 − 𝑟2

−
𝐻[𝒄𝑺 𝑡 − 𝜏 − 𝑟]

2𝜋𝜌𝒄𝑺

𝑟𝑖𝑟𝑗

𝑟4

2𝒄𝑺
2 𝑡 − 𝜏 2 − 𝑟2

𝒄𝑺
2 𝑡 − 𝜏 2 − 𝑟2

−
𝛿𝑖𝑗

𝑟2

𝒄𝑺
2 𝑡 − 𝜏 2

𝒄𝑺
2 𝑡 − 𝜏 2 − 𝑟2

𝑖, 𝑗 = 1,2

𝛿𝑖𝑗

𝒄

2𝜋

𝐻[𝑐 𝑡 − 𝜏 − 𝑟]

𝒄2 𝑡 − 𝜏 2 − 𝑟2
𝑖, 𝑗 = 1,2

r = x − 𝒚 , 𝑟 = ||x − 𝒚||

1. ACOUSTIC and ELASTIC MODEL PROBLEMS (SOFT SCATTERING)
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:

• Performing a limiting process of the spatial variable from the domain to the boundary, we get to the Boundary Integral Equation (BIE): 

standard BEM

A. Frangi et al., On the numerical 
stability of time-domain 
elastodynamic analyses by BEM, 
CMAME, 1999

BOUNDARY INTEGRAL EQUATION 

• Standard discretization of the BIE may lead to unstable results for the approximation of the BIE unknown:
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1. ACOUSTIC and ELASTIC MODEL PROBLEMS (SOFT SCATTERING)

V𝚽 𝐱, 𝑡 = 𝐠𝒟 x, 𝑡 ,       𝐱 ∈ Γ, 𝑡 ∈ (0, 𝑇]

𝜕

𝜕𝑡
𝐕𝚽 , 𝝓

𝐿2(Γ×(0,𝑇])

=
𝜕

𝜕𝑡
𝐠𝒟, 𝝓

𝐿2(Γ×(0,𝑇])

∀𝝓

• Energetic Weak Formulation: find 𝚽 ∈ H0 [(0,T); H-1/2(Γ)] solution of the energetic weak problem

energy at the final instant 𝑇𝐵𝒟(𝚽, 𝚽)=ℰ 𝐮, 𝑇

: = 𝐵𝒟(𝛟, 𝝓)

∈ H0 [(0,T); H-1/2(Γ)]

• BIE in the unknown density 𝚽:

BOUNDARY INTEGRAL EQUATION and ITS ENERGETIC WEAK FORMULATION 
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V𝚽 𝐱, 𝑡 = 𝐠𝒟 x, 𝑡 ,       𝐱 ∈ Γ, 𝑡 ∈ (0, 𝑇]

• The link with the energy ℰ of the system allows to obtain good theoretical properties           for the bilinear  form 𝐵𝒟(𝛟, 𝝓).

• This energetic approach allows to overcome the instabilities arising from the standard weak form of the BIEs.

𝜕

𝜕𝑡
𝐕𝚽 , 𝝓

𝐿2(Γ×(0,𝑇])

=
𝜕

𝜕𝑡
𝐠𝒟, 𝝓

𝐿2(Γ×(0,𝑇])

∀𝝓

• Energetic Weak Formulation: find 𝚽 ∈ H0 [(0,T); H-1/2(Γ)] solution of the energetic weak problem

energy at the final instant 𝑇𝐵𝒟(𝚽, 𝚽)=ℰ 𝐮, 𝑇

: = 𝐵𝒟(𝛟, 𝝓)

∈ H0 [(0,T); H-1/2(Γ)]

Acoustics:              A. Aimi, M. Diligenti, C. Guardasoni, I. Mazzieri, S. Panizzi, IJNME (2009). 
Elastodynamics:  A. Aimi, L. Desiderio, C. Guardasoni, M. Diligenti, CAIM, (2019).

• BIE in the unknown density 𝚽:

BOUNDARY INTEGRAL EQUATION and ITS ENERGETIC WEAK FORMULATION 
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𝔼𝑉𝒂 = 𝜷𝜕

𝜕𝑡
𝐕𝚽 , 𝝓

𝐿2(Γ×(0,𝑇])

=
𝜕

𝜕𝑡
𝐠𝒟, 𝝓

𝐿2(Γ×(0,𝑇])

Energetic weak problem Discretized problem

Φ𝑖 𝐱, 𝑡 ≃ Φ𝑖,ℎ,Δ𝑡 𝒙, 𝑡 = ෍

𝑘=0

𝑁−1

෍

𝑚=1

𝑀

𝛼𝑘𝑚
𝐩,𝑖

𝑤𝑚
𝐩

𝐱 𝑣𝑘 𝑡

2. ENERGETIC  BOUNDARY ELEMENT METHOD (E-BEM)

piece-wise 
constants basis in 

space and time

space-time approximation

𝑡0 = 0 𝑡2𝑡1 𝑡𝑁 = 𝑇

Δ𝑡

𝑒1

𝑒2

𝑒3

𝑒4

ℎ
തΓ =∪𝑖=1

𝑀 𝑒𝑖Ω
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𝔼𝑉𝒂 = 𝜷

𝔼𝑉 =

𝔼𝑉
(0)

0 0 0 0

𝔼𝑉
(1)

𝔼𝑉
(0)

0 0 0

𝔼𝑉
(2)

⋮

𝔼𝑉
(𝑁−1)

𝔼𝑉
(1)

⋮

𝔼𝑉
(𝑁−2)

𝔼𝑉
(0)

0 0

⋮ ⋱ 0

𝔼𝑉
(𝑁−3)

⋯ 𝔼𝑉
(0)

Toeplitz block lower 
triangular matrix

𝜕

𝜕𝑡
𝐕𝚽 , 𝝓

𝐿2(Γ×(0,𝑇])

=
𝜕

𝜕𝑡
𝐠𝒟, 𝝓

𝐿2(Γ×(0,𝑇])

Energetic weak problem Discretized problem

Φ𝑖 𝐱, 𝑡 ≃ Φ𝑖,ℎ,Δ𝑡 𝒙, 𝑡 = ෍

𝑘=0

𝑁−1

෍

𝑚=1

𝑀

𝛼𝑘𝑚
𝐩,𝑖

𝑤𝑚
𝐩

𝐱 𝑣𝑘 𝑡

𝔼𝑉
(𝑙) =

𝔼𝑉,11
(𝑙)

𝔼𝑉,12
(𝑙)

𝔼𝑉,21
(𝑙)

𝔼𝑉,22
(𝑙)

∀𝑙 = 0, … , 𝑁 − 1

dimension 2𝑀 × 2𝑀

2. ENERGETIC  BOUNDARY ELEMENT METHOD (E-BEM)

piece-wise 
constants basis in 

space and time

space-time approximation

𝑡0 = 0 𝑡2𝑡1 𝑡𝑁 = 𝑇

Δ𝑡

𝑒1

𝑒2

𝑒3

𝑒4

ℎ
തΓ =∪𝑖=1

𝑀 𝑒𝑖Ω
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𝐩,𝑖
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• Block forward substitution process to obtain the solution: 

𝔼𝑉
(𝑙) =

𝔼𝑉,11
(𝑙)

𝔼𝑉,12
(𝑙)

𝔼𝑉,21
(𝑙)

𝔼𝑉,22
(𝑙)

∀𝑙 = 0, … , 𝑁 − 1

dimension 2𝑀 × 2𝑀

2. ENERGETIC  BOUNDARY ELEMENT METHOD (E-BEM)

piece-wise 
constants basis in 

space and time

𝒛(𝑙) = 𝜷(𝑙) − ෍
𝑗=1

𝑙

𝔼𝑉
𝑗

𝜶 𝑙−𝑗 ,𝔼𝑉
(0)

𝜶(𝑙) = 𝒛(𝑙) ∀𝑙 = 0, … , 𝑁 where

✓ only the non-singular block 𝔼𝑉
(0)

has to be inverted.

✓ for each 𝑙 =1,…,N-1, the time blocks 𝔼𝑉
(𝑙)

are used to update the RHS at each time step

for growing time, i.e. for growing index 𝑙, depending on wave speeds, blocks become fully populated – O(NM2)  overall cost
for large 𝑀 the updating of the RHS is expensive in terms of computations and memory requirements!

we need a compression technique to reduce the overall cost

space-time approximation

𝑡0 = 0 𝑡2𝑡1 𝑡𝑁 = 𝑇

Δ𝑡

𝑒1

𝑒2

𝑒3

𝑒4

ℎ
തΓ =∪𝑖=1

𝑀 𝑒𝑖Ω



𝔼𝑉
(𝑙)

=
𝔼(𝑙) 0

0 𝔼(𝑙)
𝑙 = 0, … , 𝑁 − 1

dimension 2𝑀 × 2𝑀

• After a double analytic integration in the time variables, the entries of a generic acoustic block are expressed as follows:

structure of the acoustic time block

with 

𝜈 𝑟; Δ = 𝐻[𝑐Δ − 𝑟] log 𝑐Δ + 𝑐2Δ2 − 𝑟2 − log(𝑟)

𝔼 𝑙
෥𝑚,𝑚

= − ෍
𝜁,𝜉=0

1 −1 𝜉+𝜁

2𝜋
න

Γ

න
Γ

𝑤 ෥𝑚
𝒑

x 𝑤𝑚
𝐩

y 𝜈 𝑟; Δℎ+𝜉,𝑘+𝜁 𝑑Γy𝑑Γx , Δℎ,𝑘 = 𝑡ℎ − 𝑡𝑘

7/21

3. ACA based E-BEM

singularity of type 
𝒪(log(𝑟)) for 𝑟 → 0

ENTRIES of the ACOUSTICS TIME BLOCKS



𝔼𝑉
(𝑙)

=
𝔼(𝑙) 0

0 𝔼(𝑙)
𝑙 = 0, … , 𝑁 − 1

dimension 2𝑀 × 2𝑀

• After a double analytic integration in the time variables, the entries of a generic acoustic block are expressed as follows:

structure of the acoustic time block

with 

𝜈 𝑟; Δ = 𝐻[𝑐Δ − 𝑟] log 𝑐Δ + 𝑐2Δ2 − 𝑟2 − log(𝑟)

• FUNDAMENTAL REMARK: if we set Δℎ𝑘 = 𝑡𝑙 , for growing time we have 𝑐𝑡𝑙+1 > 𝑟 and the block entries reduce to

ǁ𝜈 𝑟, 𝑡 = log
𝑐t + 𝑐2t2 − 𝑟2

2

𝑐(𝑡 − Δt) + 𝑐2(𝑡 − Δt)2−𝑟2 𝑐(𝑡 + Δt) + 𝑐2(𝑡 + Δt)2−𝑟2

and we do not observe any singularity since now the kernel is smooth for 𝑟 ⟶ 0. 
Moreover, ǁ𝜈 𝑟, 𝑡 ⟶ 0 for t ⟶ +∞ and it is symmetric in space variables.

𝔼 𝑙
෥𝑚,𝑚

= − ෍
𝜁,𝜉=0

1 −1 𝜉+𝜁

2𝜋
න

Γ

න
Γ

𝑤 ෥𝑚
𝒑

x 𝑤𝑚
𝐩

y 𝜈 𝑟; Δℎ+𝜉,𝑘+𝜁 𝑑Γy𝑑Γx , Δℎ,𝑘 = 𝑡ℎ − 𝑡𝑘

𝔼 𝑙
෥𝑚,𝑚

= −
1

2𝜋
න

Γ

න
Γ

𝑤 ෥𝑚
𝒑

x 𝑤𝑚
𝐩

y ǁ𝜈 𝑟; 𝑡𝑙 𝑑Γy𝑑Γx ,

where the new compact kernel is 
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singularity of type 
𝒪(log(𝑟)) for 𝑟 → 0

ENTRIES of the ACOUSTICS TIME BLOCKS



ǁ𝜈 𝐱, 𝒚; 𝑡𝑙 = ෍
𝑘=0

𝑘𝑙
∗

𝜒𝑘 𝐱, 𝑡𝑙 𝜔𝑘 𝒚, 𝑡𝑙 + 𝑅𝑘𝑙
∗(𝐱, 𝒚, 𝑡𝑙) ,

where 𝑅𝑘𝑙
∗(𝐱, 𝐲; 𝑡𝑙) is the residuum that tends to zero for 𝑘𝑙

∗ → ∞. It is well known that a kernel with the properties of ǁ𝜈 possesses a 

low-rank representation in terms of eigenvalues and eigenfunctions in space variables          ; however this is not useful to get to a 
closed form for this representation allowing to estimate the residuum with respect to a set rank 𝑘𝑙

∗.

• The reduction of the memory storage of the energetic BEM is related to the possibility of writing a low-rank representation or 
degenerate expansion of the kernel function, i.e.

8/21V. S. Vladimirov, Equations of Mathematical Physics, MIR, Moscow Russia, 1984.
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closed form for this representation allowing to estimate the residuum with respect to a set rank 𝑘𝑙

∗.

• The reduction of the memory storage of the energetic BEM is related to the possibility of writing a low-rank representation or 
degenerate expansion of the kernel function, i.e.

• Estimate of the low-rank: we consider a Taylor expansion in the 𝑟 =|| 𝐱 − 𝒚 || variable, centered in r =0:

ǁ𝜈 𝑟, 𝑡𝑙 = ෍
𝑘=0

𝑘𝑙
∗

𝐶𝑘 𝑡𝑙 𝑟2𝑘 + 𝑅𝑘𝑙
∗ 𝑟, 𝑡𝑙 ≔ 𝑆𝑘𝑙

∗ 𝑟, 𝑡𝑙 + 𝑅𝑘𝑙
∗ 𝑟, 𝑡𝑙 ,

where, up to higher order terms

8/21V. S. Vladimirov, Equations of Mathematical Physics, MIR, Moscow Russia, 1984.
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ǁ𝜈 𝑟, 𝑡𝑙 = ෍
𝑘=0
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∗
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∗ 𝑟, 𝑡𝑙 + 𝑅𝑘𝑙
∗ 𝑟, 𝑡𝑙 ,

𝐶𝑘 𝑡𝑙 ≅ Δ𝑡𝑐 2
2𝑘 + 1 !

𝑘! 24𝑘

1

𝑐𝑡𝑙
2𝑘+2

.

where, up to higher order terms

Hence

𝑆𝑘𝑙
∗ 𝑟, 𝑡𝑙 ≅ ሚ𝑆𝑘𝑙

∗ 𝑟, 𝑡𝑙 ≔ ෍
𝑘=0

𝑘𝑙
∗

Δ𝑡𝑐 2
2𝑘 + 1 !

𝑘! 24𝑘

𝑟2𝑘

𝑐𝑡𝑙
2𝑘+2
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= Δ𝑡2𝑐
𝜕2

𝜕𝑡𝑙𝜕𝑟
෍

𝑘=0

𝑘𝑙
∗

2𝑘 !

2𝑘 + 1 ! 𝑘! 24𝑘

𝑟

𝑐𝑡𝑙

2



ǁ𝜈 𝐱, 𝒚; 𝑡𝑙 = ෍
𝑘=0

𝑘𝑙
∗

𝜒𝑘 𝐱, 𝑡𝑙 𝜔𝑘 𝒚, 𝑡𝑙 + 𝑅𝑘𝑙
∗(𝐱, 𝒚, 𝑡𝑙) ,

where 𝑅𝑘𝑙
∗(𝐱, 𝐲; 𝑡𝑙) is the residuum that tends to zero for 𝑘𝑙

∗ → ∞. It is well known that a kernel with the properties of ǁ𝜈 possesses a 

low-rank representation in terms of eigenvalues and eigenfunctions in space variables          ; however this is not useful to get to a 
closed form for this representation allowing to estimate the residuum with respect to a set rank 𝑘𝑙

∗.

• The reduction of the memory storage of the energetic BEM is related to the possibility of writing a low-rank representation or 
degenerate expansion of the kernel function, i.e.

• Estimate of the low-rank: we consider a Taylor expansion in the 𝑟 =|| 𝐱 − 𝒚 || variable, centered in r =0:

ǁ𝜈 𝑟, 𝑡𝑙 = ෍
𝑘=0

𝑘𝑙
∗

𝐶𝑘 𝑡𝑙 𝑟2𝑘 + 𝑅𝑘𝑙
∗ 𝑟, 𝑡𝑙 ≔ 𝑆𝑘𝑙

∗ 𝑟, 𝑡𝑙 + 𝑅𝑘𝑙
∗ 𝑟, 𝑡𝑙 ,

𝐶𝑘 𝑡𝑙 ≅ Δ𝑡𝑐 2
2𝑘 + 1 !

𝑘! 24𝑘

1

𝑐𝑡𝑙
2𝑘+2

.

where, up to higher order terms

Hence

𝑆𝑘𝑙
∗ 𝑟, 𝑡𝑙 ≅ ሚ𝑆𝑘𝑙

∗ 𝑟, 𝑡𝑙 ≔ ෍
𝑘=0

𝑘𝑙
∗

Δ𝑡𝑐 2
2𝑘 + 1 !

𝑘! 24𝑘

𝑟2𝑘

𝑐𝑡𝑙
2𝑘+2

= Δ𝑡2𝑐
𝜕2

𝜕𝑡𝑙𝜕𝑟
෍

𝑘=0

𝑘𝑙
∗

2𝑘 !

2𝑘 + 1 ! 𝑘! 24𝑘

𝑟

𝑐𝑡𝑙

2
general term of the Taylor expansion 
of 𝐹 𝑥 = asin 𝑥 with 𝑥 = 𝑟/(𝑐𝑡𝑙)

8/21V. S. Vladimirov, Equations of Mathematical Physics, MIR, Moscow Russia, 1984.

3. ACA based E-BEM

LOW-RANK REPRESENTATION of  the  TIME INTEGRATED ACOUSTICS KERNEL



• Thus, for 𝑘𝑙
∗ → ∞ we have: 

ǁ𝜈 𝑟, 𝑡𝑙 ≃ ሚ𝑆∞ 𝑟, 𝑡𝑙 = 𝑐Δ𝑡2
1

𝑡𝑙 𝑐2𝑡𝑙
2 − 𝑟2 1/2

+
𝑟2

𝑡𝑙 𝑐2𝑡𝑙
2 − 𝑟2 3/2

We can conclude that it is possible to obtain a low-rank approximation of ǁ𝜈 𝑟, 𝑡𝑙 and 𝑘𝑙
∗ is the rank required to achieve a 

given relative accuracy 𝜀 > 0 if

𝑅𝑘𝑙
∗ 𝑟, 𝑡𝑙 ≃ ሚ𝑆∞ 𝑟, 𝑡𝑙 − ሚ𝑆𝑘𝑙

∗ 𝑟, 𝑡𝑙 ≤ 𝜀 | ሚ𝑆∞ 𝑟, 𝑡𝑙 |
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• Thus, for 𝑘𝑙
∗ → ∞ we have: 

ǁ𝜈 𝑟, 𝑡𝑙 ≃ ሚ𝑆∞ 𝑟, 𝑡𝑙 = 𝑐Δ𝑡2
1

𝑡𝑙 𝑐2𝑡𝑙
2 − 𝑟2 1/2

+
𝑟2

𝑡𝑙 𝑐2𝑡𝑙
2 − 𝑟2 3/2

We can conclude that it is possible to obtain a low-rank approximation of ǁ𝜈 𝑟, 𝑡𝑙 and 𝑘𝑙
∗ is the rank required to achieve a 

given relative accuracy 𝜀 > 0 if

𝑅𝑘𝑙
∗ 𝑟, 𝑡𝑙 ≃ ሚ𝑆∞ 𝑟, 𝑡𝑙 − ሚ𝑆𝑘𝑙

∗ 𝑟, 𝑡𝑙 ≤ 𝜀 | ሚ𝑆∞ 𝑟, 𝑡𝑙 |

• At the discrete level, the low rank representation of the kernel  ǁ𝜈 𝑟, 𝑡𝑙 implies that

where ℚ and 𝕎 are both 𝑀 × 𝑘𝑙
∗ matrices and the residuum ℝ𝑘𝑙

∗ is such that:

ℝ𝑘𝑙
∗

𝐹
= 𝔼 𝑙 − 𝕊𝑘𝑙

∗

𝐹
= 𝔼 𝑙 − ℚ ⋅ 𝕎⊤

𝐹
≤ 𝜀 𝔼 𝑙

𝐹

𝔼(𝑙) = 𝕊𝑘𝑙
∗ + ℝ𝑘𝑙

∗ 𝕊𝑘𝑙
∗ = ℚ ⋅ 𝕎⊤with
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• Thus, for 𝑘𝑙
∗ → ∞ we have: 

ǁ𝜈 𝑟, 𝑡𝑙 ≃ ሚ𝑆∞ 𝑟, 𝑡𝑙 = 𝑐Δ𝑡2
1

𝑡𝑙 𝑐2𝑡𝑙
2 − 𝑟2 1/2

+
𝑟2

𝑡𝑙 𝑐2𝑡𝑙
2 − 𝑟2 3/2

We can conclude that it is possible to obtain a low-rank approximation of ǁ𝜈 𝑟, 𝑡𝑙 and 𝑘𝑙
∗ is the rank required to achieve a 

given relative accuracy 𝜀 > 0 if

𝑅𝑘𝑙
∗ 𝑟, 𝑡𝑙 ≃ ሚ𝑆∞ 𝑟, 𝑡𝑙 − ሚ𝑆𝑘𝑙

∗ 𝑟, 𝑡𝑙 ≤ 𝜀 | ሚ𝑆∞ 𝑟, 𝑡𝑙 |

• At the discrete level, the low rank representation of the kernel  ǁ𝜈 𝑟, 𝑡𝑙 implies that

where ℚ and 𝕎 are both 𝑀 × 𝑘𝑙
∗ matrices and the residuum ℝ𝑘𝑙

∗ is such that:

ℝ𝑘𝑙
∗

𝐹
= 𝔼 𝑙 − 𝕊𝑘𝑙

∗

𝐹
= 𝔼 𝑙 − ℚ ⋅ 𝕎⊤

𝐹
≤ 𝜀 𝔼 𝑙

𝐹

• Remark. For 𝑘𝑙
∗ ≪ 𝑀 we obtain a drastic reduction of the memory requirement for the storage of 𝔼

(𝑙)
.

𝔼(𝑙) = 𝕊𝑘𝑙
∗ + ℝ𝑘𝑙

∗ 𝕊𝑘𝑙
∗ = ℚ ⋅ 𝕎⊤with

How to compute the matrices ℚ and 𝕎?
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• Truncated SVD:

10/21

✓ gives the best low-rank approximation
requires the evaluation of all entries
cost of the algorithm: 𝒪(𝑀3)

𝔼(𝑙) ≃ ෍
𝑘=0

𝑘𝑙
∗

𝐪𝑘𝜎𝑘𝐰𝑘
⊤ = ℚΣ𝕎⊤

ACA ALGORITHM FOR THE LOW-RANK APPROXIMATIONS OF ACOUSTICS BLOCKS
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• Truncated SVD:

✓ requires only few entries of the matrix
✓ in practice, 𝒪(𝑘𝑙

∗𝑀) complexity

𝔼(𝑙) = 𝕊𝑘𝑙
∗ + ℝ𝑘𝑙

∗ , ℝ𝑘𝑙
∗ = 𝔼(𝑙) − ෍

𝑘=1

𝑘𝑙
∗

𝐪𝑘𝐰𝑘
⊤

10/21

• Efficient algorithm to compute the low-rank approximations:

✓ gives the best low-rank approximation
requires the evaluation of all entries
cost of the algorithm: 𝒪(𝑀3)

𝔼(𝑙) ≃ ෍
𝑘=0

𝑘𝑙
∗

𝐪𝑘𝜎𝑘𝐰𝑘
⊤ = ℚΣ𝕎⊤

partially pivoted Adaptative Cross Approximation           ; it basically consists in the computation of successive rank-1 approximations 
of 𝔼(𝑙):

M. Bebendorf and S. Rjasanow, Computing, (2003)
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∗

𝐪𝑘𝐰𝑘
⊤
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• Efficient algorithm to compute the low-rank approximations:

✓ gives the best low-rank approximation
requires the evaluation of all entries
cost of the algorithm: 𝒪(𝑀3)

𝔼(𝑙) ≃ ෍
𝑘=0

𝑘𝑙
∗

𝐪𝑘𝜎𝑘𝐰𝑘
⊤ = ℚΣ𝕎⊤

partially pivoted Adaptative Cross Approximation           ; it basically consists in the computation of successive rank-1 approximations 
of 𝔼(𝑙):

M. Bebendorf and S. Rjasanow, Computing, (2003)

• Computational cost of the ACA based Energetic BEM: if 𝑐𝑡𝑙∗ > 3𝑑𝑖𝑎𝑚 Γ , for any fixed 𝜀 > 0 and 𝑙 > 𝑙∗, the rank of the block 𝔼(𝑙) can be 
bounded from above by the solution 𝑘∗(𝜀) of the following inequality: 

2 2𝑘 + 3 !

[ 𝑘 + 1 !]212𝑘+1
< 𝜀

the ACA based compression scheme is bounded from the above by                                          , where 𝜆 =
3𝑑𝑖𝑎𝑚(Γ)

𝑐𝑇
2 𝑘∗ 𝜀 1 − 𝜆 𝑁𝑀

A. Aimi, L. Desiderio and G. Di Credico, CAMWA, (2022)
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𝔼𝑉
(𝑙)

=
𝔼𝑉,11

(𝑙)
𝔼𝑉,12

(𝑙)

𝔼𝑉,21
(𝑙)

𝔼𝑉,22
(𝑙)

𝑙 = 0, … , 𝑁 − 1

dimension 2𝑀 × 2𝑀

• After a double analytic integration in the time variables, the entries of a generic elastodynamic block are expressed as follows:

structure of the elastodynamic time block

with 

𝔼 𝑙
෥𝑚,𝑚

= − ෍
𝜁,𝜉=0

1 −1 𝜉+𝜁

2𝜋𝜌
න

Γ

න
Γ

𝑤 ෥𝑚
𝒑

x 𝑤𝑚
𝐩

y 𝜈 𝑟; Δℎ+𝜉,𝑘+𝜁 𝑑Γy𝑑Γx , Δℎ,𝑘 = 𝑡ℎ − 𝑡𝑘

11/21

𝜈𝑖𝑗
𝑓

𝑟; Δ =
𝑟𝑖𝑟𝑗

𝑟4
−

𝛿𝑖𝑗

2𝑟2

𝐻 𝒄𝑷Δ − 𝑟

𝒄𝑷
𝜑𝑃 𝑟; Δ −

𝐻 𝒄𝑺Δ − 𝑟

𝒄𝑺
𝜑𝑆 𝑟; Δ

+
𝛿𝑖𝑗

2

𝐻 𝒄𝑷Δ − 𝑟

𝒄𝑷
ො𝜑𝑃 𝑟; Δ +

𝐻 𝒄𝑺Δ − 𝑟

𝒄𝑺
ො𝜑𝑆 𝑟; Δ

having set

𝜑𝛾 𝑟; Δ = 𝑐𝛾Δ 𝑐𝛾
2Δ2 − 𝑟2, ො𝜑𝛾(𝑟; Δ) = log 𝑐𝛾Δ + 𝑐𝛾

2Δ2 − 𝑟2 − log 𝑟

singularity of type 
𝒪(log(𝑟)) for 𝑟 → 0

• Having set Δℎ𝑘 = 𝑡𝑙 , for growing time we have 𝑐𝑡𝑙+1 > 𝑟 and in the above sum singularity disappears.
• The previously applied block low-rank ACA approximation procedure can be applied also in the elastodynamics context 
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Boundary datum: 𝑔𝒟,1 𝑥, 𝑡 = 𝑡4𝑒−𝑡 cos(𝑥1
2 + 2𝑥2

2) and 𝑔𝒟,2 𝑥, 𝑡 = 0

Threshold: 𝜀𝐴𝐶𝐴 = 1.0𝑒 − 04

Absolute Error: 𝐸𝐿2 ≔ max
𝑡∈(0,𝑇]

𝚽𝑀𝑒,𝑁𝑒

∗ ⋅, 𝑡 − 𝚽𝑀,𝑁 ⋅, 𝑡
𝐿2(Γ)

(𝑀𝑒 = 4096, 𝑁𝑒 = 8192, 𝑇 = 4𝜋)

Memory Saving: 𝑚𝑒𝑚 % ≔ 100 ⋅ 1 −
1

𝑁
σ𝑙=0

𝑁−1 2𝑘𝑙
∗

𝑀

𝐶 = 1 𝐶 = 343

𝑀 𝑁 𝐸𝐿2 𝐸𝑂𝐶 𝑚𝑒𝑚(%) 𝐸𝐿2 𝐸𝑂𝐶 𝑚𝑒𝑚(%)

8 16 2.67𝑒 − 01
0.6

0.0% 5.94𝑒 − 01
0.7

37.5%

16 32 1.77𝑒 − 01
1.0

0.0% 3.54𝑒 − 01
1.0

67.2%

32 64 8.47𝑒 − 02
1.0

39.0% 1.78𝑒 − 01
1.0

84.6%

64 128 4.22𝑒 − 02
1.0

60.9% 8.95𝑒 − 02
1.0

92.1%

128 256 2.03𝑒 − 02
1.1

72.1% 4.41𝑒 − 02
1.0

96.0%

256 512 9.44𝑒 − 03
1.2

77.3% 2.13𝑒 − 02
1.1

96.0%

512 1024 4.04𝑒 − 03 79.7% 9.93𝑒 − 03 98.3%

𝜋

𝜋

2

Γ

𝑥1

𝑥2

Φ1,𝑀𝑒,𝑁𝑒

⋆ 𝛼, 𝑡 ,

𝐶 = 1
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Φ1,𝑀𝑒,𝑁𝑒

⋆ 𝛼, 𝑡 ,

𝐶 = 343

4. NUMERICAL RESULTS

ACOUSTICS: EFFICIENCY and ACCURACY



CPU TIME

TIME HISTORY OF THE ERROR

𝐶 = 1 𝐶 = 343

𝐸𝐿2(𝑡) ≔ 𝚽𝑀𝑒,𝑁𝑒

∗ ⋅, 𝑡 − 𝚽𝑀,𝑁 ⋅, 𝑡
𝐿2(Γ)

(𝑀𝑒 = 𝑀 = 4096, 𝑁𝑒 = 𝑁 = 8192)
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The growth of the CPU time (measured in 
seconds) with ACA compression
is optimal, i.e. 𝒪(𝑁𝑀).

For growing time, the level of error 
introduced by the ACA can be controlled by 
the parameter 𝜀𝐴𝐶𝐴, since the former is at 
most of the same order of magnitude of the 
latter.

ACOUSTICS: SAVING of CPU TIME and 
GLOBAL TIME HISTORY of the ERROR

4. NUMERICAL RESULTS



Boundary datum: 𝑔𝒟,1 𝑥, 𝑡 = − σ𝑖=1
4 𝑒(−2 𝑥1−𝜉𝑖+𝑐 𝑡+𝑡0

2
) and 𝑔𝒟,2 𝑥, 𝑡 = 0; 

Parameters: 𝜉 = 50,55,60,65 ⊤, t0 = 0.13, 𝑐 = 343 and 𝑇 =0.15

DOF: 𝑀 = 128 and 𝑁 = 1049,

Threshold: 𝜀𝐴𝐶𝐴 = 1.0𝑒 − 04 ⟹ 𝑚𝑒𝑚 % = 87.3

• Representation of the horizontal component of the reconstructed total field in a region surrounding the scatterer  
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• Scattering of a packet of four plane waves impacting on a circumference of radius 1

ACOUSTICS: APPLICATION to SCATTERING PROBLEMS

4. NUMERICAL RESULTS



Boundary datum: 𝑔𝒟,1 𝑥, 𝑡 = 𝑒(−50 𝑥1−50+𝑐 𝑡+0.13
2

) and 𝑔𝒟,2 𝑥, 𝑡 = 0; 

Parameters: 𝑐 = 343 and 𝑇 =0.07

DOF: 𝑀 = 4096 and 𝑁 = 10352

Threshold: 𝜀𝐴𝐶𝐴 = 1.0𝑒 − 04 ⟹ 𝑚𝑒𝑚 % = 86.2
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• Scattering of a plane wave impinging on a flower-shaped scatterer

• Representation of the horizontal component of the reconstructed total field in a region surrounding the scatterer 

ACOUSTICS: APPLICATION to SCATTERING PROBLEMS

4. NUMERICAL RESULTS



Boundary datum: 𝑔𝒟,1 𝑥, 𝑡 = 𝑡4𝑒−𝑡𝑥1 and 𝑔𝒟2 𝑥, 𝑡 = 𝑡4𝑒−𝑡𝑥2;

Threshold: 𝜀𝐴𝐶𝐴 = 1.0𝑒 − 04

Absolute Error: 𝐸𝐿2 ≔ max
𝑡∈(0,𝑇]

𝚽𝑀𝑒,𝑁𝑒

∗ ⋅, 𝑡 − 𝚽𝑀,𝑁 ⋅, 𝑡
𝐿2(Γ)

(𝑀𝑒 = 512, 𝑁𝑒 = 2048, 𝑇 = 4𝜋)

Memory Saving: 𝑚𝑒𝑚 % ≔ 100 ⋅ 1 −
1

𝑁
σ𝑖𝑗=1

2 σ𝑙=0
𝑁−1 2𝑘𝑖𝑗,𝑙

∗

𝑀

𝐶𝒔 = 1, 𝑪𝑷 = 𝟐

𝑀 𝑁 𝐸𝐿2 𝐸𝑂𝐶 𝑚𝑒𝑚(%)

8 32 6.29e−01
1.0

0.0%

16 64 3.11e−01
1.1

0.0%

32 128 1.49e−01
1.2

38.7%

64 256 6.44e−02
1.5

60.2%

128 512 2.15e−02 71.0%

𝜋

𝜋

2

Γ

𝑥1

𝑥2

Φ1,𝑀𝑒,𝑁𝑒

⋆ 𝛼, 𝑡

Φ2,𝑀𝑒,𝑁𝑒

⋆ 𝛼, 𝑡
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ELASTODYNAMICS: EFFICIENCY and ACCURACY

4. NUMERICAL RESULTS



𝑢1

𝑢2
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• Scattering of an incident P-wave impacting on a circumference of radius 1

Boundary datum: 𝑔𝒟,1 𝑥, 𝑡 = 𝑒(−20 𝑥1−2+𝑐𝑃𝑡−0.475 2) and 𝑔𝒟,2 𝑥, 𝑡 = 0

Parameters: cS = 1, 𝑐𝑃 = 3 and 𝑇 =12

DOF: 𝑀 = 128 and 𝑁 = 426

Threshold: 𝜀𝐴𝐶𝐴 = 1.0𝑒 − 04 ⟹ 𝑚𝑒𝑚 % = 71.1

• Representation of the horizontal and vertical components of the reconstructed total field in a region surrounding the scatterer 

ELASTODYNAMICS: APPLICATION to SCATTERING PROBLEMS

4. NUMERICAL RESULTS



𝑢1

𝑢2
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• Scattering of an incident P-wave impacting on a kite-shaped scatterer

Boundary datum: 𝑔𝒟,1 𝑥, 𝑡 = 𝑒(−20 𝑥1−2+𝑐𝑃𝑡−0.475 2) and 𝑔𝒟,2 𝑥, 𝑡 = 0; 

Parameters: cS = 1, 𝑐𝑃 = 3 and 𝑇 =12

DOF: 𝑀 = 8192 and 𝑁 = 28380

Threshold: 𝜀𝐴𝐶𝐴 = 1.0𝑒 − 04 ⟹ 𝑚𝑒𝑚 % = 72.5

• Representation of the horizontal and vertical components of the reconstructed total field in a region surrounding the scatterer 

ELASTODYNAMICS: APPLICATION to SCATTERING PROBLEMS

4. NUMERICAL RESULTS
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ቊ
u x, 0 = ሶu x, 0 = 0, x ∈ Ωe

p x, 𝑡 = 𝐠𝑁 x, 𝑡 , x, 𝑡 ∈ Γ × (0, 𝑇]

5. ONGOING RESEARCH

𝜌 ሷ𝐮 𝐱, 𝑡 − 𝛻 ⋅ 𝜎 𝐮 𝐱, 𝑡 = 0, 𝐱, 𝑡 ∈ Ω𝑒 × (0, 𝑇]

• BIE:

where

• PDE:

𝐠𝑁 x, 𝑡 = W𝛙 𝐱, 𝑡 ,                                𝐱 ∈ Γ, 𝑡 ∈ (0, 𝑇]

𝔼𝑊𝒂 = 𝜷• Energetic BEM: Toeplitz block lower triangular matrix

• After a double analytic integration in the time variables, the entries of a generic time block are double integrals over Γ × Γ,
whose kernel has a hyper−singularity of type 𝒪(1/ 𝑟2) for 𝑟 → 0

• For growing time, the kernel singularity disappears and time blocks are vanishing with decreasing rank.

• The previously applied block low-rank ACA approximation procedure can be applied also in the context of hard scattering. 

W𝛙 𝐱, 𝑡 = න
𝛤

𝐆𝐩𝐩 𝐱 − 𝐲; 𝑡 ⋆(𝑡) 𝛙 𝐲, 𝑡 𝑑Γ𝐲 , with 𝐆𝐩𝐩 𝐱 − 𝐲; 𝑡 = 𝜎𝐱 [𝜎𝐲 𝐆𝐮𝐮 ]

ACOUSTIC and ELASTIC HARD SCATTERING PROBLEMS



(Components of the) Boundary datum on a rectilinear scatterer of unitary length: 𝑔𝒩,1 𝑥, 𝑡 = 𝑔𝒩,2 𝑥, 𝑡 = 𝐻[𝑡];

Threshold: 𝜀𝐴𝐶𝐴 = 1.0𝑒 − 04

Absolute error evaluated in energy norm

Memory Saving: 𝑚𝑒𝑚 % ≔ 100 ⋅ 1 −
1

𝑁
σ𝑙=0

𝑁−1 2𝑘𝑙
∗

𝑀

𝑇 = 5 𝑨𝒄𝒐𝒖𝒔𝒕𝒊𝒄𝒔
(𝑐𝑆 = 1)

𝑬𝒍𝒂𝒔𝒕𝒐𝒅𝒚𝒏𝒂𝒎𝒊𝒄𝒔
(𝑐𝑆 = 1, 𝑐𝑃 = 2)

𝑀 𝑁 𝐸 𝐸𝑂𝐶 𝑚𝑒𝑚(%) 𝐸 𝐸𝑂𝐶 𝑚𝑒𝑚(%)

9 50, 100 1.93𝑒 − 01
0.5

0.0% 2.27𝑒 − 01
0.5

0.0%

19 100, 200 1.37𝑒 − 01
0.5

11.2% 1.59𝑒 − 01
0.5

41.2%

39 200, 400 9.59𝑒 − 02
0.5

31.2% 1.12𝑒 − 01
0.5

59.7%

79 400, 800 6.70𝑒 − 02
0.5

50.2% 7.91𝑒 − 02
0.5

69.8%

159 800, 1600 4.71𝑒 − 02 64.7% 5.50𝑒 − 02 75.9%
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A. Aimi, G. Di Credico, H. Gimperlein, E. P. Stephan, Numer. Math., (2021, under review)

ACOUSTICS AND ELASTODYNAMICS HARD SCATTERING : EFFICIENCY and ACCURACY

5. ONGOING RESEARCH

ψ1 𝑥, 𝑡 (elastic)

ψ2 𝑥, 𝑡 (elastic)



THANK YOU FOR THE ATTENTION AND…
HAPPY BIRTHDAY ERNST STEPHAN!☺
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