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1.

ACOUSTIC and ELASTIC MODEL PROBLEMS (SOFT SCATTERING)

Wave propagation into a linear, homogeneous and isotropic unbounded domain Q, ¢ R?:

1\10.‘} aABM

0, = R2\ 0

Scattering by
a closed domain ()

Acoustic Parameters
p mass density
c wave propagation speed

A+ 2u
Elastic Parameters Cp =
p mass density » p
A Lamé parameter
— MK
u shear modulus Cs = o
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1. ACOUSTIC and ELASTIC MODEL PROBLEMS (SOFT SCATTERING)

«  Wave propagation into a linear, homogeneous and isotropic unbounded domain Q, c R?:

Acoustic Parameters

l
\ Q : p mass density
I c wave propagation speed
| A+ 2
IScat‘;eglng by Q I Elastic Parameters Cp = &
a closed domain I p mass density » p
| A Lamé parameter
— MK
| u shear modulus Cs = |~
1

. _ Acoustics: o[u] = pc?Vu
ulx,t) —V-olu|(x,t) =0, x,t)eQ, x0T
pul(x, t) [ul(x & &) e X (0.T] Elastodynamics: o[u] = A(V - u)I + u(Vu + Vu")

Vectorial Cauchy Equation of motion

u(x,t) = (uy,u,) " (x,t) —— acoustic/elastic unknown field
u(x,0) =u(x,0) =0forx€ Q, and u(x,t) = gp(x,t) for (x,t) €' X (0,T]
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1. ACOUSTIC and ELASTIC MODEL PROBLEMS (SOFT SCATTERING)

Wave propagation into a linear, homogeneous and isotropic unbounded domain Q, ¢ R?:

Acoustic Parameters
p mass density

I
R*\ Q :
I c wave propagation speed
=
S | A+ 2
?‘ih ?cat‘;e;mg by Q I Elastic Parameters Cp = &
% a closed domain | p mass density » p
- I A Lamé parameter .
| u shear modulus Cs = o
]

. _ Acoustics: o[u] = pc?Vu
ulx,t) —V-olu|(x,t) =0, x,t)eQ, x0T
pul(x, t) [ul(x & &) e X (0.T] Elastodynamics: o[u] = A(V - u)I + u(Vu + Vu")

Vectorial Cauchy Equation of motion

u(x,t) = (uy,u,) " (x,t) —— acoustic/elastic unknown field
u(x,0) =u(x,0) =0forx€ Q, and u(x,t) = gp(x,t) for (x,t) €' X (0,T]

We consider an indirect boundary integral representation formula foruin Q, X (0,T] :

u(x t) =V (x,t) = f GW(x —y;t) *x® C:(y, t) dl, , (x,t) € Q, X (0,T]
r
/ T ® is an unknown density field belonging to the
single layer potential

functional space of the traction vectorp = (py,p,)":
2
P =) onlulx Omy(9,i = 1.2

G" is the 2D fundamental

solution 3/21



1. ACOUSTIC and ELASTIC MODEL PROBLEMS (SOFT SCATTERING)
BOUNDARY INTEGRAL EQUATION

* The integral representation formula is strictly connected to the definition of the 2D fundamental solution G"™ = (Gi“j“
¢ Hlc(t—1)—r1]
stics N
Hlcp(t—1) —71] [1i71; 23 (t —1)* = 1%  §;;
L Ry L/ Gkl L VY PO
per \/c,z,(t—r)z—rz

Hlcs(t —1) — 1] <rirj 2c((t—1)2 1% & ci(t—1)? )

i,j=1,2"

ij=12

aco

Giuju (x—y;t—1) = elastodynamics

ij=1,2

r=x-y, r=|x-yl -

2mpcg r4 2

TZ
\/cf(t—r)z — 72 \/cﬁ(t—r)z —r2
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1. ACOUSTIC and ELASTIC MODEL PROBLEMS (SOFT SCATTERING)
BOUNDARY INTEGRAL EQUATION

* The integral representation formula is strictly connected to the definition of the 2D fundamental solution G"™ = (Gi“j“
¢ Hlc(t—1)—r1]

i,j=1,2"

ij i,j=1,2
acouS’dCS 21 \/ 2(t —1)2 — 12
_ Hlcp(t — 1) — 7] [1ir; 2c3(t — 1) — 1% &y
Gl.“j“ x—y;t—1)= elastodynamics > — ;4] — r— ci(t—1)2 —12?
per \/c,z,(t—r)z—rz
,] = 1,2
| Hles(t— 1) — 7] [rir; 2c2(t =12 =12 8y c2(t—1)2 \
r=x-y, r=|x—-yll B 2mpc r4 Sz
pts \/cﬁ(t—r)z —r2 \/C%(t—‘[)z —7r2

¢ Performing a limiting process of the spatial variable from the domain to the boundary, we get to the Boundary Integral Equation (BIE):

u(x,t) = V@ (x,0),X € Qp, t € (0,7] m—) g,(xt) = VP (x t),XEF t € (0,T]

representation formula X€EN, >xX€ET

4/21



1. ACOUSTIC and ELASTIC MODEL PROBLEMS (SOFT SCATTERING)

BOUNDARY INTEGRAL EQUATION

* The integral representation formula is strictly connected to the definition of the 2D fundamental solution G"™ = (G e Li=12’

¢ Hlc(t—1)—71] ..
ijz— L] = 1,2
qcoustics Tc2(t—1)2 —r?
_ Hlcp(t —1) —71] (177 2¢5(t — 1) — 1? 5
Gi“j“ x—y;t—1)= elastodynamics > — ;4] ° ——2 |c3(t —1)2 — 12
per ‘Jc%(t——r)z——rz
,] = 1,2
| Hles(t— 1) — 7] [rir; 2c2(t =12 =12 8y c2(t—1)2 \
r=x—y, r=(x—yll B TMDC 4 ~ 2
pes \/cf(t—r)z — 72 \/cﬁ(t—r)z — 72

Performing a limiting process of the spatial variable from the domain to the boundary, we get to the Boundary Integral Equation (BIE):

u(x,t) =V (x,1),X € Q, t € (0,7] E—)p g,(xt) =Vd (x t),XE It € (0,T]

representation formula X€EN, >xX€ET

Standard discretization of the BIE may lead to unstable results for the approximation of the BIE unknown:

20 I N T 0.5 T T |
ITTTT1TTTTT “‘ }\‘. / 0.0 H r [ '= . .
= | - i | I A. Frangi et al., On the numerical
g \ ! ff < 05 . -~ . _ .
. standard BEM 2 [ j F — EXLGI | stabllltyoftlrpe domain
Sldccf. ___j"\s]de[) g i 1 2 40 | elastodynamic analyses by BEM,
Ll A g § CMAME, 1999
S 0.0 0 000 0 00 0.00 e i
S |
"0 1 2 3 4 5 6 7 3 9 10 '2'50 1 2 3 4 5 ? 8 9 10

Time t* T‘met
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1. ACOUSTIC and ELASTIC MODEL PROBLEMS (SOFT SCATTERING)
BOUNDARY INTEGRAL EQUATION and ITS ENERGETIC WEAK FORMULATION

e BIE in the unknown density ®:

Vb (x,t) = gp (x,t), x€TI,te(0,T]

* Energetic Weak Formulation: find ® € H° [(0,T); H''/2(TI")] solution of the energetic weak problem

d

80, ¢ V¢ €HO [(0,T); H'V/2(I)]

9,

L2(I'x(0,T]) < >L2 (T'x(0,T])

= Bp(¢, P)

Bp(®, ®)=E(u,T) energy at the final instant T
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1. ACOUSTIC and ELASTIC MODEL PROBLEMS (SOFT SCATTERING)
BOUNDARY INTEGRAL EQUATION and ITS ENERGETIC WEAK FORMULATION

e BIE in the unknown density ®:

Vb (x,t) = gp (x,t), x€TI,te(0,T]

« Energetic Weak Formulation: find ® € H° [(0,T); H''/2(I")] solution of the energetic weak problem

9, 0
— (Vo) ¢> <§ gn. ¢> v € H [(0,T); H/2(D)]
L2(I'x(0,T]) L2(I'x(0,T])
:= Bp(p, P)
Bp(®, ®)=E(u,T) energy at the final instant T
e The link with the energy £ of the system allows to obtain good theoretical properties for the bilinear form Bg (¢, ¢).

» This energetic approach allows to overcome the instabilities arising from the standard weak form of the BIEs.

Acoustics: A. Aimi, M. Diligenti, C. Guardasoni, I. Mazzieri, S. Panizzi, [[NME (2009).

Elastodynamics: A. Aimi, L. Desiderio, C. Guardasoni, M. Diligenti, CAIM, (2019).
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2.  ENERGETIC BOUNDARY ELEMENT METHOD (E-BEM)

Energetic weak problem Discretized problem
0 0 i . . ]EVa = B
~ (V®), ¢> _ <a g5, ¢> Space-time approximation
L%(I'x(0,T]) L?(T'x(0,T])

N-1 M
B0 = Dipa(r,0) = ) Y Al wh(Iw (O
k=0m=1 ~—J)  piece-wise

constants basis in At
space and time
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2

. ENERGETIC BOUNDARY ELEMENT METHOD (E-BEM)

Energetic weak problem

d Vo _ |0
a( ), d =\5;80. ¢
L%(I'x(0,T])
Toeplitz block lower

triangular matrix

Ey

>L2 (T'x(0,T])

Discretized problem

space-time approximation Eva =B

N-1 M
B0 = Dipa(r,0) = ) Y Al wh(Iw (O
k=0m=1 ~——)  piece-wise

constants basis in At
space and time

to=0 t; ¢t ty=T
© © 0 0
ED  E( 0 0 0 EY . E
l vi1 Sy
e ey E9 o o ‘ IEV() =\ & 0 vi=0,..,N—1
%4 vV 74 ]E ]E
: : : " 0 ¢ V21  Tv,22
(N-1) (N-2) (N-3) (0) ) )
Ey Ey Ey «+ Ey”/ dimension 2M X 2M
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2. ENERGETIC BOUNDARY ELEMENT METHOD (E-BEM)

Energetic weak problem Discretized problem
0 0 i . . ]EVa = B
~ (V®), ¢> _ <§ g5, ¢> space-time approximation
L%(I'x(0,T]) L?(T'x(0,T])

N-1 M
B0 = Dipa(r,0) = ) Y Al wh(Iw (O
k=0m=1 ~——)  piece-wise

constants basis in At
space and time

E9 o 0 0 0 =0 t t  ty=T
D (0) ) )
| EP E 0 0 o0 EY . E
vi1t  Byiz
Tc;e.phtz tl)lock li)v.ver Ey=| p@ ey EO o o ‘ E,Y|= & o vi=0,.., N—1
riangular matrix v v v i Eyo Epa,
(N-1) (N-2) (N=3) (0) . )
Ey Ey Ey ~+ Ey”/  dimension 2M x 2M

* Block forward substitution process to obtain the solution:

l .
Ey ag =2y  VI=0,..,N | where zq =g - Z - E @),

v" only the non-singular block IE‘(,O) has to be inverted.

v' for each [ =1,..,N-1, the time blocks IE‘(,I) are used to update the RHS at each time step

X for growing time, i.e. for growing index [, depending on wave speeds, blocks become fully populated - O(NM?) overall cost
X for large M the updating of the RHS is expensive in terms of computations and memory requirements!

[ > we need a compression technique to reduce the overall cost
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3. ACAbased E-BEM

ENTRIES of the ACOUSTICS TIME BLOCKS

® CL
IEI(,D _ (IE (()z)) 1=0,.. N—1 structure of the acoustic time block
¢ 0 E

dimension 2M X 2M

* After a double analytic integration in the time variables, the entries of a generic acoustic block are expressed as follows:

1 (=1)8¥¢
) _ S~ s p p . — _
(E )m,m = Z“:O o LLWm(X) Wi (Y) V(75 Bpiepac)dlydlx,  Apg=ty =ty

singularity of type
v(r; A) = H[ch — 7] [log (A + Vc20% = 12) — log(r)| » 0(log(r)) for r — 0

with
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3. ACAbased E-BEM

ENTRIES of the ACOUSTICS TIME BLOCKS

® CL
IEI(/D _ (IE (()z)) 1=0,.. N—1 structure of the acoustic time block
¢ 0 E

dimension 2M X 2M

* After a double analytic integration in the time variables, the entries of a generic acoustic block are expressed as follows:

1 (=1)5%
) _ S~ s p p . — _
(E )ﬁi,m = Z“:O o LLWm(X) Wi (Y) V(75 Bpiepac)dlydlx,  Apg=ty =ty

singularity of type
v(r; A) = H[ch — 7] [log (A + Vc20% = 12) — log(r)| - 0(log(r)) for r — 0

« FUNDAMENTAL REMARK: if we set Ay, = t;, for growing time we have ct;,; > r and the block entries reduce to

1 .
(E) 0 =~ 5 jr jr w2 GOWE, (y)7(r; t,)dTydT

with

where the new compact kernel is

(ct+Vc2t2 — rz)z
(c(t — At) +/c2(t — At)z—rz) (c(t + At) +/c2(t + At)z—rz)

v(r,t) = log

and we do not observe any singularity since now the kernel is smooth for r — 0.
Moreover, 7(r,t) — 0 for t — +o0 and it is symmetric in space variables.
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3. ACAbased E-BEM

LOW-RANK REPRESENTATION of the TIME INTEGRATED ACOUSTICS KERNEL

The reduction of the memory storage of the energetic BEM is related to the possibility of writing a low-rank representation or
degenerate expansion of the kernel function, i.e.

k|
(X, y;t) = XX tDwr (¥, t) + R (X, 5, t1),
k=0 !

where Ry (X, y; t;) is the residuum that tends to zero for k; — oco.Itis well known that a kernel with the properties of ¥ possesses a

low-rank representation in terms of eigenvalues and eigenfunctions in space variables ; however this is not useful to get to a
closed form for this representation allowing to estimate the residuum with respect to a set rank k;".

V. S. Vladimirov, Equations of Mathematical Physics, MIR, Moscow Russia, 1984. 8/21



3. ACAbased E-BEM

LOW-RANK REPRESENTATION of the TIME INTEGRATED ACOUSTICS KERNEL
* The reduction of the memory storage of the energetic BEM is related to the possibility of writing a low-rank representation or
degenerate expansion of the kernel function, i.e.

ky
V(X y;t) = Ek OXk(X: tDwe (¥, t) + R (X, 3, 6),
where Ry (X, y; t;) is the residuum that tends to zero for k; — oco.Itis well known that a kernel with the properties of ¥ possesses a

low-rank representation in terms of eigenvalues and eigenfunctions in space variables ; however this is not useful to get to a
closed form for this representation allowing to estimate the residuum with respect to a set rank k;".

* Estimate of the low-rank: we consider a Taylor expansion in the r =|| x — y || variable, centered in r =0:

ky
17(T‘) tl) — Zk_o Ck(tl)TZR + Rki" (T, tl) = Skz‘ (T, tl) + Rki“ (T, tl),

where, up to higher order terms

V. S. Vladimirov, Equations of Mathematical Physics, MIR, Moscow Russia, 1984. 8/21



3. ACAbased E-BEM

LOW-RANK REPRESENTATION of the TIME INTEGRATED ACOUSTICS KERNEL

* The reduction of the memory storage of the energetic BEM is related to the possibility of writing a low-rank representation or
degenerate expansion of the kernel function, i.e.

ky
V(X y;t) = 2 XX twr(y, t) + R (X, 3,87,

k=0
where Ry (X, y; t;) is the residuum that tends to zero for k; — oco.Itis well known that a kernel with the properties of ¥ possesses a
low-rank representation in terms of eigenvalues and eigenfunctions in space variables ; however this is not useful to get to a

closed form for this representation allowing to estimate the residuum with respect to a set rank k;".

* Estimate of the low-rank: we consider a Taylor expansion in the r =|| x — y || variable, centered in r =0:

ki
v(r, t) = Zk—o Cr (t)T?F + Ry (r,t;) == Sk (r,t;) + ka(r, t)),
where, up to higher order terms

Qk+1)! 1
(k!)24k (Ctl)2k+2'

Cr (t) = (Atc)?

Hence

K 2k + 1)!  r2k
(Atc)? ( )
k=0 (k!)24k (Ctl)2k+2

52 Ky (2k)! Ty
= Atzcatlar [ZM (2k + 1)! (k!)24k (ctz) ]

V. S. Vladimirov, Equations of Mathematical Physics, MIR, Moscow Russia, 1984. 8/21
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3. ACAbased E-BEM

LOW-RANK REPRESENTATION of the TIME INTEGRATED ACOUSTICS KERNEL

* The reduction of the memory storage of the energetic BEM is related to the possibility of writing a low-rank representation or
degenerate expansion of the kernel function, i.e.

ky
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where Ry (X, y; t;) is the residuum that tends to zero for k; — oco.Itis well known that a kernel with the properties of ¥ possesses a
low-rank representation in terms of eigenvalues and eigenfunctions in space variables ; however this is not useful to get to a

closed form for this representation allowing to estimate the residuum with respect to a set rank k;".

* Estimate of the low-rank: we consider a Taylor expansion in the r =|| x — y || variable, centered in r =0:

ki
v(r, t) = Zk—o Cr (t)T?F + Ry (r,t;) == Sk (r,t;) + ka(r, t)),
where, up to higher order terms

Qk+1)! 1
(k!)24k (Ctl)2k+2'

Cr (t) = (Atc)?

Hence

K 2k + 1)!  r2k
(Atc)? ( )
k=0 (k!)24k (Ctl)2k+2

Skz‘ (T, tl) = S;kz‘ (T, tl) — z

— Ap2 0° zk; (2k)! r\] general term of the Taylor expansion
At 0t,0r | Lur=d 2k + 1)! (k")24k \ ct; of F(x) = asin(x) with x = r/(ct})

V. S. Vladimirov, Equations of Mathematical Physics, MIR, Moscow Russia, 1984. 8/21




3. ACAbased E-BEM

LOW-RANK REPRESENTATION of ACOUSTICS BLOCKS

* Thus, for k; = oo we have:

. 1 r?
V(r,t;) = S..(r, t;) = cAt? +
(r, 1) (r,t) <tl (c2tf —r2)V/2 " t(c?tf — T2)3/2>

We can conclude that it is possible to obtain a low-rank approximation of V(r, t;) and k; is the rank required to achieve a
given relative accuracy € > 0 if

|Rk;‘ (r, tl)| = |-§m(r; t) — S (rt)| < € |Sw(r, )]
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3. ACAbased E-BEM

LOW-RANK REPRESENTATION of ACOUSTICS BLOCKS

* Thus, for k; = oo we have:

. 1 r?
V(r,t;) = S..(r, t;) = cAt? +
(r, t,) (r,t) <tl (c2tf —r2)V/2 " t(c?tf — T2)3/2>

We can conclude that it is possible to obtain a low-rank approximation of V(r, t;) and k; is the rank required to achieve a
given relative accuracy € > 0 if

|Rk2‘(rr tl)| = |-§oo(7': t) — S (rt)| < € |Sw(r, )]

* At the discrete level, the low rank representation of the kernel 7(r,t;) implies that

EW = S;: + Ry with Sp: = Q- W'

where Q and W are both M X k; matrices and the residuum Ry; is such that:

IR || = [[E® -5 =IE® - -wT|, <& 6|,
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3. ACAbased E-BEM

LOW-RANK REPRESENTATION of ACOUSTICS BLOCKS

* Thus, for k; = oo we have:

. 1 r?
V(r,t;) = S..(r, t;) = cAt? +
(r, t,) (r,t) <tl (c2tf —r2)V/2 " t(c?tf — T2)3/2>

We can conclude that it is possible to obtain a low-rank approximation of V(r, t;) and k; is the rank required to achieve a
given relative accuracy € > 0 if

|Rk2‘(rr tl)| = |-§oo(7”: t) — S (rt)| < € |Sw(r, )]

* At the discrete level, the low rank representation of the kernel 7(r,t;) implies that

EW = S;: + Ry with Sp: = Q- W'

where Q and W are both M X k; matrices and the residuum Ry; is such that:

||sz

— l — l T l
= B9 = s, = 1O - @- w7, <& &,
* Remark. For k; « M we obtain a drastic reduction of the memory requirement for the storage of EV.

How to compute the matrices Q and W?
9/21



3. ACAbased E-BEM

ACA ALGORITHM FOR THE LOW-RANK APPROXIMATIONS OF ACOUSTICS BLOCKS
* Truncated SVD:

k; v' gives the best low-rank approximation
ED ~ z qko-kw,;'_ = QW' X requires the evaluation of all entries
k=0 X cost of the algorithm: O (M?3)
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3. ACAbased E-BEM

ACA ALGORITHM FOR THE LOW-RANK APPROXIMATIONS OF ACOUSTICS BLOCKS

* Truncated SVD:

k; v' gives the best low-rank approximation
E®D ~ z QkO'le-cr — QZWT X requires the evaluation of all entries
k=0 X cost of the algorithm: O (M?3)
« Efficient algorithm to compute the low-rank approximations:
partially pivoted Adaptative Cross Approximation ; it basically consists in the computation of successive rank-1 approximations
@.
of E\*/: 1 3 6 136
0 N ' %
EY =Sk + Ry, Ryy = EW —Ek_l qr Wy 4

;
v" requires only few entries of the matrix
v" in practice, O (k; M) complexity

M. Bebendorf and S. Rjasanow, Computing, (2003)
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3. ACAbased E-BEM

ACA ALGORITHM FOR THE LOW-RANK APPROXIMATIONS OF ACOUSTICS BLOCKS
* Truncated SVD:

k; v' gives the best low-rank approximation
ED ~ z QkO'le-cr = QW' X requires the evaluation of all entries
k=0 X cost of the algorithm: O (M?3)

« Efficient algorithm to compute the low-rank approximations:

partially pivoted Adaptative Cross Approximation ; it basically consists in the computation of successive rank-1 approximations
(OF
of E\*/: 1 3 6 136
* 2 L] %
D = D) “ T !
E = Ski" + Rk;' Rkik = K — z QWi 4
k=1 —~
.

v" requires only few entries of the matrix
v" in practice, O (k; M) complexity

M. Bebendorf and S. Rjasanow, Computing, (2003)

Computational cost of the ACA based Energetic BEM: if ct;« > v3diam(T), for any fixed € > 0 and [ > [*, the rank of the block E®) can be
bounded from above by the solution k*(¢) of the following inequality:

22k +3)!_
[(k + D212k = ¢
‘ the ACA based compression scheme is bounded from the above by |2 k*(¢)(1 — A)NM|, where 1 =

V3diam(T)
cT

A. Aimi, L. Desiderio and G. Di Credico, CAMWA, (2022) 10/21



3. ACAbased E-BEM

ENTRIES of the ELASTODYNAMICS TIME BLOCKS

£ IE:‘(,I)11 IEI(,I)12 I 0 . N—1 structure of the elastodynamic time block
OREES0 T T
v Eyz1 Epao

dimension 2M X 2M

» After a double analytic integration in the time variables, the entries of a generic elastodynamic block are expressed as follows:

O 1 (— 1)f+§ »
E = - ;A dlydlx, App=t,—t
( )m,m (5 o 2mp j J 5 (Ow (Y)V(T h+.f,k+() yalx hk = th — g
with

riri 61 \ |H[cpA — 7] HlcsA — 1]

vi;(4) = ( 14] - 112)[ - @p(r; ) — . @s(r;4) singularity of type
r 2r Cp Cg
O(log(r)) forr - 0
51']' H[CPA—T] R H[CsA—T'] N
+ 2 Pp (r; 4) + (,05(7'; A)
Cp Cs
having set

@, (r;A) = ¢, A /cﬁAz —1r?, @y (r;A) = log (cyA + /c,%AZ — r2> — log(r)

* Having set Ay, = t;, for growing time we have ct;,; > r and in the above sum singularity disappears.
* The previously applied block low-rank ACA approximation procedure can be applied also in the elastodynamics context
11/21



4. NUMERICAL RESULTS

ACOUSTICS: EFFICIENCY and ACCURACY

Boundary datum: gp ; (x, t) = t*e

Threshold: g4-4 = 1.0e — 04

Absolute Error: E ;2 := max

”(I)Me,Ne t) — @y () t)”

“tcos(x? + 2x%) and gp ,(x,t) = 0

te(0,T] L?(I)
: _1 2k}
Memory Saving: mem(%) = 100 - (1 — EZ?’:(} Ml
c=1 C =343
M N E;z EOC mem(%) E;2 EOC mem(%)
8 16 2.67e — 01 0.0% 5.94e — 01 37.5%
0.6 0.7
16 32 1.77¢ — 01 0.0% 3.54e — 01 67.2%
1.0 1.0
32 64 8.47¢ — 02 39.0% 1.78e — 01 84.6%
1.0 1.0
64 128 4.22e — 02 60.9% | 8.95e — 02 92.1%
1.0 1.0
128 256 2.03e — 02 72.1% 4.41e — 02 96.0%
1.1 1.0
256 512 9.44e — 03 77.3% 2.13e — 02 96.0%
1.2 1.1
512 1024 4.04e — 03 79.7% 9.93e — 03 98.3%

(M, = 4096,N, = 8192, T = 4n)
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4. NUMERICAL RESULTS

ACOUSTICS: SAVING OfCPU TIME and o wt'\mll‘u‘d EBEM I K ‘ | A o ==« standard EBEM
GLOBAL TIME HISTORY of the ERROR 106 |+ ACK EBEM with o~ L~ 01 — 100 | o ACAEBEN with 1 — 100 05
«sss ACA-EBEM with £5cy = 1.0¢ — 05 ] E | ==ss ACA-EBEM with £5c4 = 1.0¢ — 06
— O(NM) < F | m—O(N M)
— O(NM?) S - [ —(NM2)
CPU TIME 1 107
The growth of the CPU time (measured in T = )
seconds) with ACA compression = S £
. . . e 10 - 1 v At & 10%E
is optimal, i.e. O(NM). - S ©
T 102 g
10! 10" E
10 16 32 61 28 256 52 10%g 16 32 61 28 256 512
M M
10_2 T T T T T T T T T T T T 10_2 T T T T T T T T
TIME HISTORY OF THE ERROR 105} ] 103
1044 1074
o— * 5[ ] -5
E2(t) '—”‘I’Me,zve () — Py n(,0) ”LZ(F) o v
107 10~
(Me =M= 4096, Ne =N = 8192) I (U ¢ I U
=} =]
£ 10 £ 107
For growing time, the level of error £ 107 ] § 107
1 :\uT lUWm N’.' lo—")
introduced by the ACA can be controlled by = | ] o
the parameter €44, since the former is at T ) — | | ] 1012
most of the same order of magnitude of the 108 107
latter. 107" ] E 10-1 — o0
10-15F — etk 1015 e -6
0% % 3 4 5 6 7 & 9 10 11 12 107% 5 6 7 8 9 10 11 12
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4. NUMERICAL RESULTS

ACOUSTICS: APPLICATION to SCATTERING PROBLEMS

Scattering of a packet of four plane waves impacting on a circumference of radius 1

Boundary datum: gp 1 (x,t) = — Xi-, e (-2(x1=E+c(t+10))) apg gp2(x,t) = 0;
Parameters: ¢ = (50,55,60,65)",t, = 0.13, ¢ = 343 and T =0.15

DOF: M = 128 and N = 1049,

Threshold: 44 = 1.0e — 04 = mem (%) = 87.3

Representation of the horizontal component of the reconstructed total field in a region surrounding the scatterer

t=0.0114

!"
‘\‘

t = 0.0388

L) ’-\ ’
@, C
] l-' .

N e

t =0.0146 t =0.0196 t = 0.0256 t =0.0273 t = 0.0282 t = 0.0299
" N r r v ' F . J '
‘\s ’ - - - i - o - .
t = 0.0398 t =0.0413 t = 0.0423 t = 0.0436 t = 0.0552 t = 0.0585

"
"
t

t = 0.0310

'
®

N

t = 0.0652
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4. NUMERICAL RESULTS

ACOUSTICS: APPLICATION to SCATTERING PROBLEMS

* Scattering of a plane wave impinging on a flower-shaped scatterer

Boundary datum: gp , (x,t) = e (~50(x1=50+¢(t+0.13))") 5 g gp2(x,t) = 0;
Parameters: ¢ = 343 and T =0.07

DOF: M = 4096 and N = 10352

Threshold: g4c4 = 1.0e — 04 = mem(%) = 86.2

* Representation of the horizontal component of the reconstructed total field in a region surrounding the scatterer

t =0.019 t =0.021 t =0.023 t =0.025 t = 0.027 t =0.029 15/21



4.  NUMERICAL RESULTS
ELASTODYNAMICS: EFFICIENCY and ACCURACY

Boundary datum: gp ; (x,t) = t*e~'x; and gp, (x,t) = t*e " txy; X2
Threshold: 44 = 1.0e — 04 . %
Absolute Error: E 2 : = rgl%x”d)Me N, () — cI)MN(.,t)“LZ(F) (M, =512,N, = 2048,T = 4m) r

Memory Saving: mem(%) := 100 - (1 12 4 Z)

Cs=1,6p=2

M N E2 EOC mem (%)
8 32 6.29e—01 0.0%
1.0
16 64 3.11e—-01 0.0%
1.1
32 128 1.49¢—01 38.7%
1.2
64 256 6.44e—02 60.2%
1.5
128 512 2.15e—02 71.0%
5

10

15



4. NUMERICAL RESULTS

ELASTODYNAMICS: APPLICATION to SCATTERING PROBLEMS

* Scattering of an incident P-wave impacting on a circumference of radius 1

Boundary datum: gp 1 (x, t) = e(720(1=2+cpt=0475)%) andq g, (x,t) = 0
Parameters: cg = 1,cp = V3 and T =12

DOF: M = 128 and N = 426

Threshold: 44 = 1.0e — 04 = mem(%) = 71.1

* Representation of the horizontal and vertical components of the reconstructed total field in a region surrounding the scatterer

s —_—
N ’ I8 IR IR 'o ’o
- b= > = =

N) _ | AN (/\\ (/ \\ | f,/ N\ (/ \

- RN OB B O e | o "o
N B e ECE RS ASR LN

t = 1.2676 t=1.5211 t = 1.7746 t = 2.0282 = 2.2817 t = 2.5352 t = 2.7887 t = 3.0423
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4. NUMERICAL RESULTS

ELASTODYNAMICS: APPLICATION to SCATTERING PROBLEMS

e Scattering of an incident P-wave impacting on a kite-shaped scatterer

Boundary datum: gp 1 (x,t) = e (-20(x1-2+cpt=0475)%) jpq gp2(x,t) = 0;

Parameters: cs = 1,¢cp = V3 and T =12

DOF: M = 8192 and N = 28380
Threshold: g4c4 = 1.0e — 04 = mem(%) = 72.5

* Representation of the horizontal and vertical components of the reconstructed total field in a region surrounding the scatterer

t=1.2676

)

\

¥

t=1.5211

)

(

-
>,

t=1.7746

L
) ]
|

”~

<
>,

t = 2.0282

t = 2.2817

t = 2.5352

o

t = 2.7887

4

'

»

‘

P

)
)

t = 3.0423
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5. ONGOING RESEARCH

ACOUSTIC and ELASTIC HARD SCATTERING PROBLEMS

- PDE: pi(x,t) =V -ou](x,t) =0, (x,t) € Q, X (0,T]
ux,0) =u(x,0) =0, X € Q.
p(x,t) =gn(xt), (x,t) eT'x(0,T]
- BIE: gn(x,t) = Wi (x,1), xel,te(0,T]
where Wy (x,t) = f GPP(x —y; t) O @(y, t) dIy, with  GPP(x —y;t) = 0, [0,[G"]]
r
¢ Energetic BEM: Eya=p Toeplitz block lower triangular matrix

After a double analytic integration in the time variables, the entries of a generic time block are double integrals over I' X T,
whose kernel has a hyper—singularity of type O(1/r?) forr - 0

* For growing time, the kernel singularity disappears and time blocks are vanishing with decreasing rank.

The previously applied block low-rank ACA approximation procedure can be applied also in the context of hard scattering.
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5. ONGOING RESEARCH

ACOUSTICS AND ELASTODYNAMICS HARD SCATTERING : EFFICIENCY and ACCURACY

(Components of the) Boundary datum on a rectilinear scatterer of unitary length: g ; (x,t) = gp-2(x,t) = H[t];

Threshold: 4.4 = 1.0e — 04

Absolute error evaluated in energy norm

Memory Saving: mem(%) = 100 - (1 — %Z

N-1 Zkf)

Acoustics Elastodynamics
(cs = 1) (cs=1cp = 2)
M N E EOC mem(%) E EOC mem(%)
9 50,100 1.93e - 01 0.0% 2.27e — 01 0.0%
0.5 0.5
19 100,200 | 1.37¢ —01 11.2% 1.59¢ - 01 41.2%
0.5 0.5
39 200,400 | 9.59e¢ — 02 31.2% 1.12e — 01 59.7%
0.5 0.5
79 400,800 | 6.70e — 02 50.2% 7.91e — 02 69.8%
0.5 0.5
159 800,1600 | 4.71e — 02 64.7% 5.50e — 02 75.9%

A. Aimi, G. Di Credico, H. Gimperlein, E. P. Stephan, Numer. Math., (2021, under review)

0
0.5 e [“'05,05]

4
t € [0,5] @

0.2

P, (x, t) (elastic) o

A

P, (x, t) (elastic)

0.5
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