Boundary Elements and Friends Innsbruck, Austria, August 25-27, 2022

Fast E-BEM by ACA compression for the resolution of acoustic and elastic 2D exterior problems in time domain

Giulia Di Credico,

Dept. of Engineering Mathematics, Leopold-Franzens University, Innsbruck, Austria

Joint work with:

Alessandra Aimi University of Parma

Luca Desiderio University of Parma

MOTIVATIONS and OUTLINE OF THE TALK

- 1. Acoustics and Elastic model problems (soft scattering)
- 2. Energetic Boundary Element Method (E-BEM)
- 3. ACA based E-BEM reduction of computational costs and memory requirements
- 4. Numerical results
- 5. Ongoing research

• Wave propagation into a linear, homogeneous and isotropic unbounded domain $\Omega_e \subset \mathbb{R}^2$:

 $\Omega_e = \mathbb{R}^2 \setminus \overline{\Omega}$

Scattering by a closed domain $\boldsymbol{\Omega}$

Acoustic Parameters ρ mass densityc wave propagation speedElastic Parameters ρ mass density λ Lamé parameter

 μ shear modulus

٠

Wave propagation into a linear, homogeneous and isotropic unbounded domain $\Omega_e \subset \mathbb{R}^2$:

• Wave propagation into a linear, homogeneous and isotropic unbounded domain $\Omega_e \subset \mathbb{R}^2$:

• We consider an indirect boundary integral representation formula for **u** in $\Omega_e \times (0, T]$:

 $\mathbf{u}(\mathbf{x},t) = \mathbf{V} \Phi (\mathbf{x},t) = \int_{\Gamma} \mathbf{G}^{\mathbf{u}\mathbf{u}}(\mathbf{x}-\mathbf{y};t) \star^{(t)} \Phi(\mathbf{y},t) d\Gamma_{\mathbf{y}}, \qquad (\mathbf{x},t) \in \Omega_{e} \times (0,T]$ $\Phi \text{ is an unknown density field belonging to the functional space of the traction vector } \mathbf{p} = (p_{1},p_{2})^{\mathsf{T}}:$ $p_{i}(\mathbf{x},t) = \sum_{h=1}^{2} \sigma_{ih}[\mathbf{u}](\mathbf{x},t)n_{h}(\mathbf{x}), i = 1,2$

1. ACOUSTIC and ELASTIC MODEL PROBLEMS (SOFT SCATTERING)

BOUNDARY INTEGRAL EQUATION

• The integral representation formula is strictly connected to the definition of the 2D fundamental solution $\mathbf{G}^{\mathbf{u}\mathbf{u}} = (G_{ij}^{\mathbf{u}\mathbf{u}})_{i,j=1,2}$:

$$G_{ij}^{uu}(\mathbf{x} - \mathbf{y}; t - \tau) = \underbrace{\text{elastodynamics}}_{r = \mathbf{x} - \mathbf{y}, r = ||\mathbf{x} - \mathbf{y}||}^{k(u)} \left(\frac{\mathbf{x} - \mathbf{y}; t - \tau}{\mathbf{y}; t - \tau} \right) = \underbrace{\frac{\mathbf{y} - \mathbf{y}}{\mathbf{y}; t - \tau}}_{r = \mathbf{x} - \mathbf{y}, r = ||\mathbf{x} - \mathbf{y}||}^{k(u)} \left(\frac{\mathbf{y} - \mathbf{y}}{\mathbf{y}; t - \tau} \right) = \underbrace{\frac{\mathbf{y} - \mathbf{y}}{\mathbf{y}; t - \tau}}_{r = \mathbf{x} - \mathbf{y}, r = ||\mathbf{x} - \mathbf{y}||}^{k(u)} \left(\frac{\mathbf{y} - \mathbf{y}}{\mathbf{y}; t - \tau} \right) = \underbrace{\frac{\mathbf{y} - \mathbf{y}}{\mathbf{y}; t - \tau}}_{r = \mathbf{x} - \mathbf{y}, r = ||\mathbf{x} - \mathbf{y}||}^{k(u)} \left(\frac{\mathbf{y} - \mathbf{y}}{\mathbf{y}; t - \tau} \right) = \underbrace{\frac{\mathbf{y} - \mathbf{y}}{\mathbf{y}; t - \tau}}_{r = \mathbf{y} - \mathbf{y}, r = ||\mathbf{x} - \mathbf{y}||}^{k(u)} \left(\frac{\mathbf{y} - \mathbf{y}}{\mathbf{y}; t - \tau} \right) = \underbrace{\frac{\mathbf{y} - \mathbf{y}}{\mathbf{y}; t - \tau}}_{r = \mathbf{y} - \mathbf{y}, r = ||\mathbf{x} - \mathbf{y}||}^{k(u)} \left(\frac{\mathbf{y} - \mathbf{y}}{\mathbf{y}; t - \tau} \right) = \underbrace{\frac{\mathbf{y} - \mathbf{y}}{\mathbf{y}; t - \tau}}_{r = \mathbf{y} - \mathbf{y}, r = ||\mathbf{y} - \mathbf{y}||}^{k(u)} \left(\frac{\mathbf{y} - \mathbf{y}}{\mathbf{y}; t - \tau} \right) = \underbrace{\frac{\mathbf{y} - \mathbf{y}}{\mathbf{y}; t - \tau}}_{r = \mathbf{y} - \mathbf{y}, r = ||\mathbf{y} - \mathbf{y}||}^{k(u)} \left(\frac{\mathbf{y} - \mathbf{y}}{\mathbf{y}; t - \tau} \right) = \underbrace{\frac{\mathbf{y} - \mathbf{y}}{\mathbf{y}; t - \tau}}_{r = \mathbf{y} - \mathbf{y}, r = ||\mathbf{y} - \mathbf{y}||}^{k(u)} \left(\frac{\mathbf{y} - \mathbf{y}}{\mathbf{y}; t - \tau} \right) = \underbrace{\frac{\mathbf{y} - \mathbf{y}}{\mathbf{y}; t - \tau}}_{r = \mathbf{y} - \mathbf{y}, r = ||\mathbf{y} - \mathbf{y}||}^{k(u)} \left(\frac{\mathbf{y} - \mathbf{y}}{\mathbf{y}; t - \tau} \right) = \underbrace{\frac{\mathbf{y} - \mathbf{y}}{\mathbf{y}; t - \tau}}_{r = \mathbf{y} - \mathbf{y}, r = ||\mathbf{y} - \mathbf{y}||}^{k(u)} \left(\frac{\mathbf{y} - \mathbf{y}}{\mathbf{y}; t - \tau} \right) = \underbrace{\frac{\mathbf{y} - \mathbf{y}}{\mathbf{y}; t - \tau}}_{r = \mathbf{y} - \mathbf{y}, r = ||\mathbf{y} - \mathbf{y}||}^{k(u)} \left(\frac{\mathbf{y} - \mathbf{y}}{\mathbf{y}; t - \tau} \right) = \underbrace{\frac{\mathbf{y} - \mathbf{y}}{\mathbf{y}; t - \tau}}_{r = \mathbf{y} - \mathbf{y}, r = ||\mathbf{y} - \mathbf{y}||}^{k(u)} \left(\frac{\mathbf{y} - \mathbf{y}}{\mathbf{y}; t - \tau} \right) = \underbrace{\frac{\mathbf{y} - \mathbf{y}}{\mathbf{y}; t - \tau}}_{r = \mathbf{y} - \mathbf{y}, r = ||\mathbf{y} - \mathbf{y}|}^{k(u)} \left(\frac{\mathbf{y} - \mathbf{y}}{\mathbf{y}; t - \tau} \right) = \underbrace{\frac{\mathbf{y} - \mathbf{y}}{\mathbf{y}; t - \tau}}_{r = \mathbf{y} - \mathbf{y}, r = ||\mathbf{y} - \mathbf{y}|}^{k(u)} \left(\frac{\mathbf{y} - \mathbf{y}}{\mathbf{y}; t - \tau} \right) = \underbrace{\frac{\mathbf{y} - \mathbf{y}}{\mathbf{y}; t - \tau}}_{r = \mathbf{y} - \mathbf{y}, r = ||\mathbf{y} - \mathbf{y}|}^{k(u)} \left(\frac{\mathbf{y} - \mathbf{y}}{\mathbf{y}; t - \tau} \right) = \underbrace{\frac{\mathbf{y} - \mathbf{y}}{\mathbf{y}; t - \tau}}_{r = \mathbf{y} - \mathbf{y}$$

1. ACOUSTIC and ELASTIC MODEL PROBLEMS (SOFT SCATTERING)

BOUNDARY INTEGRAL EQUATION

• The integral representation formula is strictly connected to the definition of the 2D fundamental solution $\mathbf{G}^{\mathbf{uu}} = (G_{ij}^{\mathbf{uu}})_{i,i=1,2}$:

$$G_{ij}^{uu}(\mathbf{x} - \mathbf{y}; t - \tau) = \underbrace{\text{elastodynamics}}_{r = \mathbf{x} - \mathbf{y}, r = ||\mathbf{x} - \mathbf{y}||} \qquad \underbrace{\frac{H[c_{1}(t - \tau) - r]}{c_{1}(t - \tau)^{2} - r^{2}}}_{r = \mathbf{x} - \mathbf{y}, r = ||\mathbf{x} - \mathbf{y}||} \qquad \underbrace{\frac{H[c_{p}(t - \tau) - r]}{c_{1}(t - \tau)^{2} - r^{2}}}_{2\pi\rho c_{s}} \left(\frac{r_{i}r_{j}}{r^{4}} \frac{2c_{p}^{2}(t - \tau)^{2} - r^{2}}{\sqrt{c_{p}^{2}(t - \tau)^{2} - r^{2}}} - \frac{\delta_{ij}}{r^{2}} \sqrt{c_{p}^{2}(t - \tau)^{2} - r^{2}}}_{\sqrt{c_{s}^{2}(t - \tau)^{2} - r^{2}}} \right)_{i,j = 1,2}$$

• Performing a limiting process of the spatial variable from the domain to the boundary, we get to the Boundary Integral Equation (BIE):

$$\mathbf{u}(\mathbf{x},t) = \mathbf{V}\mathbf{\Phi}(\mathbf{x},t), \mathbf{x} \in \Omega_e, t \in (0,T]$$

representation formula
$$\mathbf{x} \in \Omega_e \to \mathbf{x} \in \Gamma$$
$$\mathbf{g}_{\mathcal{D}}(\mathbf{x},t) = \mathbf{V}\mathbf{\Phi}(\mathbf{x},t), \mathbf{x} \in \Gamma, t \in (0,T]$$
BIE

1. ACOUSTIC and ELASTIC MODEL PROBLEMS (SOFT SCATTERING)

BOUNDARY INTEGRAL EQUATION

• The integral representation formula is strictly connected to the definition of the 2D fundamental solution $\mathbf{G}^{\mathbf{uu}} = (G_{ij}^{\mathbf{uu}})_{i,i=1,2}$:

• Performing a limiting process of the spatial variable from the domain to the boundary, we get to the Boundary Integral Equation (BIE):

$$\mathbf{u}(\mathbf{x},t) = \mathbf{V}\mathbf{\Phi}(\mathbf{x},t), \mathbf{x} \in \Omega_e, t \in (0,T]$$

representation formula
$$\mathbf{x} \in \Omega_e \to \mathbf{x} \in \Gamma$$
$$\mathbf{g}_{\mathcal{D}}(\mathbf{x},t) = \mathbf{V}\mathbf{\Phi}(\mathbf{x},t), \mathbf{x} \in \Gamma, t \in (0,T]$$
BIE

• Standard discretization of the BIE may lead to unstable results for the approximation of the BIE unknown:

A. Frangi et al., On the numerical stability of time-domain elastodynamic analyses by BEM, CMAME, 1999

BOUNDARY INTEGRAL EQUATION and ITS ENERGETIC WEAK FORMULATION

• BIE in the unknown density **Φ**:

 $\nabla \mathbf{\Phi} (\mathbf{x}, t) = \mathbf{g}_{\mathcal{D}} (\mathbf{x}, t), \quad \mathbf{x} \in \Gamma, t \in (0, T]$

• Energetic Weak Formulation: find $\Phi \in H^0[(0,T); H^{-1/2}(\Gamma)]$ solution of the energetic weak problem

BOUNDARY INTEGRAL EQUATION and ITS ENERGETIC WEAK FORMULATION

• BIE in the unknown density **Φ**:

 $\nabla \mathbf{\Phi} (\mathbf{x}, t) = \mathbf{g}_{\mathcal{D}} (\mathbf{x}, t), \quad \mathbf{x} \in \Gamma, t \in (0, T]$

• Energetic Weak Formulation: find $\Phi \in H^0[(0,T); H^{-1/2}(\Gamma)]$ solution of the energetic weak problem

- The link with the energy \mathcal{E} of the system allows to obtain good theoretical properties $[\mathbf{z}]$ for the bilinear form $B_{\mathcal{D}}(\mathbf{\phi}, \mathbf{\phi})$.
- This energetic approach allows to overcome the instabilities arising from the standard weak form of the BIEs.

2. ENERGETIC BOUNDARY ELEMENT METHOD (E-BEM)

2. ENERGETIC BOUNDARY ELEMENT METHOD (E-BEM)

• Block forward substitution process to obtain the solution:

$$\mathbb{E}_{V}^{(0)}\boldsymbol{\alpha}_{(l)} = \boldsymbol{z}_{(l)} \qquad \forall l = 0, \dots, N \qquad \text{where} \qquad \boldsymbol{z}_{(l)} = \boldsymbol{\beta}_{(l)} - \sum_{j=1}^{l} \mathbb{E}_{V}^{(j)} \boldsymbol{\alpha}_{(l-j)},$$

- ✓ only the non-singular block $\mathbb{E}_V^{(0)}$ has to be inverted.
- ✓ for each l = 1,...,N-1, the time blocks $\mathbb{E}_V^{(l)}$ are used to update the RHS at each time step
- × for growing time, i.e. for growing index *l*, depending on wave speeds, blocks become fully populated *O(NM²)* overall cost
- × for large *M* the updating of the RHS is expensive in terms of computations and memory requirements!

we need a compression technique to reduce the overall cost

ENTRIES of the ACOUSTICS TIME BLOCKS

$$\mathbb{E}_{V}^{(l)} = \begin{pmatrix} \mathbb{E}^{(l)} & 0 \\ 0 & \mathbb{E}^{(l)} \end{pmatrix} \quad l = 0, \dots, N-1 \quad \text{structure of the acoustic time block}$$

dimension $2M \times 2M$

• After a double analytic integration in the time variables, the entries of a generic acoustic block are expressed as follows:

$$\left(\mathbb{E}^{(l)}\right)_{\widetilde{m},m} = -\sum_{\zeta,\xi=0}^{1} \frac{(-1)^{\xi+\zeta}}{2\pi} \int_{\Gamma} \int_{\Gamma} w_{\widetilde{m}}^{p}(\mathbf{x}) \ w_{m}^{p}(\mathbf{y}) \ \nu(r;\Delta_{h+\xi,k+\zeta}) d\Gamma_{\mathbf{y}} d\Gamma_{\mathbf{x}}, \qquad \Delta_{h,k} = t_{h} - t_{k}$$

with

$$\nu(r;\Delta) = H[c\Delta - r] \left[\log \left(c\Delta + \sqrt{c^2 \Delta^2 - r^2} \right) - \log(r) \right] \qquad \qquad \text{singularity of type} \\ \mathcal{O}(\log(r)) \text{ for } r \to 0$$

ENTRIES of the ACOUSTICS TIME BLOCKS

$$\mathbb{E}_{V}^{(l)} = \begin{pmatrix} \mathbb{E}^{(l)} & 0 \\ 0 & \mathbb{E}^{(l)} \end{pmatrix} \quad l = 0, ..., N - 1 \quad \text{structure of the acoustic time block}$$

dimension $2M \times 2M$

• After a double analytic integration in the time variables, the entries of a generic acoustic block are expressed as follows:

$$\left(\mathbb{E}^{(l)}\right)_{\widetilde{m},m} = -\sum_{\zeta,\xi=0}^{1} \frac{(-1)^{\xi+\zeta}}{2\pi} \int_{\Gamma} \int_{\Gamma} w_{\widetilde{m}}^{p}(\mathbf{x}) \ w_{m}^{p}(\mathbf{y}) \ \nu(r;\Delta_{h+\xi,k+\zeta}) d\Gamma_{\mathbf{y}} d\Gamma_{\mathbf{x}}, \qquad \Delta_{h,k} = t_{h} - t_{k}$$

with

$$\nu(r;\Delta) = H[c\Delta - r] \left[\log \left(c\Delta + \sqrt{c^2 \Delta^2 - r^2} \right) - \log(r) \right] \qquad \qquad \text{singularity of type} \\ \mathcal{O}(\log(r)) \text{ for } r \to 0$$

• **FUNDAMENTAL REMARK**: if we set $\Delta_{hk} = t_l$, for growing time we have $ct_{l+1} > r$ and the block entries reduce to

$$\left(\mathbb{E}^{(l)}\right)_{\widetilde{m},m} = -\frac{1}{2\pi} \int_{\Gamma} \int_{\Gamma} w_{\widetilde{m}}^{\mathbf{p}}(\mathbf{x}) w_{m}^{\mathbf{p}}(\mathbf{y}) \widetilde{\nu}(r;t_{l}) d\Gamma_{\mathbf{y}} d\Gamma_{\mathbf{x}},$$

where the new compact kernel is

$$\tilde{\nu}(r,t) = \log\left(\frac{\left(ct + \sqrt{c^2t^2 - r^2}\right)^2}{\left(c(t - \Delta t) + \sqrt{c^2(t - \Delta t)^2 - r^2}\right)\left(c(t + \Delta t) + \sqrt{c^2(t + \Delta t)^2 - r^2}\right)}\right)$$

and we do not observe any singularity since now the kernel is smooth for $r \to 0$. Moreover, $\tilde{v}(r,t) \to 0$ for $t \to +\infty$ and it is symmetric in space variables.

LOW-RANK REPRESENTATION of the TIME INTEGRATED ACOUSTICS KERNEL

• The reduction of the memory storage of the energetic BEM is related to the possibility of writing a low-rank representation or degenerate expansion of the kernel function, i.e.

$$\tilde{\nu}(\mathbf{x}, \mathbf{y}; t_l) = \sum_{k=0}^{k_l^*} \chi_k(\mathbf{x}, t_l) \omega_k(\mathbf{y}, t_l) + R_{k_l^*}(\mathbf{x}, \mathbf{y}, t_l),$$

where $R_{k_l^*}(\mathbf{x}, \mathbf{y}; t_l)$ is the residuum that tends to zero for $k_l^* \to \infty$. It is well known that a kernel with the properties of \tilde{v} possesses a low-rank representation in terms of eigenvalues and eigenfunctions in space variables \exists ; however this is not useful to get to a closed form for this representation allowing to estimate the residuum with respect to a set rank k_l^* .

LOW-RANK REPRESENTATION of the TIME INTEGRATED ACOUSTICS KERNEL

• The reduction of the memory storage of the energetic BEM is related to the possibility of writing a low-rank representation or degenerate expansion of the kernel function, i.e.

$$\tilde{\nu}(\mathbf{x}, \mathbf{y}; t_l) = \sum_{k=0}^{k_l^*} \chi_k(\mathbf{x}, t_l) \omega_k(\mathbf{y}, t_l) + R_{k_l^*}(\mathbf{x}, \mathbf{y}, t_l),$$

where $R_{k_l^*}(\mathbf{x}, \mathbf{y}; t_l)$ is the residuum that tends to zero for $k_l^* \to \infty$. It is well known that a kernel with the properties of \tilde{v} possesses a low-rank representation in terms of eigenvalues and eigenfunctions in space variables \exists ; however this is not useful to get to a closed form for this representation allowing to estimate the residuum with respect to a set rank k_l^* .

• Estimate of the low-rank: we consider a Taylor expansion in the $r = ||\mathbf{x} - \mathbf{y}||$ variable, centered in r = 0:

$$\tilde{v}(r,t_l) = \sum_{k=0}^{k_l^*} C_k(t_l) r^{2k} + R_{k_l^*}(r,t_l) \coloneqq S_{k_l^*}(r,t_l) + R_{k_l^*}(r,t_l),$$

where, up to higher order terms

LOW-RANK REPRESENTATION of the TIME INTEGRATED ACOUSTICS KERNEL

• The reduction of the memory storage of the energetic BEM is related to the possibility of writing a low-rank representation or degenerate expansion of the kernel function, i.e.

$$\tilde{v}(\mathbf{x}, \mathbf{y}; t_l) = \sum_{k=0}^{k_l^*} \chi_k(\mathbf{x}, t_l) \omega_k(\mathbf{y}, t_l) + R_{k_l^*}(\mathbf{x}, \mathbf{y}, t_l),$$

where $R_{k_l^*}(\mathbf{x}, \mathbf{y}; t_l)$ is the residuum that tends to zero for $k_l^* \to \infty$. It is well known that a kernel with the properties of \tilde{v} possesses a low-rank representation in terms of eigenvalues and eigenfunctions in space variables \exists ; however this is not useful to get to a closed form for this representation allowing to estimate the residuum with respect to a set rank k_l^* .

• Estimate of the low-rank: we consider a Taylor expansion in the $r = ||\mathbf{x} - \mathbf{y}||$ variable, centered in r = 0:

$$\tilde{v}(r,t_l) = \sum_{k=0}^{k_l^*} C_k(t_l) r^{2k} + R_{k_l^*}(r,t_l) \coloneqq S_{k_l^*}(r,t_l) + R_{k_l^*}(r,t_l),$$

where, up to higher order terms

$$C_k(t_l) \cong (\Delta tc)^2 \frac{(2k+1)!}{(k!)^2 4^k} \frac{1}{(ct_l)^{2k+2}}.$$

Hence

$$S_{k_l^*}(r, t_l) \cong \tilde{S}_{k_l^*}(r, t_l) \coloneqq \sum_{k=0}^{k_l^*} (\Delta tc)^2 \frac{(2k+1)!}{(k!)^2 4^k} \frac{r^{2k}}{(ct_l)^{2k+2k}}$$
$$= \Delta t^2 c \frac{\partial^2}{\partial t_l \partial r} \left[\sum_{k=0}^{k_l^*} \frac{(2k)!}{(2k+1)! (k!)^2 4^k} \left(\frac{r}{ct_l}\right)^2 \right]$$

LOW-RANK REPRESENTATION of the TIME INTEGRATED ACOUSTICS KERNEL

• The reduction of the memory storage of the energetic BEM is related to the possibility of writing a low-rank representation or degenerate expansion of the kernel function, i.e.

$$\tilde{v}(\mathbf{x}, \mathbf{y}; t_l) = \sum_{k=0}^{k_l^*} \chi_k(\mathbf{x}, t_l) \omega_k(\mathbf{y}, t_l) + R_{k_l^*}(\mathbf{x}, \mathbf{y}, t_l),$$

where $R_{k_l^*}(\mathbf{x}, \mathbf{y}; t_l)$ is the residuum that tends to zero for $k_l^* \to \infty$. It is well known that a kernel with the properties of \tilde{v} possesses a low-rank representation in terms of eigenvalues and eigenfunctions in space variables \exists ; however this is not useful to get to a closed form for this representation allowing to estimate the residuum with respect to a set rank k_l^* .

• Estimate of the low-rank: we consider a Taylor expansion in the $r = ||\mathbf{x} - \mathbf{y}||$ variable, centered in r = 0:

$$\tilde{v}(r,t_l) = \sum_{k=0}^{k_l^*} C_k(t_l) r^{2k} + R_{k_l^*}(r,t_l) \coloneqq S_{k_l^*}(r,t_l) + R_{k_l^*}(r,t_l),$$

where, up to higher order terms

$$C_k(t_l) \cong (\Delta tc)^2 \frac{(2k+1)!}{(k!)^2 4^k} \frac{1}{(ct_l)^{2k+2}}.$$

Hence

$$S_{k_l^*}(r,t_l) \cong \tilde{S}_{k_l^*}(r,t_l) \coloneqq \sum_{k=0}^{k_l^*} (\Delta tc)^2 \frac{(2k+1)!}{(k!)^2 4^k} \frac{r^{2k}}{(ct_l)^{2k+2}}$$
$$= \Delta t^2 c \frac{\partial^2}{\partial t_l \partial r} \left[\sum_{k=0}^{k_l^*} \frac{(2k)!}{(2k+1)! (k!)^2 4^k} \left(\frac{r}{ct_l}\right)^2 \right] \longrightarrow \text{ general term of the Taylor expansion of } F(x) = \operatorname{asin}(x) \text{ with } x = r/(ct_l)$$

LOW-RANK REPRESENTATION of ACOUSTICS BLOCKS

• Thus, for $k_l^* \to \infty$ we have:

$$\tilde{\nu}(r,t_l) \simeq \tilde{S}_{\infty}(r,t_l) = c\Delta t^2 \left(\frac{1}{t_l (c^2 t_l^2 - r^2)^{1/2}} + \frac{r^2}{t_l (c^2 t_l^2 - r^2)^{3/2}} \right)$$

We can conclude that it is possible to obtain a low-rank approximation of $\tilde{v}(r, t_l)$ and k_l^* is the rank required to achieve a given relative accuracy $\varepsilon > 0$ if

$$\left|R_{k_l^*}(r,t_l)\right| \simeq \left|\tilde{S}_{\infty}(r,t_l) - \tilde{S}_{k_l^*}(r,t_l)\right| \le \varepsilon \left|\tilde{S}_{\infty}(r,t_l)\right|$$

LOW-RANK REPRESENTATION of ACOUSTICS BLOCKS

• Thus, for $k_l^* \to \infty$ we have:

$$\tilde{v}(r,t_l) \simeq \tilde{S}_{\infty}(r,t_l) = c\Delta t^2 \left(\frac{1}{t_l (c^2 t_l^2 - r^2)^{1/2}} + \frac{r^2}{t_l (c^2 t_l^2 - r^2)^{3/2}} \right)$$

We can conclude that it is possible to obtain a low-rank approximation of $\tilde{v}(r, t_l)$ and k_l^* is the rank required to achieve a given relative accuracy $\varepsilon > 0$ if

$$\left|R_{k_l^*}(r,t_l)\right| \simeq \left|\tilde{S}_{\infty}(r,t_l) - \tilde{S}_{k_l^*}(r,t_l)\right| \le \varepsilon \left|\tilde{S}_{\infty}(r,t_l)\right|$$

• At the discrete level, the low rank representation of the kernel $\tilde{v}(r, t_l)$ implies that

$$\mathbb{E}^{(l)} = \mathbb{S}_{k_l^*} + \mathbb{R}_{k_l^*} \text{ with } \mathbb{S}_{k_l^*} = \mathbb{Q} \cdot \mathbb{W}^{\mathsf{T}}$$

where \mathbb{Q} and \mathbb{W} are both $M \times k_l^*$ matrices and the residuum $\mathbb{R}_{k_l^*}$ is such that:

$$\left\| \mathbb{R}_{k_{l}^{*}} \right\|_{F} = \left\| \mathbb{E}^{(l)} - \mathbb{S}_{k_{l}^{*}} \right\|_{F} = \left\| \mathbb{E}^{(l)} - \mathbb{Q} \cdot \mathbb{W}^{\mathsf{T}} \right\|_{F} \le \varepsilon \left\| \mathbb{E}^{(l)} \right\|_{F}$$

LOW-RANK REPRESENTATION of ACOUSTICS BLOCKS

• Thus, for $k_l^* \to \infty$ we have:

$$\tilde{\nu}(r,t_l) \simeq \tilde{S}_{\infty}(r,t_l) = c\Delta t^2 \left(\frac{1}{t_l (c^2 t_l^2 - r^2)^{1/2}} + \frac{r^2}{t_l (c^2 t_l^2 - r^2)^{3/2}} \right)$$

We can conclude that it is possible to obtain a low-rank approximation of $\tilde{v}(r, t_l)$ and k_l^* is the rank required to achieve a given relative accuracy $\varepsilon > 0$ if

$$\left|R_{k_l^*}(r,t_l)\right| \simeq \left|\tilde{S}_{\infty}(r,t_l) - \tilde{S}_{k_l^*}(r,t_l)\right| \le \varepsilon \left|\tilde{S}_{\infty}(r,t_l)\right|$$

• At the discrete level, the low rank representation of the kernel $\tilde{v}(r, t_l)$ implies that

$$\mathbb{E}^{(l)} = \mathbb{S}_{k_l^*} + \mathbb{R}_{k_l^*} \text{ with } \mathbb{S}_{k_l^*} = \mathbb{Q} \cdot \mathbb{W}^{\mathsf{T}}$$

where \mathbb{Q} and \mathbb{W} are both $M \times k_l^*$ matrices and the residuum $\mathbb{R}_{k_l^*}$ is such that:

$$\left\| \mathbb{R}_{k_{l}^{*}} \right\|_{F} = \left\| \mathbb{E}^{(l)} - \mathbb{S}_{k_{l}^{*}} \right\|_{F} = \left\| \mathbb{E}^{(l)} - \mathbb{Q} \cdot \mathbb{W}^{\mathsf{T}} \right\|_{F} \le \varepsilon \left\| \mathbb{E}^{(l)} \right\|_{F}$$

• Remark. For $k_l^* \ll M$ we obtain a drastic reduction of the memory requirement for the storage of $\mathbb{E}^{(l)}$.

How to compute the matrices \mathbb{Q} and \mathbb{W} ?

ACA ALGORITHM FOR THE LOW-RANK APPROXIMATIONS OF ACOUSTICS BLOCKS

• Truncated SVD:

$$\mathbb{E}^{(l)} \simeq \sum_{k=0}^{k_l^*} \mathbf{q}_k \sigma_k \mathbf{w}_k^{\mathsf{T}} = \mathbb{Q} \Sigma \mathbb{W}^{\mathsf{T}}$$

- ✓ gives the best low-rank approximation
- × requires the evaluation of all entries
- × cost of the algorithm: $\mathcal{O}(M^3)$

ACA based E-BEM 3.

ACA ALGORITHM FOR THE LOW-RANK APPROXIMATIONS OF ACOUSTICS BLOCKS

Truncated SVD: •

of $\mathbb{E}^{(l)}$:

$$\mathbb{E}^{(l)} \simeq \sum_{k=0}^{k_l^*} \mathbf{q}_k \sigma_k \mathbf{w}_k^{\mathsf{T}} = \mathbb{Q} \Sigma \mathbb{W}^{\mathsf{T}}$$

- gives the best low-rank approximation \checkmark
- requires the evaluation of all entries Х
- cost of the algorithm: $O(M^3)$ Х
- Efficient algorithm to compute the low-rank approximations: •

partially pivoted Adaptative Cross Approximation ; it basically consists in the computation of successive rank-1 approximations

$$\mathbb{E}^{(l)} = \mathbb{S}_{k_l^*} + \mathbb{R}_{k_l^*}, \qquad \mathbb{R}_{k_l^*} = \mathbb{E}^{(l)} - \sum_{k=1}^{k_l^*} \mathbf{q}_k \mathbf{w}_k^{\mathsf{T}}$$

- requires only few entries of the matrix in practice, $O(k_l^*M)$ complexity \checkmark
 - M. Bebendorf and S. Rjasanow, Computing, (2003)

4

ACA ALGORITHM FOR THE LOW-RANK APPROXIMATIONS OF ACOUSTICS BLOCKS

• Truncated SVD:

$$\mathbb{E}^{(l)} \simeq \sum_{k=0}^{k_l^*} \mathbf{q}_k \sigma_k \mathbf{w}_k^{\mathsf{T}} = \mathbb{Q} \Sigma \mathbb{W}^{\mathsf{T}}$$

- gives the best low-rank approximation
- X requires the evaluation of all entries
- X cost of the algorithm: $\mathcal{O}(M^3)$
- Efficient algorithm to compute the low-rank approximations:

partially pivoted Adaptative Cross Approximation \exists ; it basically consists in the computation of successive rank-1 approximations of $\mathbb{E}^{(l)}$:

$$\mathbb{E}^{(l)} = \mathbb{S}_{k_l^*} + \mathbb{R}_{k_l^*}, \qquad \mathbb{R}_{k_l^*} = \mathbb{E}^{(l)} - \sum_{k=1}^{k_l^*} \mathbf{q}_k \mathbf{w}_k^{\mathsf{T}}$$

✓ requires only few entries of the matrix
✓ in practice, O(k_l^{*}M) complexity

M. Bebendorf and S. Rjasanow, Computing, (2003)

Computational cost of the ACA based Energetic BEM: if $ct_{l^*} > \sqrt{3}diam(\Gamma)$, for any fixed $\varepsilon > 0$ and $l > l^*$, the rank of the block $\mathbb{E}^{(l)}$ can be bounded from above by the solution $k^*(\varepsilon)$ of the following inequality:

$$\frac{2(2k+3)!}{[(k+1)!]^2 1 2^{k+1}} < \varepsilon$$

the ACA based compression scheme is bounded from the above by $2 k^*(\varepsilon)(1 - \lambda)NM$, where $\lambda = \frac{\sqrt{3}diam(\Gamma)}{cT}$

ENTRIES of the ELASTODYNAMICS TIME BLOCKS

$$\mathbb{E}_{V}^{(l)} = \begin{pmatrix} \mathbb{E}_{V,11}^{(l)} & \mathbb{E}_{V,12}^{(l)} \\ \mathbb{E}_{V,21}^{(l)} & \mathbb{E}_{V,22}^{(l)} \end{pmatrix} \quad l = 0, \dots, N$$

structure of the elastodynamic time block

dimension $2M \times 2M$

• After a double analytic integration in the time variables, the entries of a generic elastodynamic block are expressed as follows:

$$\left(\mathbb{E}^{(l)}\right)_{\widetilde{m},m} = -\sum_{\zeta,\xi=0}^{1} \frac{(-1)^{\xi+\zeta}}{2\pi\rho} \int_{\Gamma} \int_{\Gamma} w_{\widetilde{m}}^{p}(\mathbf{x}) w_{m}^{p}(\mathbf{y}) \nu(r;\Delta_{h+\xi,k+\zeta}) d\Gamma_{\mathbf{y}} d\Gamma_{\mathbf{x}}, \quad \Delta_{h,k} = t_{h} - t_{k}$$

with

- 1

having set

$$\varphi_{\gamma}(r;\Delta) = c_{\gamma} \Delta \sqrt{c_{\gamma}^2 \Delta^2 - r^2}, \qquad \hat{\varphi}_{\gamma}(r;\Delta) = \log \left(c_{\gamma} \Delta + \sqrt{c_{\gamma}^2 \Delta^2 - r^2} \right) - \log(r)$$

- Having set $\Delta_{hk} = t_l$, for growing time we have $ct_{l+1} > r$ and in the above sum singularity disappears.
- The previously applied block low-rank ACA approximation procedure can be applied also in the elastodynamics context

ACOUSTICS: EFFICIENCY and ACCURACY

Boundary datum:
$$g_{\mathcal{D},1}(x,t) = t^4 e^{-t} \cos(x_1^2 + 2x_2^2)$$
 and $g_{\mathcal{D},2}(x,t) = 0$
Threshold: $\varepsilon_{ACA} = 1.0e - 04$

Absolute Error:
$$E_{L^2} \coloneqq \max_{t \in (0,T]} \left\| \Phi_{M_e,N_e}^*(\cdot,t) - \Phi_{M,N}(\cdot,t) \right\|_{L^2(\Gamma)}$$
 $(M_e = 4096, N_e = 8192, T = 4\pi)$
Memory Saving: $mem(\%) \coloneqq 100 \cdot \left(1 - \frac{1}{N} \sum_{l=0}^{N-1} \frac{2k_l^*}{M}\right)$

			C = 1			C = 343	
М	Ν	E_{L^2}	EOC	mem(%)	E_{L^2}	EOC	mem(%)
8	16	2.67 <i>e</i> – 01	0.6	0.0%	5.94 <i>e –</i> 01	0.7	37.5%
16	32	1.77 <i>e –</i> 01	1.0	0.0%	3.54 <i>e –</i> 01	1.0	67.2%
32	64	8.47 <i>e</i> – 02	1.0	39.0%	1.78 <i>e –</i> 01	1.0	84.6%
64	128	4.22 <i>e</i> – 02	1.0	60.9%	8.95 <i>e –</i> 02	1.0	92.1%
128	256	2.03 <i>e</i> – 02	1.1	72.1%	4.41 <i>e</i> – 02	1.0	96.0%
256	512	9.44 <i>e</i> – 03	1.2	77.3%	2.13 <i>e</i> – 02	1.1	96.0%
512	1024	4.04 <i>e</i> – 03		79.7%	9.93 <i>e</i> – 03		98.3%

*x*₂

 x_1

 $\pi^{\overline{2}}$

ACOUSTICS: SAVING of CPU TIME and GLOBAL TIME HISTORY of the ERROR

CPU TIME

The growth of the CPU time (measured in seconds) with ACA compression is optimal, i.e. O(NM).

TIME HISTORY OF THE ERROR

$$E_{L^{2}}(t) \coloneqq \left\| \Phi_{M_{e},N_{e}}^{*}(\cdot,t) - \Phi_{M,N}(\cdot,t) \right\|_{L^{2}(\Gamma)}$$

(M_e = M = 4096, N_e = N = 8192)

For growing time, the level of error introduced by the ACA can be controlled by the parameter ε_{ACA} , since the former is at most of the same order of magnitude of the latter.

ACOUSTICS: APPLICATION to SCATTERING PROBLEMS

• Scattering of a packet of four plane waves impacting on a circumference of radius 1

Boundary datum: $g_{D,1}(x,t) = -\sum_{i=1}^{4} e^{(-2(x_1 - \xi_i + c(t+t_0))^2)}$ and $g_{D,2}(x,t) = 0$; Parameters: $\xi = (50,55,60,65)^{\mathsf{T}}$, $t_0 = 0.13$, c = 343 and T = 0.15DOF: M = 128 and N = 1049, Threshold: $\varepsilon_{ACA} = 1.0e - 04 \Longrightarrow mem(\%) = 87.3$

• Representation of the horizontal component of the reconstructed total field in a region surrounding the scatterer

ACOUSTICS: APPLICATION to SCATTERING PROBLEMS

• Scattering of a plane wave impinging on a flower-shaped scatterer

Boundary datum: $g_{D,1}(x,t) = e^{(-50(x_1-50+c(t+0.13))^2)}$ and $g_{D,2}(x,t) = 0$; Parameters: c = 343 and T = 0.07DOF: M = 4096 and N = 10352Threshold: $\varepsilon_{ACA} = 1.0e - 04 \implies mem(\%) = 86.2$

• Representation of the horizontal component of the reconstructed total field in a region surrounding the scatterer

ELASTODYNAMICS: EFFICIENCY and ACCURACY

Boundary datum:
$$g_{D,1}(x,t) = t^4 e^{-t} x_1$$
 and $g_{D2}(x,t) = t^4 e^{-t} x_2$;
Threshold: $\varepsilon_{ACA} = 1.0e - 04$

Absolute Error: $E_{L^2} \coloneqq_{t \in (0,T]} \left\| \Phi_{M_e,N_e}^*(\cdot,t) - \Phi_{M,N}(\cdot,t) \right\|_{L^2(\Gamma)}$ $(M_e = 512, N_e = 2048, T = 4\pi)$ Memory Saving: $mem(\%) \coloneqq 100 \cdot \left(1 - \frac{1}{N} \sum_{ij=1}^{2} \sum_{l=0}^{N-1} \frac{2k_{ij,l}^*}{M} \right)$

		C _s	$s_{s} = 1, C_{P} =$	2
М	Ν	E_{L^2}	EOC	mem(%)
8	32	6.29e-01	1.0	0.0%
16	64	3.11e-01	1.1	0.0%
32	128	1.49e-01	1.2	38.7%
64	256	6.44e-02	1.5	60.2%
128	512	2.15e-02		71.0%

-2

 $\alpha \in (-\pi,\pi]$

0

2

10

15

 $t\in [0,4\pi]$

ELASTODYNAMICS: APPLICATION to SCATTERING PROBLEMS

• Scattering of an incident P-wave impacting on a circumference of radius 1

Boundary datum: $g_{D,1}(x,t) = e^{(-20(x_1-2+c_Pt-0.475)^2)}$ and $g_{D,2}(x,t) = 0$ Parameters: $c_S = 1$, $c_P = \sqrt{3}$ and T = 12DOF: M = 128 and N = 426Threshold: $\varepsilon_{ACA} = 1.0e - 04 \Longrightarrow mem(\%) = 71.1$

• Representation of the horizontal and vertical components of the reconstructed total field in a region surrounding the scatterer

ELASTODYNAMICS: APPLICATION to SCATTERING PROBLEMS

• Scattering of an incident P-wave impacting on a kite-shaped scatterer

Boundary datum: $g_{D,1}(x,t) = e^{(-20(x_1 - 2 + c_P t - 0.475)^2)}$ and $g_{D,2}(x,t) = 0$; Parameters: $c_S = 1, c_P = \sqrt{3}$ and T = 12DOF: M = 8192 and N = 28380Threshold: $\varepsilon_{ACA} = 1.0e - 04 \implies mem(\%) = 72.5$

• Representation of the horizontal and vertical components of the reconstructed total field in a region surrounding the scatterer

5. ONGOING RESEARCH

ACOUSTIC and ELASTIC HARD SCATTERING PROBLEMS

• PDE: $\rho \ddot{\mathbf{u}}(\mathbf{x},t) - \nabla \cdot \sigma [\mathbf{u}](\mathbf{x},t) = 0, \qquad (\mathbf{x},t) \in \Omega_e \times (0,T]$ $\begin{cases} \mathbf{u}(\mathbf{x},0) = \dot{\mathbf{u}}(\mathbf{x},0) = 0, & \mathbf{x} \in \Omega_e \\ \mathbf{p}(\mathbf{x},t) = \mathbf{g}_N(\mathbf{x},t), & (\mathbf{x},t) \in \Gamma \times (0,T] \end{cases}$

• BIE: $\mathbf{g}_N(\mathbf{x},t) = W \mathbf{\psi}(\mathbf{x},t), \qquad \mathbf{x} \in \Gamma, t \in (0,T]$ where $W \mathbf{\psi}(\mathbf{x},t) = \int_{\Gamma} \mathbf{G}^{\mathbf{pp}}(\mathbf{x} - \mathbf{y};t) \star^{(t)} \mathbf{\psi}(\mathbf{y},t) d\Gamma_{\mathbf{y}}, \qquad \text{with} \qquad \mathbf{G}^{\mathbf{pp}}(\mathbf{x} - \mathbf{y};t) = \sigma_{\mathbf{x}}[\sigma_{\mathbf{y}}[\mathbf{G}^{\mathbf{uu}}]]$

• Energetic BEM: $\mathbb{E}_W \boldsymbol{a} = \boldsymbol{\beta}$ Toeplitz block lower triangular matrix

- After a double analytic integration in the time variables, the entries of a generic time block are double integrals over $\Gamma \times \Gamma$, whose kernel has a hyper-singularity of type $O(1/r^2)$ for $r \to 0$
- For growing time, the kernel singularity disappears and time blocks are vanishing with decreasing rank.
- The previously applied block low-rank ACA approximation procedure can be applied also in the context of hard scattering.

5. ONGOING RESEARCH

ACOUSTICS AND ELASTODYNAMICS HARD SCATTERING : EFFICIENCY and ACCURACY

(Components of the) Boundary datum on a rectilinear scatterer of unitary length: $g_{\mathcal{N},1}(x,t) = g_{\mathcal{N},2}(x,t) = H[t]$;

Threshold: $\varepsilon_{ACA} = 1.0e - 04$

Absolute error evaluated in energy norm

Memory Saving:
$$mem(\%) \coloneqq 100 \cdot \left(1 - \frac{1}{N} \sum_{l=0}^{N-1} \frac{2k_l^*}{M}\right)$$

T = 5		$\begin{array}{l} \textbf{Acoustics} \\ (c_S = 1) \end{array}$			Elastodynamics $(c_S = 1, c_P = 2)$		
М	Ν	Ε	ЕОС	mem(%)	Ε	ЕОС	mem(%)
9	50, 100	1.93 <i>e</i> – 01	0.5	0.0%	2.27 <i>e</i> – 01	0.5	0.0%
19	100, 200	1.37 <i>e</i> – 01	0.5	11.2%	1.59e — 01	0.5	41.2%
39	200, 400	9.59 <i>e</i> — 02	0.5	31.2%	1.12e – 01	0.5	59.7%
79	400, 800	6.70 <i>e</i> – 02	0.5	50.2%	7.91 <i>e –</i> 02	0.5	69.8%
159	800, 1600	4.71 <i>e</i> – 02		64.7%	5.50 <i>e –</i> 02		75.9%

BIBLIOGRAPHY

- A. Aimi, M. Diligenti, C. Guardasoni, I. Mazzieri, S. Panizzi, An energy approach to space-time Galerkin BEM for wave propagation problems, *International Journal for Numerical Methods in Engineering*, 2009.
 - A. Aimi, L. Desiderio, C. Guardasoni, M. Diligenti, Application of Energetic BEM to 2D Elastodynamic Soft Scattering Problems, *Communications in Applied and Industrial Mathematics*, 2019.
- A. Aimi, G. Di Credico, M. Diligenti, C. Guardasoni, Highly accurate quadrature schemes for singular integrals in energetic BEM applied to elastodynamics, *Journal of Computational and Applied Mathematics*, 2022.
- A. Aimi, G. Di Credico, H. Gimperlein, E. P. Stephan, Higher-order time domain boundary elements for elastodynamics graded meshes and hp-versions, *Numerische Mathematik*, 2021 (under review).
- A. Aimi, L. Desiderio, G. Di Credico, Partially pivoted ACA based acceleration of the Energetic BEM for time-domain acoustic and elastic waves exterior problems, *Compuetrs & Mathematics with Applications*, 2022.

THANK YOU FOR THE ATTENTION AND... HAPPY BIRTHDAY ERNST STEPHAN!

