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Abstract

In this paper we study the local wellposedness of the solution to a non-linear parabolic-dispersive
coupled system which models a Micro-Electro-Mechanical System (MEMS). A simple electrostati-
cally actuated MEMS capacitor device has two parallel plates separated by a gas-filled thin gap. The
nonlinear parabolic-dispersive coupled system modelling the device consists of a quasilinear parabolic
equation for the gas pressure and a semilinear plate equation for gap width. We show the local-in-
time existence of strict solutions for the system, by combining a local-in-time existence result for the
dispersive equation, Hölder continuous dependence of its solution on that of the parabolic equation,
and then local-in-time existence for a resulting abstract parabolic problem. Semigroup approaches
are vital for both main parts of the problem.
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solid-plate thin-film-flow interactions.
MSC classes: 35M33 (primary), 35G61, 35D30, 74F10 (secondary)

1 Introduction

In this article, we study finite-time existence, uniqueness and regularity of the solution to the following
nonlinear parabolic-dispersive coupled system, which models an idealized electrostatically actuated
MEMS device, accounting for elasticity of the plate:

∂ (wu)

∂t
= ∇ ·

(
w3u∇u

)
x ∈ Ω, t ≥ 0; (1.1a)

∂2w

∂t2
= ∆w −∆2w − βF

w2
+ βp(u− 1), x ∈ Ω, t ≥ 0; (1.1b)

u(x, 0) = u0(x), w(x, 0) = w0(x),
∂w

∂t
(x, 0) = v0(x), x ∈ Ω; (1.1c)

u(x, t) = θ1, w(x, t) = θ2, ∆w(x, t) = 0, x ∈ ∂Ω, t ≥ 0. (1.1d)

The unknown functions u(x, t) and w(x, t) correspond, respectively, to gas pressure and gap width,
Ω ⊂ Rn is a bounded and open region with smooth boundary ∂Ω, n = 1, 2; βF , βp, θ1, θ2 > 0 are
given constants; u0 = u0(x), v0 = v0(x) and w0 = w0(x) are given functions. We shall prove the
following wellposedness result which applies for short time:

Theorem 1.1. Let α ∈ (0, 12 ), u0 ∈ H2+α(Ω), v0 ∈ H2(Ω) and w0 ∈ H4(Ω), compatible with the
boundary conditions and such that u0, w0 > 0. The initial-boundary value problem (1.1) admits a
unique strict solution (u,w) on a time interval [0, T ) and

u ∈ Cα+1
(
[0, T );L2(Ω)

)
∩ Cα

(
[0, T );H2(Ω)

)
,

w ∈ C2
(
[0, T );L2(Ω)

)
∩ C1([0, T );H2(Ω)) ∩ C

(
[0, T );H4(Ω)

)
.
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Figure 1: Idealized electrostatically actuated MEMS capacitor.

Remark 1.2. a) Global-in-time solutions are not expected for general initial data, because quenching
singularities with inf

x∈Ω
w(x, t) → 0 may develop as t→ T , for a finite time T <∞ (see [10]).

b) Even for smooth data the Sobolev regularity of w is limited because the right hand side in (1.1b)
does not vanish at the boundary ∂Ω: Indeed, using Fourier series one can explicitly solve the linear
dispersive equation

∂2w

∂t2
+
∂4w

∂x4
= f(x, t), (x, t) ∈ (0, 1)× [0,∞); (1.2)

with homogeneous initial conditions w(x, 0) = ∂w
∂t (x, 0) = 0 (x ∈ (0, 1)) and homogenous boundary

conditions w(x, t) = 0, ∂2w
∂x2 (x, t) = 0 (x ∈ {0, 1}, t ∈ (0,∞)). For f = 1 one finds that the solution

w(t) ∈ H
9
2−ϵ(0, 1) for every ϵ > 0 and t ∈ [0,∞), but w(t) ̸∈ H

9
2 (0, 1). We therefore do not expect

higher integer-order Sobolev regularity for w in Theorem 1.1.

Our proof of Theorem 1.1 relies on the techniques for quasilinear parabolic equations developed,
for example, by Amann, Arendt, Lunardi and Sinestrari [1, 2, 18, 19, 21, 22, 27]. Semigroup methods
of this kind have become a powerful tool for MEMS-related models defined by a single equation or
by an elliptic-parabolic coupled system, see the recent survey [16]. We here combine such parabolic
techniques for the quasilinear Reynolds’ equation (1.1a) with semigroup techniques for the semilinear
fourth-order equation (1.1b).

In the recent work [11] the authors showed the wellposedness of a related, simpler model in which
(1.1a) is replaced by a linear, elliptic equation for the gas pressure u. Physically, the simpler model
in [11] replaces the dynamics of u by a quasi-static approximation which can apply in limiting cases;
here we consider the more accurate, fuller model to give a good representation of the physical system
outlined in Figure 1. Technically, the analysis of both coupled systems relies on a delicate combina-
tion of the techniques available for the constituent equations. In the recent work [11] the well-known
analysis of linear, elliptic equations allowed us to reduce the simpler model to a perturbed semilinear
dispersive equation for the gap width w, which is studied using strongly continuous semigroup tech-
niques for such equations. For the realistic model (1.1a)-(1.1d) considered here, similarly complete
information is not available for the quasilinear, degenerately parabolic equation (1.1a). Nevertheless,
by refining the analysis of (1.1b), we here reduce the coupled system to an abstract quasilinear,
degenerately parabolic equation for the gas pressure u, for which we are able to show wellposedness.
Analytic semigroup techniques allow us to study this quasilinear, degenerately parabolic equation.

The model (1.1) gives the behaviour of a basic electrically actuated MEMS (Micro-Electro-
Mechanical Systems) capacitor (see, e.g., [26]). This device contains two conducting plates which
are close and parallel to each other when the device is uncharged and at equilibrium. We take, more
generally, a fixed potential difference to be applied; this potential difference acts across the plates
and the MEMS device forms a capacitor. The two plates lie inside a sealed box also containing a
gas, with pressure substantially below atmospheric but not a perfect vacuum. The gas gives a small
resistance to the motion of the upper, plate, which is taken to be flexible but pinned around its
edges. The other, lower, plate is assumed perfectly rigid and flat. See Figure 1. Breakdown of the
device can occur through a pull-in instability, when the two plates touch, the physical phenomenon
described by quenching.
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Eqn. (1.1a) is a compressible form of the standard Reynolds’ equation for the pressure, u, in
the gap between the plates, where the local gap width is w (see, for example, [23]), and the gas is
assumed to behave ideally and isothermally, so that its density can be taken to be proportional to
pressure; this contrasts with the incompressible, liquid-like representation in [11].

The upper electrode of the capacitor moves as a thin elastic plate, so that it behaves according
to a dynamic plate equation balancing the inertial term on the left-hand side of (1.1b) with:

� tension terms applied across the plate leading to the usual Laplacian (the first term on the
right);

� a biharmonic term modelling linear elasticity (the second term on the right) [14];

� an electrostatic force attracting the upper plate towards the lower (the third term on the right)
– strength of this force per unit area is given by the local electric field strength times the surface
charge density, the latter itself being proportional to the former, while this, the field strength,
is inversely proportional to the gap width w;

� net upward gas pressure acting on the plate – pressure in the gap acting up and constant
ambient pressure acting down (the final term on the right).

For more details see [25], [26].
The terms in the equations have been scaled to obtain unit coefficients in (1.1a). Without loss of

generality, we have taken, for simplicity, various coefficients of terms in (1.1b) also to be one. This
does not affect our analysis of the problem.

In another, forthcoming paper, we study the limiting case where the movement of the upper plate
is dominated by its tension, so that elastic effects are negligible. This approximation leads to a wave
equation for the gap width w, instead of the dispersive equation (1.1b).

We review various previous models for electrostatic MEMS devices, some taking the form of a
single equation others a coupled system. We also review literature which studies these models, both
numerically and analytically, to obtain qualitative behaviour.

As the elastic plate in a MEMS device is fabricated at a micro-scale, the electrostatic force
becomes relatively large so that it is the key force causing the bending of the plate when the device
operates. The electrostatic force is inversely proportional to the square of the gap width between the
two plates(see [8], [25], Sec. 3.4 of [26]), so that the distributed transverse load is the electrostatic
force per area is Fd,

Fd = −βF
w2

, where βF is an electrostatic coefficient. (1.3)

Hence, the static deflection of charged elastic plates in electrostatic actuators can be represented by
a nonlinear elliptic equation

−∆w + βe∆
2w = −βF

w2
. (1.4)

Lin et al. [17] study the existence, construction, approximation, and behaviour of classical and
singular solutions to equation (1.4). Other such problems can be found in references [7], [31].

From Chapter 12 in book [8], there is a value β∗ ∈ (0,∞) such that for 0 < βF < β∗ there exists
at least one weak solution to (1.4), while no solution exists for βF > β∗.

To more fully model the behaviour of the plate, we consider the momentum of the plate as it is
deformed, the elastic nature of plate, damping forces, and the electrostatic force between two plates
and get an equation of motion

ϵ2
∂2w

∂t2
+
∂w

∂t
−∆w + βe∆

2w = −βF
w2

. (1.5)

Here the gap width w = w(x, t) depends on time t and point x on the surface of movable plate, ∂w
∂t

is a damping term,

ϵ2 =
inertial coefficient

damping coefficient
,

βe accounts for the relative importance of tension and flexural rigidity in the elastic plate, βF is
proportional to the square of the applied voltage.

Considering the equation defined on a bounded domain of Rn, 1 ≤ n ≤ 3, Guo, [13], finds
that when a voltage – represented here mathematically by βF – is applied, the elastic plate deflects
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towards the ground plate, and quenching may occur when βF exceeds the critical value β∗ for the
time-independent problem (1.4). Guo [13] shows that there exists a βF1

∈ (0, β∗] such that for
0 ≤ βF < βF1 , the solution of an initial boundary value problem for (1.5) globally exists. Under
some further technical hypotheses, in this case the solution exponentially converges to a regular
steady state. For βF > β∗, the solution quenches at finite time.

Recent publications only study the compressible version (1.1b) of the standard Reynolds’ equation
numerically, and this can be seen in the works [3, 5, 28, 29]. In particular, Bao et al. [4] study the
squeeze film damping with small amplitude deflections and linearize the nonlinear Reynolds’ equation
(i.e. (1.1b)) around the equilibrium position. The resulting equation is regarded as a form of the
heat equation and it is possible to find analytical solutions for this.

See the survey article [16] for a discussion of a wider class of models arising in the description of
MEMS. We are not aware of any rigorous results for MEMS models which take into account both
the dynamics of the gas and the elastodynamics of the plate.

The plan of the paper is as follows: In Section 2, we introduce notation, the relevant function
spaces and some of their basic properties. We also introduce the mild solution and strict solution
for the general evolution equation and their existence results, and show some Lipschitz continuity
estimates. In Section 3, we use a solution strategy for the system (1.1a), (1.1b) based on decoupling
the equations for the gap-width w and the pressure u. We first consider the semilinear fourth-
order equation (1.1b) for the deflection w with an arbitrarily given pressure u and use semigroup
techniques for (1.1b) to show that the local wellposedness of (1.1b). While the regularity theory
of dispersive equations has been of much recent interest, we here require detailed properties of the
solution operator u 7−→ w(u) in order to analyse the nonlinear Reynolds’ equation (1.1a) with
abstract coefficients involving w(u). For example, we prove appropriate Hölder continuity of the
solution operator u 7−→ w(u) in Section 4. In Section 5, we investigate the local wellposedness of
(1.1a) for u with abstract coefficients involving w(u) by using techniques for quasilinear parabolic
equations.

1.1 Outline

Note that system (1.1) can be written, as long as w > 0 (no quenching occurs), as a coupled system
in the form

∂u

∂t
=

1

w
∇ ·
(
w3u∇u

)
− v

w
u, x ∈ Ω, t ≥ 0; (1.6a)

∂v

∂t
= ∆w −∆2w − βF

w2
+ βp(u− 1), x ∈ Ω, t ≥ 0; (1.6b)

∂w

∂t
= v, x ∈ Ω, t ≥ 0; (1.6c)

with the initial values u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω and boundary values
u(x, t) = θ1, w(x, t) = θ2, ∆w(x, t) = 0, x ∈ ∂Ω, t ≥ 0, where the initial values are compatible
with the boundary conditions, i.e. u0(x) = θ1, w0(x) = θ2 and ∆w0(x) = 0 for all x ∈ ∂Ω,
moreover, u0 ∈ H2+σ(Ω) with σ ∈ (0, 1), v0 ∈ H2(Ω) ∩ H1

0 (Ω) and w0 ∈ H4(Ω), then look for a
unique strict solution (u, v, w) of the coupled system (1.6) for short time. Section 3 shows that there
exists a unique solution (v, w) of the sub-system (1.6b), (1.6c) for arbitrarily given but appropriately
regular u, initial values v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω and boundary values w(x, t) = θ2,
∆w(x, t) = 0, x ∈ ∂Ω, t ≥ 0, then Section 4 establishes relevant properties of solution operators
u 7−→ v = v(u), u 7−→ w = w(u) for short time T such as:

Theorem 1.3. The solution operator

W : C ([0, T ] , BH2(u0, r)) −→ C ([0, T ] , BL2(v0, r)×BH2(w0, r))

u 7−→W (u) = (v, w) = (v(u), w(u))

is Lipschitz continuous with respect to u, i.e.

∥W (u1)−W (u2)∥C([0,T ];L2(Ω)×H2(Ω)) ≤ LW ∥u1 − u2∥C([0,T ];H2(Ω)), (1.7)
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where r > 0 is sufficiently small, LW > 0 is a Lipschitz constant,

BH2(U, r) =
{
f ∈ H2(Ω) : f |∂Ω = U |∂Ω, ∥f − U∥H2(Ω) ≤ r

}
,

BL2(V, r) =
{
f ∈ L2(Ω) : ∥f − V ∥L2(Ω) ≤ r

}
.

Corollary 1.4. For u ∈ C ([0, T ];BH2(u0, r)) and a small radius r > 0, the Fréchet derivative W ′(u)
of W (u), given by

W ′(u) : C
(
[0, T ];H2(Ω) ∩H1

0 (Ω)
)
−→ C

(
[0, T ];L2(Ω)×

{
H2(Ω) ∩H1

0 (Ω)
})
,

q 7−→W ′(u)q = (v′(u)q, w′(u)q)

is Lipschitz continuous with respect to u, i.e. for ∥q∥C([0,T ];H2(Ω)) ≤ 1,

∥W ′(u1)q −W ′(u2)q∥C([0,T ];L2(Ω)×H2(Ω)) ≤ LF ∥u1 − u2∥C([0,T ];H2(Ω)) . (1.8)

Here LF is a Lipschitz constant.

Corollary 1.5. If r > 0 is small and u ∈ Cα ([0, T ];BH2(u0, r)), setting ũ0 = u0 − θ1, then there
exists a Lipschitz constant LM > 0, such that

sup
0≤t<t+h≤T

∥[W ′(u)q](t+ h)− [W ′(u)q](t)∥L2(Ω)×H2(Ω) ≤h
αLM ∥q∥C([0,T ];H2(Ω))

+hαTLM ∥q∥Cα([0,T ];H2(Ω))

holds for all q ∈ Cα ([0, T ];BH2(ũ0, r)).

Section 5 shows an existence result for the coupled system (1.1). The strategy of proof is to
reformulate the system (1.1) as the quasilinear parabolic equation with abstract coefficients involving
v(u) and w(u)

∂u

∂t
=

1

w(u)
∇ ·
(
[w(u)]3u∇u

)
− v(u)

w(u)
u, (x, t) ∈ Ω× (0, T ), (1.9a)

u(x, 0) = u0(x), x ∈ Ω, u(x, t) = θ1, (x, t) ∈ ∂Ω× [0, T ], (1.9b)

and then show the solution of (1.9) exists as long as (v(u), w(u)) ∈ C ([0, T ];BL2(v0, r)×BH2(w0, r))
for small r > 0 and T > 0 by using a contraction mapping argument.

We set ũ = u− θ1, where ũ(t) : Ω −→ R, x 7−→ [ũ(t)](x) = ũ(x, t), ∀ t ∈ [0, T ],

F (ũ) =
1

w(ũ+ θ1)
∇ ·
(
[w(ũ+ θ1)]

3(ũ+ θ1)∇ũ
)
− v(ũ+ θ1)

w(ũ+ θ1)
(ũ+ θ1),

and start the argument with the definition of linearization P∗ of F (ũ) around ũ0,

P∗ : D (P∗) ⊆ H2(Ω) ∩H1
0 (Ω) −→ L2(Ω),

P∗ψ =
1

w0
∇ ·
{
w3

0u0∇ψ +
(
w3

0∇u0
)
ψ
}
− v0
w0
ψ,

then we show that the operator P∗ generates an analytic semigroup
{
etP

∗
: t ≥ 0

}
and rewrite (1.9)

in the form of
ũ′(t) = P∗ũ(t) + [F (ũ)](t)− P∗ũ(t), t ∈ (0, T ), ũ(0) = ũ0. (1.10)

In order to prove the existence result for the nonlinear problem (1.10), we shall need the following
Hölder result which is deduced from Theorem 1.3, Corollary 1.4 and Corollary 1.5.

Lemma 1.6. If ũ, q ∈ Cα ([0, T ];BH2 (ũ0, r)), then there exist postive constants LA and LB, such
that for all 0 ≤ t < t+ h ≤ T ,

∥[F (ũ)] (t+ h)− [F (ũ)] (t)∥L2(Ω) ≤
{
[ũ+ θ1]Cα([0,T ];H2(Ω)) + LU

}
LAh

α, (1.11)

∥[F ′(ũ)q] (t+ h)− [F ′(ũ)q] (t)− P∗ [q(t+ h)− q(t)]∥L2(Ω)

≤hαTαLB ∥q∥Cα([0,T ];H2(Ω)) + hαTαLB ∥ũ+ θ1∥Cα([0,T ];H2(Ω)) ∥q∥Cα([0,T ];H2(Ω))

+hαLB ∥q∥C([0,T ];H2(Ω)) + hαLB ∥ũ+ θ1∥Cα([0,T ];H2(Ω)) ∥q∥C([0,T ];H2(Ω)) . (1.12)
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We are going to show that the existence of a unique strict solution of (1.10) by proving there
exists Tmax > 0, such that the nonlinear map Γ defined by

Γ(ũ(t)) = etP
∗
ũ0 +

∫ t

0

e(t−s)P∗
{[F (ũ)](s)− P∗ũ(s)} ds, t ∈ [0, T ], (1.13)

is a contractive map and has a unique fixed point in Cα
(
[0, T ];H2(Ω) ∩H1

0 (Ω)
)
for T ∈ [0, Tmax)

and α ∈ (0, 1). To prove the assertion, we define

Y =
{
ũ ∈ Cα

(
[0, T ];H2(Ω) ∩H1

0 (Ω)
)
: ũ(0) = ũ0, ∥ũ(·)− ũ0∥Cα([0,T ];H2(Ω)) ≤ r

}
,

with small r > 0, by using the Hölder results in Lemma 1.6, we deduce that, there is Tmax > 0, such
that, for T ∈ (0, Tmax), small r > 0 and α ∈ (0, 1), Γ is a contractive map which maps Y to itself,
i.e. ũ1, ũ2 ∈ Y ,

∥Γũ1 − Γũ2∥Cα([0,T ];H2(Ω)) ≤
1

2
∥ũ1 − ũ2∥Cα([0,T ];H2(Ω)) , Γ(Y ) ⊆ Y.

By the Banach fixed point theorem, we conclude the existence of a unique fixed point in Y which is
a unique strict solution of (1.10) belonging to

Cα
(
[0, T ];H2(Ω) ∩H1

0 (Ω)
)
∩ Cα+1

(
[0, T ];L2(Ω)

)
,

by the regularity results of the evolution equation of parabolic type from [1, 21, 27].
Combining the existence and regularity results from Section 3 with the existence of a unique strict

solution of (1.10), we conclude the proof of Theorem 1.1.

2 Preliminaries

In this section, we first formulate some auxiliary results which will be useful in the proof of the main
theorem, with the proofs of Lemma 2.2, Lemma 2.3 and Lemma 2.4 being found in Appendix A. We
then state a general existence result for evolution equations and the regularity in time without proof.

2.1 Notations

Recall that βF , βp, θ1 and θ2 given positive constants. Let Ω be an open and bounded subset of Rn

with smooth boundary ∂Ω, n = 1, 2. Denote by C = C(Ω) a positive constant which may vary from
line to line below but only depends on Ω.

Definition 2.1. Denote by X a Banach space, with norm ∥·∥X , k ∈ N and T ∈ (0,∞). B(X) denotes
the space of bounded linear operators on X. In the following, we shall be particularly interested in
X = L2(Ω), L∞(Ω), Hk(Ω), etc. The space B([0, T ];X) consists of all measurable, almost everywhere
bounded functions u : [0, T ] −→ X, t 7−→ u(t), with norm ∥u∥B([0,T ];X) = supt∈[0,T ] ∥u(t)∥X . If X is
a function space as above, we write u(t) : Ω −→ R with x 7−→ [u(t)](x) = u(x, t). The closed subspace
of continuous functions is denoted by C([0, T ];X), and

Ck([0, T ];X) =
{
u : [0, T ] → X : dju

dtj ∈ C([0, T ];X), j ∈ [0, k]
}
, ∥u∥Ck([0,T ];X) = sup

t∈[0,T ]

k∑
j=0

∥∥∥dju(t)
dtj

∥∥∥
X
.

The definition extends to non-integer order k + α, α ∈ (0, 1), by setting

Cα([0, T ];X) =

{
u : [0, T ] → X : [u]Cα([0,T ];X) = sup

0≤t<t+h≤T

∥u(t+h)−u(t)∥X

|h|α <∞
}
,

∥u∥Cα([0,T ];X) = ∥u∥C([0,T ];X) + [u]Cα([0,T ];X).

Cα+k([0, T ];X) =
{
u ∈ Ck([0, T ];X) : dku

dtk
∈ Cα([0, T ];X)

}
,

∥u∥Cα+k([0,T ];X) = ∥u∥Ck([0,T ];X) +
[
dku
dtk

]
Cα([0,T ];X)

.
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Note that C ([0, T ];BL2 (V, r)) =
{
v ∈ C

(
[0, T ];L2 (Ω)

)
: sup
t∈[0,T ]

∥v(t)− V ∥H2(Ω) ≤ r
}
, V ∈ L2(Ω),

C ([0, T ];BH2 (U, r)) =
{
u ∈ C

(
[0, T ];H2 (Ω)

)
: u|∂Ω = U |∂Ω, sup

t∈[0,T ]

∥u(t)− U∥H2(Ω) ≤ r
}
,

Cα ([0, T ];BH2 (U, r)) =
{
u ∈ Cα

(
[0, T ];H2 (Ω)

)
: u|∂Ω = U |∂Ω, sup

t∈[0,T ]

∥u(t)− U∥H2(Ω) ≤ r
}

with U ∈ H2(Ω).
If P : D(P) ⊂ X → X is an unbounded linear operator which generates an analytic semigroup

ePt, we define intermediate space DP(α,∞) as follows:

DP(α,∞) =

{
v ∈ X : ∥v∥α = sup

t>0
∥t1−αPePtv∥X <∞

}
.

It is a Banach space with respect to the norm ∥v∥DP(α,∞) = ∥v∥X + ∥v∥α. Its closed subspace

DP(α) =
{
v ∈ X : limt→0 t

1−αPePtv = 0
}
inherits the norm of DP(α,∞).

Our main results on the wellposedness of the semilinear dispersive equation (1.1b) will be shown
by constructing a Picard iteration in the complete metric space Z(T ), given by

Z(T ) : =

{
(ṽ, w̃) ∈ C

(
[0, T ];L2(Ω)×H2(Ω)

)
: (ṽ(0), w̃(0)) = (ṽ0, w̃0) , w̃|∂Ω = w̃0|∂Ω,

sup
t∈[0,T ]

∥(ṽ(t)− ṽ0, w̃(t)− w̃0)∥L2(Ω)×H2(Ω) ≤ r

}
, where ṽ0 = v0, w̃0 = w0 − θ2. (2.1)

2.2 Useful Estimates

The estimates in this subsection are proven in Appendix A.

Lemma 2.2. There exists a constant C = C(Ω) > 0, such that for all

r ∈
(
0,

κ

2C

)
, (2.2)

w ∈ C ([0, T ];BH2 (w0, r)) has the lower bound such as

w(t) ≥ κ

2
, ∀ t ∈ [0, T ]. (2.3)

Moreover, for all w1, w2 ∈ C ([0, T ];BH2(w0, r)), there exist positive constants Ck, k = 1, 2, 3,
depending on Ω, κ and ∥w0∥H2(Ω), such that

sup
t∈[0,T ]

∥∥∥∥ 1

[w1(t)]k

∥∥∥∥
H2(Ω)

≤ Ck
1 , k = 1, 2, 3, (2.4)

sup
t∈[0,T ]

∥∥∥∥ 1

[w1(t)]k
− 1

[w2(t)]k

∥∥∥∥
H2(Ω)

≤ Ck sup
t∈[0,T ]

∥w1(t)− w2(t)∥H2(Ω) , k = 2, 3. (2.5)

Lemma 2.3. The nonlinear operator G, defined by

G : C ([0, T ];BH2 (w̃0, r)) −→ C([0, T ];H2(Ω)), w̃ 7−→ G(w̃)

[G(w̃)](t) = G(w̃(t)) = − βF
[w̃(t) + θ2]2

+ βp(θ1 − 1),

has the following properties:

sup
0≤t<t+h≤T

∥[G(w̃)](t+ h)− [G(w̃)](t)∥H2(Ω) ≤ LG sup
0≤t<t+h≤T

∥w̃(t+ h)− w̃(t)∥H2(Ω) , (2.6)

sup
t∈[0,T ]

∥[G(w̃1)](t)− [G(w̃2)](t)∥H2(Ω) ≤ LG sup
t∈[0,T ]

∥w̃1(t)− w̃2(t)∥H2(Ω) , (2.7)

sup
t∈[0,T ]

∥[G(w̃1)](t)−G(w̃0)∥H2(Ω) ≤ LGr. (2.8)
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Here LG = LG

(
Ω, κ, ∥w0∥H2(Ω), βF

)
is a constant.

Furthermore, the Fréchet derivative G′(w̃) of G(w̃) on w̃ ∈ C ([0, T ];BH2 (w̃0, r)), defined by

G′ (w̃) : C
(
[0, T ];H2(Ω) ∩H1

0 (Ω)
)
−→ C

(
[0, T ];H2(Ω) ∩H1

0 (Ω)
)
, q 7−→ G′ (w̃) q,

[G′ (w̃) q] (t) = [G′ (w̃(t))] q(t) =
2βF

(w̃(t) + θ2)
3 q(t),

satisfies
sup

t∈[0,T ]

∥[G′ (w̃) q] (t)∥H2(Ω) ≤ LG sup
t∈[0,T ]

∥q(t)∥H2(Ω) , (2.9)

and G′(w̃(t)) :
{
H2(Ω) ∩H1

0 (Ω)
}
−→

{
H2(Ω) ∩H1

0 (Ω)
}
satisfies

lim
h→0

sup
0≤t≤t+h≤T

0≤τ≤1

∥G′ (w̃(t) + τ [w̃(t+ h)− w̃(t)])−G′ (w̃(t))∥B(H2(Ω)) = 0. (2.10)

Lemma 2.4. Assume the operators u 7−→ v(u) and u 7−→ w(u), respectively given by

u 7−→ v(u) : C ([0, T ];BH2 (u0, r)) −→ C ([0, T ];BL2 (v0, r)) ,

u 7−→ w(u) : C ([0, T ];BH2 (u0, r)) −→ C ([0, T ];BH2 (v0, r)) ,

satisfy, for all u1, u2 ∈ C ([0, T ];BH2 (u0, r)),

sup
t∈[0,T ]

∥[v(u1)](t)− [v(u2)](t)∥L2(Ω) ≤ LW sup
t∈[0,T ]

∥u1(t)− u2(t)∥H2(Ω),

sup
t∈[0,T ]

∥[w(u1)](t)− [w(u2)](t)∥H2(Ω) ≤ LW sup
t∈[0,T ]

∥u1(t)− u2(t)∥H2(Ω).

Then f(u), defined by

u 7−→ f(u) : C ([0, T ];BH2 (u0, r)) −→ C([0, T ];L2(Ω)), f(u) =
1

w(u)
∇ ·
(
[w(u)]3u∇u

)
− v(u)

w(u)
u,

is Lipschitz continuous in u,

sup
t∈[0,T ]

∥[f(u1)](t)− [f(u2)](t)∥L2(Ω) ≤ Le sup
t∈[0,T ]

∥u1(t)− u2(t)∥H2(Ω). (2.11)

Here LW and Le are Lipschitz constants, and Le depends on LW , Ω, κ, ∥u0∥H2(Ω), ∥v0∥L2(Ω),

∥w0∥H2(Ω).

2.3 Properties of Evolution Equations

We recall standard notions and results for abstract evolution equations.

Definition 2.5. Let X be a Banach space, A : D(A) ⊂ X → X a linear, unbounded operator which
generates a strongly continuous semigroup (C0-semigroup) {T (t) : t ≥ 0}. Further, let T ∈ (0,∞),
G ∈ C([0, T ];X) and Φ0 ∈ X. A function Φ is called a mild solution of the inhomogeneous evolution
equation

Φ′(t) = AΦ(t) + G(t), t ∈ [0, T ], Φ(0) = Φ0, (2.12)

if Φ ∈ C([0, T ];X) is given by the integral formulation

Φ(t) = T (t)Φ0 +

∫ t

0

T (t− s)G(s)ds, t ∈ [0, T ]. (2.13)

A function Φ is said to be a strict solution of (2.12), if Φ ∈ C([0, T ];D(A)) ∩ C1([0, T ];X) is given
by the integral formulation (2.13) and satisfies (2.12).
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Lemma 2.6. Let the linear operator A defined on a Banach space X generate the C0-semigroup
{T (t) : t ≥ 0}, T ∈ (0,∞), and Φ0 ∈ D(A). If G ∈ C([0, T ];X) and Φ is a solution of the
inhomogeneous evolution equation (2.12), then Φ is given by the integral formulation (2.13).

Assume either that G ∈ C([0, T ];D(A)) or that G ∈ C1([0, T ];X). Then the mild solution Φ
defined by (2.13) uniquely solves the inhomogeneous evolution equation (2.12) on [0, T ], and

Φ ∈ C([0, T ];D(A)) ∩ C1([0, T ];X).

The proof of Lemma 2.6 is given in [15], Theorem 6.9.

Lemma 2.7. Let X be a Banach space and Φ ∈ C([0, T ];X) be differentiable from the right with right
derivative Ψ ∈ C ([0, T ];X). Then Φ ∈ C1 ([0, T ];X) and Φ′ = Ψ.

The proof of Lemma 2.7 is given in [15], Lemma 8.9.

3 Wellposedness of the Dispersive Equation

Refined Analysis of the Dispersive Equation

Denote by H2
∗ (Ω) := H2(Ω)∩H1

0 (Ω), H
4
∗ (Ω) :=

{
χ ∈ H4(Ω) : χ|∂Ω = ∆χ|∂Ω = 0

}
. Take T ∈ (0,∞)

to be specified below. We first introduce a state a = (a1, a2) and a state space

X = L2(Ω)×H2
∗ (Ω) (3.1)

with its norm ∥ · ∥X = ∥·∥L2(Ω)×H2(Ω) and its scalar product

⟨a,b⟩X =

∫
Ω

a1 · b1 +∇a2 · ∇b2 +∆a2 ·∆b2 dx, a = (a1, a2) ∈ X, b = (b1, b2) ∈ X.

We then define a linear operator A by

D(A) :=
{
ϕ ∈ H2

∗ (Ω) : ∃ f ∈ L2(Ω), ∀ ψ ∈ H2
∗ (Ω), s.t.

∫
Ω

∇ϕ · ∇ψ +∆ϕ ·∆ψdx =

∫
Ω

f · ψdx
}
,

Aϕ :=− f, where f is given by D(A), ∥ϕ∥D(A) := ∥ϕ∥L2(Ω) + ∥Aϕ∥L2(Ω) . (3.2)

It is easy to see that ∆ϕ|∂Ω = 0 for all ϕ ∈ D(A), and from elliptic regularity theory, it follows that

D(A) =
{
χ ∈ H4(Ω) : χ|∂Ω = ∆χ|∂Ω = 0

}
= H4

∗ (Ω), ∥χ∥D(A) ≃ ∥χ∥H4(Ω). (3.3)

We further define the linear operator A with its domain D(A) and its graph norm ∥ · ∥D(A) by

A =

(
0 A
1 0

)
, D(A) = H2

∗ (Ω)×H4
∗ (Ω), (3.4a)

∥a∥D(A) := ∥a∥X + ∥Aa∥X ≃ ∥a1∥H2(Ω) + ∥a2∥H4(Ω), a = (a1, a2) ∈ D(A). (3.4b)

We now consider the initial-boundary problem of semilinear fourth-order equation (1.1b) on the
unknown function w with an arbitrarily given but fixed u ∈ C ([0, T ];BH2 (u0, r)), initial values

w(x, 0) = w0(x),
∂w

∂t
(x, 0) = v0(x), x ∈ Ω, (3.5)

and pinned boundary conditions

w(x, t) = θ2, ∆w(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ]. (3.6)

We set w̃(x, t) = w(x, t)−θ2, where w̃(t) : Ω −→ R, x 7−→ [w̃(t)](x) = w̃(x, t). Note that the operator
A, defined in (3.2), is a realisation of the differential expression ∆−∆2 from equation (1.1b) for the
pinned boundary conditions w̃(x, t) = 0, ∆w̃(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T ]. Using the definition of A,
we rewrite (1.1b) with (3.5) and (3.6) as the equation (3.7) for the unknown function w̃:

w̃
′′
(t) = Aw̃(t)− βF

(w̃(t) + θ2)2
+ βp(ũ(t) + θ1 − 1), t ∈ [0, T ], w̃(0) = w̃0, w̃

′(0) = ṽ0, (3.7)
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where w̃′ and w̃
′′
respectively denote the first and second derivative of the unknown function w̃

with respect to t ∈ [0, T ], ũ = u − θ1 is given in C ([0, T ];BH2 (ũ0, r)) with ũ0 = u0 − θ1, ṽ0 = v0,
w̃0 = w0 − θ1 and ũ0(x) = w̃0(x) = 0 for all x ∈ ∂Ω. We further introduce a new time-dependent
state Φ(t) = (φ1(t), φ2(t)), t ∈ [0, T ], and set

[G(φ2)](t) = − βF
(φ2(t) + θ2)2

+ βp(θ1 − 1), G = [G (Φ)] (t) = ([G (φ2)] (t) + βpũ(t), 0) , (3.8)

Φ0 = (ṽ0, w̃0) ∈ D(A). (3.9)

We are going to prove that the semilinear fourth-order equation (3.7) has a unique strict solution
by showing Lemma 3.1, Lemma 3.2, Theorem 3.3, Corollary 3.4, Corollary 3.5 and Theorem 3.6 in
Appendix B. This would conclude the wellposedness of the dispersive equation (1.1b).

Lemma 3.1. Let given ũ ∈ C ([0, T ];BH2 (ũ0, r)) ∩ C1
(
[0, T ];L2(Ω)

)
, A and G be defined by (3.4)

and (3.8) respectively. The semilinear fourth-order equation (3.7) has a unique solution

w̃ ∈ C2
(
[0, T ];L2(Ω)

)
∩ C1

(
[0, T ];H2

∗ (Ω)
)
∩ C

(
[0, T ];H4

∗ (Ω)
)

if and only if the semilinear evolution equation

Φ′(t) = AΦ(t) + [G (Φ)] (t), t ∈ [0, T ], Φ(0) = Φ0, (3.10)

has a unique solution
Φ ∈ C([0, T ];D(A)) ∩ C1([0, T ];X).

If this is the case, we have Φ = (w̃′, w̃).

Lemma 3.2. Let Ω be an open and bounded subset of Rn with smooth boundary ∂Ω, n = 1, 2. Then
the linear operator A, defined by (3.4), generates a strongly continuous semigroup (C0-semigroup)
{T (t) ∈ B (X) : t ∈ [0,∞)}.
Theorem 3.3. For r ∈

(
0, κ

2C

)
, there exist T0 > 0, such that for T ∈ (0, T0) and given function

ũ ∈ C ([0, T ];BH2 (ũ0, r)), the semilinear evolution equation (3.11) on (ṽ, w̃),(
ṽ′(t)
w̃′(t)

)
= A

(
ṽ(t)
w̃(t)

)
+

(
[G(w̃)](t) + βpũ(t),

0

)
, t ∈ [0, T ],

(
ṽ(0)
w̃(0)

)
=

(
ṽ0
w̃0

)
, (3.11)

has a unique mild solution (ṽ, w̃) ∈ C
(
[0, T ];L2(Ω)×H2

∗ (Ω)
)
defined by(

ṽ(t)
w̃(t)

)
= T (t)

(
ṽ0
w̃0

)
+

∫ t

0

{
T (t− s)

(
[G(w̃)](s) + βpũ(s)

0

)}
ds. (3.12)

Corollary 3.4. Let T ∈ (0, T0) and ũ ∈ C ([0, T ];BH2 (ũ0, r)) ∩ C1
(
[0, T ];L2(Ω)

)
. Then the mild

solution of the semilinear evolution equation (3.11), (ṽ, w̃) : [0, T ] −→ L2(Ω)×H2
∗ (Ω), defined by the

integral form (3.12), is locally Lipschitz continuous with respect to t ∈ [0, T ], i.e. ∀ h ∈ (0, T ],

sup
0≤t<t+h≤T

∥∥∥∥( ṽ(t+ h)− ṽ(t)
w̃(t+ h)− w̃(t)

)∥∥∥∥
L2(Ω)×H2(Ω)

≤ LV h. (3.13)

Here LV is a Lipschitz constant depending on βF , βp, T0, κ, Ω, ∥ũ0∥H2(Ω), ∥w̃0∥H2(Ω),

∥(ṽ0, w̃0)∥D(A), M0 = sup
t∈[0,∞)

∥T (t)∥B(L2(Ω)×H2(Ω)), ∥ũ∥C1([0,T0);L2(Ω)).

Corollary 3.5. If α ∈ (0, 1), T ∈ (0, T0) and given ũ ∈ Cα ([0, T ];BH2(ũ0, r)), then the mild solution
of the semilinear evolution equation (3.11), (ṽ, w̃) : [0, T ] −→ L2(Ω)×H2

∗ (Ω), defined by the integral
formulation (3.12), is locally Hölder continuous with exponent α with respect to t ∈ [0, T ], i.e.

sup
0≤t<t+h≤T

∥∥∥∥( ṽ(t+ h)− ṽ(t)
w̃(t+ h)− w̃(t)

)∥∥∥∥
L2(Ω)×H2(Ω)

≤ LUh
α, ∀ h ∈ (0, T ]. (3.14)

Here LU is a Lipschitz constant depending on α, T0, κ, Ω, βp, βF , ∥ũ0∥H2(Ω), ∥w̃0∥H2(Ω),

∥(ṽ0, w̃0)∥D(A) and M0 = sup
t∈[0,∞)

∥T (t)∥B(L2(Ω)×H2(Ω)).

Theorem 3.6. For given ũ ∈ C ([0, T ];BH2 (ũ0, r)) ∩ C1
(
[0, T ];L2(Ω)

)
and T ∈ (0, T0), the mild

solution (ṽ, w̃) of the semilinear evolution equation (3.11), defined by the integral form (3.12), is the
strict solution of equation (3.11) and

(ṽ, w̃) ∈ C1
(
[0, T ];L2(Ω)×H2

∗ (Ω)
)
∩ C

(
[0, T ];H2

∗ (Ω)×H4
∗ (Ω)

)
.
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4 Solution Operators

Theorem 4.1. Let T0 be given by Theorem 3.3 and T ∈ (0, T0). Then a solution operator, given by

W1 : C ([0, T ];BH2 (ũ0, r)) −→ Z(T ), ũ 7−→W1(ũ) = (ṽ, w̃) = (ṽ(ũ), w̃(ũ)) , r ∈
(
0,

κ

2C

)
with

[W1(ũ)](t) = T (t)

(
ṽ0
w̃0

)
+

∫ t

0

{
T (t− s)

(
[G(w̃)](s) + βpũ(s)

0

)}
ds, t ∈ [0, T ].

has Lipschitz continuity, i.e.

sup
t∈[0,T ]

∥[W1(ũ1)](t)− [W1(ũ2)](t)∥L2(Ω)×H2(Ω) ≤ LW sup
t∈[0,T ]

∥ũ1(t)− ũ2(t)∥H2(Ω). (4.1)

Here LW is a Lipschitz constant depending on T0, M0 = sup
t∈[0,∞)

∥T (t)∥B(L2(Ω)×H2(Ω)), κ, ∥w0∥H2(Ω),

Ω, and the coefficients βp and βF . Furthermore, let

W2 : C ([0, T ];BH2 (ũ0, r)) −→ C([0, T ];L2(Ω)), ũ 7−→ ṽ

w̃ + θ2
.

Then W2(ũ) also depends Lipschitz-continuously on ũ ∈ C ([0, T ];BH2 (ũ0, r)), i.e.

sup
t∈[0,T ]

∥[W2(ũ1)](t)− [W2(ũ2)](t)∥L2(Ω) ≤ LW2 sup
t∈[0,T ]

∥ũ1(t)− ũ2(t)∥H2(Ω), (4.2)

where LW2 is a Lipschitz constant depending on above LW and ∥ṽ0∥L2(Ω).

Proof. For T ∈ (0, T0), ũ1, ũ2 ∈ C ([0, T ];BH2 (ũ0, r)), W1(ũ1) = (ṽ1, w̃1), W1(ũ2) = (ṽ2, w̃2) belong
to Z(T ), then it folows that

[G(w̃1)](t)− [G(w̃2)](t) + βpũ1(t)− βpũ2(t) ∈ H2(Ω), ∀ t ∈ [0, T ],

and one can have the following estimates

∥[W1(ũ1)](t)− [W1(ũ2)](t)∥L2(Ω)×H2(Ω)

=

∥∥∥∥∫ t

0

T (t− s)

(
[G(ũ1, w̃1)](s)− [G(ũ2, w̃2)](s)

0

)
ds

∥∥∥∥
L2(Ω)×H2(Ω)

≤M0

∫ t

0

∥[G(w̃1)](s)− [G(w̃2)](s) + βp [ũ1(s)− ũ2(s)]∥L2(Ω) ds

≤M0

∫ t

0

∥[G(w̃1)](s)− [G(w̃2)](s) + βp [ũ1(s)− ũ2(s)]∥H2(Ω) ds, (4.3)

where M0 is a operator norm of
{
T (t) ∈ B

(
L2(Ω)×H2

∗ (Ω)
)
: t ∈ [0,∞)

}
. We notice that,

∥w̃1(t)− w̃2(t)∥H2(Ω) ≤
∥∥∥∥( ṽ1(t)− ṽ2(t)
w̃1(t)− w̃2(t)

)∥∥∥∥
L2(Ω)×H2(Ω)

= ∥[W1(ũ1)](t)− [W1(ũ2)](t)∥L2(Ω)×H2(Ω), ∀ t ∈ [0, T ]. (4.4)

Hence combining (4.4) with the Lipschitz continuity estimate (2.7) of G from Lemma 2.3 gives

∥[G(w̃1)](s)− [G(w̃2)](s) + βp [ũ1(s)− ũ2(s)]∥H2(Ω)

≤LG∥[W1(ũ1)](s)− [W1(ũ2)](s)∥L2(Ω)×H2(Ω) + βp ∥ũ1(s)− ũ2(s)∥H2(Ω) , ∀ 0 ≤ s ≤ t ≤ T.

Hence

∥[W1(ũ1)](t)− [W1(ũ2)](t)∥L2(Ω)×H2(Ω)

≤T0M0βp sup
t∈[0,T ]

∥ũ1(t)− ũ2(t)∥H2(Ω) +M0LG

∫ t

0

∥[W1(ũ1)](s)− [W1(ũ2)](s)∥L2(Ω)×H2(Ω)ds.
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Gronwall’s inequality implies

sup
t∈[0,T ]

∥[W1(ũ1)](t)− [W1(ũ2)](t)∥L2(Ω)×H2(Ω) ≤ T0M0βpe
M0LGT0 sup

t∈[0,T ]

∥ũ1(t)− ũ2(t)∥H2(Ω).

Consequently we conclude (4.1) by setting

LW = T0M0βpe
M0LGT0 .

Since LG is the Lipschitz constant depending on κ, ∥w0∥H2(Ω), Ω, the coefficient βF , thus LW depends
on T0, M0, κ, ∥w0∥H2(Ω), Ω, and the coefficients βp and βF , that is

LW = LW

(
T0, M0, κ, ∥w0∥H2(Ω), Ω, βp, βF

)
.

From the conclusion (2.3) from Lemma 2.2, we conclude that there exists a constant C = C(Ω), such
that for all r ∈

(
0, κ

2C

)
,

w̃1(t) + θ2 ≥ κ

2
, w̃2(t) + θ2 ≥ κ

2

holds for all t ∈ [0, T ]. Then for above constant C = C(Ω) and all t ∈ [0, T ], we obtain∥∥∥∥ ṽ1(t)− ṽ2(t)

w̃1(t) + θ2

∥∥∥∥
L2(Ω)

=

[∫
Ω

∣∣∣∣ ṽ1(t)− ṽ2(t)

w̃1(t) + θ2

∣∣∣∣2 dx
] 1

2

≤ 2

κ
∥ṽ1(t)− ṽ2(t)∥L2(Ω) ,

and therefore∥∥∥∥ ṽ2(t)

w̃1(t) + θ2
− ṽ2(t)

w̃2(t) + θ2

∥∥∥∥2
L2(Ω)

=

∫
Ω

|ṽ2(t)|2
∣∣∣∣ 1

w̃1(t) + θ2
− 1

w̃2(t) + θ2

∣∣∣∣2 dx
=

∫
Ω

|ṽ2(t)|2
|w̃1(t)− w̃2(t)|2

|w̃1(t) + θ2|2 |w̃2(t) + θ2|2
dx

≤ 24

κ4

∫
Ω

|ṽ2(t)|2 |w̃1(t)− w̃2(t)|2 dx

≤ 24

κ4
∥w̃1(t)− w̃2(t)∥2L∞(Ω)

∫
Ω

|ṽ2(t)|2 dx

≤ 24C2

κ4
∥w̃1(t)− w̃2(t)∥2H2(Ω)

∫
Ω

|ṽ2(t)|2 dx.

This shows

∥[W2(ũ1)](t)− [W2(ũ2)](t)∥L2(Ω))

≤
∥∥∥∥ ṽ1(t)− ṽ2(t)

w̃1(t) + θ2

∥∥∥∥
L2(Ω)

+

∥∥∥∥ ṽ2(t)

w̃1(t) + θ2
− ṽ2(t)

w̃2(t) + θ2

∥∥∥∥
L2(Ω)

≤ 2

κ
∥ṽ1(t)− ṽ2(t)∥L2(Ω) +

4C

κ2
∥w̃1(t)− w̃2(t)∥H2(Ω) ∥ṽ2(t)∥L2(Ω)

≤ 2

κ
∥ṽ1(t)− ṽ2(t)∥L2(Ω) +

4C

κ2
∥w̃1(t)− w̃2(t)∥H2(Ω)

(
∥ṽ0∥L2(Ω) + r

)
≤ 2

κ
∥ṽ1(t)− ṽ2(t)∥L2(Ω) +

4C

κ2
∥w̃1(t)− w̃2(t)∥H2(Ω)

(
∥ṽ0∥L2(Ω) +

κ

2C

)
. (4.5)

We set

LW2 = LW ·max

{
2

κ
,
4C

κ2

(
∥ṽ0∥L2(Ω) +

κ

2C

)}
,

and LW2
depends on above LW and ∥ṽ0∥L2(Ω), that is

LW2 = LW2

(
LW1 , ∥ṽ0∥L2(Ω)

)
.

Using estimates (4.1) and (4.5), we conclude (4.2).
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Fréchet derivative

For T ∈ (0, T0). Recall that u = ũ+θ1, v = ṽ and w = w̃+θ2. According to the integral form (3.12),
the solution operator given by

W : C ([0, T ];BH2(u0, r)) −→ C ([0, T ];BL2(v0, r)×BH2(w0, r)) ,

u 7−→W (u) = (v, w) = (v(u), w(u)) ,
(4.6a)

with

[W (u)] (t) =

(
0
θ2

)
+ T (t)

(
v0

w0 − θ2

)
+

∫ t

0

{
T (t− s)

(
[G(w − θ2)](s) + βp(u(s)− θ1)

0

)}
ds, (4.6b)

similarly satisfies the following Lipschitz continuity

sup
t∈[0,T ]

∥[W (u1)](t)− [W (u2)](t)∥L2(Ω)×H2(Ω) ≤ LW sup
t∈[0,T ]

∥u1(t)− u2(t)∥H2(Ω), (4.7)

where LW is a Lipschitz constant depending on T0, M0, κ, ∥w0∥H2(Ω), Ω, βp and βF .

Let λ ∈ R be small such that, for any q ∈ C
(
[0, T ];H2

∗ (Ω)
)
, u+ λq ∈ C ([0, T ];BH2(u0, r)), then

according to the definition of the Fréchet derivative W ′(u) of W (u) on u,

W ′(u)q = lim
λ→0

1

λ
[W (u+ λq)−W (u)] , (4.8)

W ′(u) is a map defined by

W ′(u) : C
(
[0, T ];H2

∗ (Ω)
)
−→ C

(
[0, T ];L2(Ω)×H2

∗ (Ω)
)
, (4.9a)

with
q 7−→W ′(u)q = (v′(u)q, w′(u)q) . (4.9b)

(4.7) implies that the Fréchet derivative W ′(u) of W (u) with respect to u exists and

sup
t∈[0,T ]

∥[W ′(u)q] (t)∥L2(Ω)×H2(Ω) ≤ LW sup
t∈[0,T ]

∥q(t)∥H2(Ω) , (4.10a)

sup
t∈[0,T ]

∥[W ′(u)q](t)∥L2(Ω)×H2(Ω) ≤ LW , ∀ q ∈ C ([0, T ];BH2(0, 1)) . (4.10b)

Corollary 4.2. For any given q ∈ C ([0, T ];BH2(0, 1)) and u1, u2 ∈ C ([0, T ];BH2(u0, r)) with
T ∈ (0, T0), the Fréchet derivative W ′(u) of W (u) satisfies

sup
t∈[0,T ]

∥[W ′(u1)q](t)− [W ′(u2)q](t)∥L2(Ω)×H2(Ω) ≤ LF sup
t∈[0,T ]

∥u1(t)− u2(t)∥H2(Ω) . (4.11)

Here LF is a Lipschitz constant depending on T0, Ω, βp, βF , M0, κ, ∥w0∥H2(Ω) and ∥v0∥L2(Ω).

Proof. From Lemma 3.2, the linear operator A generates a C0-semigroup{
T (t) =

(
T11(t) T12(t)
T21(t) T22(t)

)
∈ B

(
L2(Ω)×H2

∗ (Ω)
)
: t ∈ [0,∞)

}
.

Because [G(w − θ2)](s) + βp(u(s)− θ1) = −βF [w(s)]−2 + βp(u(s)− 1), the integral form (4.6b) then
implies the second component w of W (u) = (v, w) = (v(u), w(u)) is given by

w(t) = [w(u)] (t)

=θ2 + T21(t)v0 + T22(t) (w0 − θ2) +

∫ t

0

T21(t− s)

(
βp(u(s)− 1)− βF

[w(u)]2(s)

)
ds.

Following this definition and the definitions (4.8) and (4.9) of the Fréchet derivative W ′(u) =
(v′(u), w′(u)), the Fréchet derivative w′(u) of w(u) on u, which is also the second component of
the Fréchet derivative W ′(u), is written as follows:

w′(u) : C
(
[0, T ];H2

∗ (Ω)
)
−→ C

(
[0, T ];H2

∗ (Ω)
)
, (4.12a)
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where

[w′(u)q](t) =

∫ t

0

T21(t− s)

{
βpq(s) + 2βF

[w′(u)q](s)

[w(u)]3(s)

}
ds. (4.12b)

We next show that there exists a Lipschitz constant LF2
depending on T0, M0, κ, ∥w0∥H2(Ω), Ω, βp

and βF , such that

sup
t∈[0,T ]

∥[w′(u1)q](t)− [w′(u2)q](t)∥H2(Ω) ≤ LF2 sup
t∈[0,T ]

∥u1(t)− u2(t)∥H2(Ω). (4.13)

Letting u1, u2 ∈ C ([0, T ];BH2(u0, r)), the definiton (4.6) of the solution operator W implies that
(v1, w1) = (v(u1), w(u1)), (v2, w2) = (v(u2), w(u2)) ∈ C ([0, T ];BL2(v0, r)×BH2(w0, r)), then one
obtains w1(t), w2(t) ∈ H2(Ω). Because of the definitions (4.8) and (4.9) of Fréchet derivative W

′
(u),

W ′(u1)q = (v′(u1)q, w
′(u1)q) , W ′(u2)q = (v′(u2)q, w

′(u2)q) ∈ C
(
[0, T ];L2(Ω)×H2

∗ (Ω)
)
.

Hence with

wI(t) := [w′(u1)q](t) ∈ H2
∗ (Ω), wJ(t) := [w′(u2)q](t) ∈ H2

∗ (Ω), ∀ t ∈ [0, T ],

we find
[w′(u1)q](t)

[w(u1)]3(t)
− [w′(u2)q](t)

[w(u2)]3(t)
=

wI(t)

[w1(t)]3
− wJ(t)

[w2(t)]3
∈ H2

∗ (Ω), ∀ t ∈ [0, T ].

According to inequality (4.10),

sup
t∈[0,T ]

∥wI(t)∥H2(Ω) = sup
t∈[0,T ]

∥[w′(u1)q](t)∥H2(Ω) ≤ LW .

The Lipschitz continuity estimate (4.7) implies that

∥w1(t)− w2(t)∥H2(Ω) = ∥[w(u1)](t)− [w(u2)](t)∥H2(Ω) ≤ LW ∥u1(t)− u2(t)∥H2(Ω) . (4.14)

The algebraic properties of H2(Ω), i.e. Lemma A.1, estimates (2.4) and (2.5) of Lemma 2.2, and
above (4.14) imply∥∥∥∥ wI(t)

[w1(t)]3
− wJ(t)

[w2(t)]3

∥∥∥∥
H2(Ω)

≤∥wI(t)∥H2(Ω) ·
∥∥∥∥ 1

[w1(t)]3
− 1

[w2(t)]3

∥∥∥∥
H2(Ω)

+ ∥wI(t)− wJ(t)∥H2(Ω) ·
∥∥∥∥ 1

[w2(t)]3

∥∥∥∥
H2(Ω)

≤LWC3 ∥w1(t)− w2(t)∥H2(Ω) + C3
1 ∥wI(t)− wJ(t)∥H2(Ω)

≤L2
WC3 ∥u1(t)− u2(t)∥H2(Ω) + C3

1 ∥wI(t)− wJ(t)∥H2(Ω) . (4.15)

Combining (4.15) with the form (4.12) of the Fréchet derivative w′(u)q of w(u) on u gives

∥wI(t)− wJ(t)∥H2(Ω) =

∥∥∥∥2βF ∫ t

0

T21(t− s)

(
wI(s)

[w1(s)]3
− wJ(s)

[w2(s)]3

)
ds

∥∥∥∥
H2(Ω)

≤2βF

∫ t

0

sup
0≤s≤t

∥T21(t− s)∥B(L2(Ω),H2(Ω))

∥∥∥∥ wI(s)

[w1(s)]3
− wJ(s)

[w2(s)]3

∥∥∥∥
L2(Ω)

ds

≤2βFM0

∫ t

0

∥∥∥∥ wI(s)

[w1(s)]3
− wJ(s)

[w2(s)]3

∥∥∥∥
H2(Ω)

ds

≤2βFM0L
2
WC3T0∥u1(t)− u2(t)∥H2(Ω)

+2βFM0C
3
1

∫ t

0

∥wI(s)− wJ(s)∥H2(Ω) ds.

Consequently, according to Gronwall’s inequality,

∥wI(t)− wJ(t)∥H2(Ω) ≤ 2βFM0L
2
WC3T0e

2βFM0C
3
1T0∥u1(t)− u2(t)∥H2(Ω).
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Thus the estimate (4.13) holds by setting

LF2
= 2βFM0L

2
WC3T0e

2βFM0C
3
1T0 .

Similarly, there exists a Lipschitz constant LF1 = LF1

(
LF2 , ∥v0∥L2(Ω)

)
> 0, such that the Frechét

derivative v′(u) of the first component v(u) of W (u) on u, given by

[v′(u)q](t) =

∫ t

0

T11(t− s)

{
βpq(s) + 2βF

[w′(u)q](s)

[w(u)]3(s)

}
ds, (4.16)

is a map t −→ [v′(u)](t) from [0, T ] to C([0, T ];B
(
H2

∗ (Ω), L
2(Ω))

)
and satisfies

sup
t∈[0,T ]

∥[v′(u1)q](t)− [v′(u2)q](t)∥L2(Ω) ≤ LF1
sup

t∈[0,T ]

∥u1(t)− u2(t)∥H2(Ω). (4.17)

Let LF = max {LF1 , LF2}, and the assertion (4.11) follows from (4.13) and (4.17).

Corollary 4.3. Take T ∈ (0, T0), r ∈
(
0, κ

2C

)
, u0 ∈ H2(Ω) compatible with boundary condition,

u0 |∂Ω= θ1, and ũ0 = u0 − θ1 ∈ H2
∗ (Ω). If u ∈ Cα ([0, T ];BH2(u0, r)), then there exists a Lipschitz

constant LM depending on α, M0, T0, Ω, βF , βp, κ, ∥v0∥L2(Ω) and ∥w0∥H2(Ω), such that

sup
0≤t<t+h≤T

∥[W ′(u)q](t+ h)− [W ′(u)q](t)∥L2(Ω)×H2(Ω) ≤h
αLM sup

t∈[0,T ]

∥q(t)∥H2(Ω)

+hαTLM ∥q∥Cα([0,T ];H2(Ω)) (4.18)

holds for all q ∈ Cα([0, T ];BH2(ũ0, r)).

Proof. Let T ∈ (0, T0) and r ∈
(
0, κ

2C

)
. If the given function u belongs to Cα ([0, T ];BH2(u0, r)), also

u ∈ C ([0, T ];BH2(u0, r)), according to Theorem 3.3 and Corollary 3.5, it follows that the semilinear
fourth-order equation (1.1b) has a unique mild solution w(u) ∈ Cα ([0, T ];BH2(w0, r)) and w(u) can
be written by

[w(u)] (t) = θ2 + T21(t)v0 + T22(t) (w0 − θ2) +

∫ t

0

T21(t− s)

(
βp(u− 1)− βF

[w(u)]2(s)

)
ds.

The definitions (4.8) and (4.9) of the Fréchet derivative W ′(u) imply that the Fréchet derivative
w′(u) satisfies

[w′(u)q](t) =

∫ t

0

T21(t− s)

{
βpq(s) + 2βF

[w′(u)q](s)

[w(u)]3(s)

}
ds. (4.19)

We are going to show that there is a constant LM1
> 0, such that

∥[w′(u)q](t+ h)− [w′(u)q](t)∥H2(Ω) ≤ LM1
hα

{
sup

t∈[0,T ]

∥q(t)∥H2(Ω) + T ∥q∥Cα([0,T ];H2(Ω))

}
(4.20)

holds for ∀ 0 ≤ t < t+ h ≤ T, h ∈ (0, T ]. Because

[w′(u)q](t+ h)− [w′(u)q](t) =

∫ h

0

T21(t+ h− s)

{
βpq(s) + 2βF

[w′(u)q](s)

[w(u)]3(s)

}
ds

+

∫ t

0

T21(t− s)βp[q(s+ h)− q(s)]ds

+

∫ t

0

T21(t− s)2βF

{
[w′(u)q](s+ h)

[w(u)]3(s+ h)
− [w′(u)q](s)

[w(u)]3(s)

}
ds, (4.21)

q(t) ∈ H2
∗ (Ω), the definition (4.6) of W (u) and the definition (4.8) of W ′(u) give

βpq(t) + 2βF
[w′(u)q](t)

[w(u)]3(t)
∈ H2

∗ (Ω).
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Because (2.4) of Lemma 2.2 and (4.10), we have

sup
t∈[0,T ]

∥∥∥∥ [w′(u)q](t)

[w(u)]3(t)

∥∥∥∥
H2(Ω)

≤ sup
t∈[0,T ]

∥∥∥∥ 1

[w(u)]3(t)

∥∥∥∥
H2(Ω)

sup
t∈[0,T ]

∥[w′(u)q](t)∥H2(Ω)

≤C3
1LW sup

t∈[0,T ]

∥q(t)∥H2(Ω) . (4.22)

Therefore ∥∥∥∥∥
∫ h

0

T21(t+ h− s)

{
βpq(s) + 2βF

[w′(u)q](s)

[w(u)]3(s)

}
ds

∥∥∥∥∥
H2(Ω)

≤hM0

{
βp sup

t∈[0,T ]

∥q(t)∥H2(Ω) + sup
t∈[0,T ]

∥∥∥∥ [w′(u)q](t)

[w(u)]3(t)

∥∥∥∥
H2(Ω)

}
≤hM0

(
βp + C3

1LW

)
sup

t∈[0,T ]

∥q(t)∥H2(Ω) . (4.23)

As q ∈ Cα([0, T ];BH2(ũ0, r)),∥∥∥∥∫ t

0

T21(t− s)βp[q(s+ h)− q(s)]ds

∥∥∥∥
H2(Ω)

≤TM0βp sup
0≤t<t+h≤T

∥q(t+ h)− q(t)∥H2(Ω)

≤hαTM0βp∥q∥Cα([0,T ];H2(Ω)), (4.24)

and w(u) ∈ Cα ([0, T ];BH2(w0, r)) is a mild solution of the semilinear fourth-order equation (1.1b),

∥[w(u)](t)− w0∥H2(Ω) ≤ r, ∥[w(u)](t+ h)− w0∥H2(Ω) ≤ r, ∀ t, t+ h ∈ [0, T ],

then estimate (2.5) of Lemma 2.2 and the estimate (3.14) of Corollary 3.5 imply∥∥∥∥ 1

[w(u)]3(t+ h)
− 1

[w(u)]3(t)

∥∥∥∥
H2(Ω)

≤ C3 ∥[w(u)](t+ h)− [w(u)](t)∥H2(Ω) ≤ C3LUh
α. (4.25)

Therefore, estimate (2.4) of Lemma 2.2, inequalities (4.10) and (4.25) imply∥∥∥∥ [w′(u)q](t+ h)

[w(u)]3(t+ h)
− [w′(u)q](t)

[w(u)]3(t)

∥∥∥∥
H2(Ω)

≤
∥∥∥∥ [w′(u)q](t+ h)

[w(u)]3(t+ h)
− [w′(u)q](t+ h)

[w(u)]3(t)

∥∥∥∥
H2(Ω)

+

∥∥∥∥ [w′(u)q](t+ h)

[w(u)]3(t)
− [w′(u)q](t)

[w(u)]3(t)

∥∥∥∥
H2(Ω)

≤∥[w′(u)q](t+ h)∥H2(Ω)

∥∥∥∥ 1

[w(u)]3(t+ h)
− 1

[w(u)]3(t)

∥∥∥∥
H2(Ω)

+ ∥[w′(u)q](t+ h)− [w′(u)q](t)∥H2(Ω)

∥∥∥∥ 1

[w(u)]3(t)

∥∥∥∥
H2(Ω)

≤LW sup
t∈[0,T ]

∥q(t)∥H2(Ω) C3LUh
α + ∥[w′(u)q](t+ h)− [w′(u)q](t)∥H2(Ω) C

3
1 ,

and hence ∥∥∥∥∫ t

0

T21(t− s)2βF

{
[w′(u)q](s+ h)

[w(u)]3(s+ h)
− [w′(u)q](s)

[w(u0)]3(s)

}
ds

∥∥∥∥
H2(Ω)

≤2βFM0T0LW sup
t∈[0,T ]

∥q(t)∥H2(Ω) C3LUh
α

+2βFM0C
3
1

∫ t

0

∥[w′(u)q](s+ h)− [w′(u)q](s)∥H2(Ω) ds. (4.26)
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Consequently, (4.21), (4.23), (4.24) and (4.26) imply,

∥[w′(u)q](t+ h)− [w′(u)q](t)∥H2(Ω) ≤h
αT 1−α

0 M0

[
βp + C3

1LW

]
sup

t∈[0,T ]

∥q(t)∥H2(Ω)

+hαTM0βp∥q∥Cα([0,T ];H2(Ω))

+hα2βFM0T0LWC3LU sup
t∈[0,T ]

∥q(t)∥H2(Ω)

+2βFM0C
3
1

∫ t

0

∥[w′(u)q](s+ h)− [w′(u)q](s)∥H2(Ω) ds.

Set

R1 =M0T
1−α
0

[
βp + C3

1LW

]
, R2 = 2βFM0T0LWC3LU , R3 =M0βp, R4 = 2βFM0C

3
1 .

Gronwall’s inequality implies ∀ 0 ≤ t < t+ h ≤ T ,

∥[w′(u)q](t+ h)− [w′(u)q](t)∥H2(Ω) ≤h
αeR4T0(R1 +R2) sup

t∈[0,T ]

∥q(t)∥H2(Ω)

+hαTeR4T0R3∥q∥Cα([0,T ];H2(Ω)).

Equation (4.20) holds by setting

LM1 = (R1 +R2 +R3)e
R4T0

and LM1 depends on α, M0, T0, Ω, ∥w0∥H2(Ω), κ, βF , βp.
Similarly, there exists a Lipschitz constant

LM2 = LM2

(
LM1 , ∥v0∥L2(Ω)

)
> 0,

such that the Frechét derivative v′(u) of the first component v(u) of W (u), defined by

[v′(u)q](t) =

∫ t

0

T11(t− s)

{
βpq(s) + 2βF

[w′(u)q](s)

[w(u)]3(s)

}
ds,

satisfies

∥[v′(u)q](t+ h)− [v′(u)q](t)∥L2(Ω) ≤ LM2
hα

[
sup

t∈[0,T ]

∥q(t)∥H2(Ω) + T ∥q∥Cα([0,T ];H2(Ω))

]
. (4.27)

Let LM = max {LM1 , LM2}, and the assertion (4.18) follows from (4.20) and (4.27).

5 Wellposedness of the Coupled System

Abstract Formulation of the Coupled System

Let T ∈ (0, T0) be taken to be specified below. We are going to study the unique existence of the
strict solution for the initial-boundary value problem for the coupled system which is written by the
quasilinear parabolic equation with abstract coefficients involving v(u) and w(u):

∂u

∂t
=

1

w(u)
∇ ·
(
[w(u)]3u∇u

)
− v(u)

w(u)
u, (x, t) ∈ Ω× (0, T ), (5.1a)

u(x, 0) = u0(x), x ∈ Ω, u(x, t) = θ1, (x, t) ∈ ∂Ω× [0, T ]. (5.1b)

Here u = u(x, t) is an unknown function, v(u) = [v(u)](x, t) and w(u) = [w(u)](x, t) are implicitly
given as functions of u by the integral formulation(

v(t)
w(t)

)
=

(
0
θ2

)
+ T (t)

(
v0

w0 − θ2

)
+

∫ t

0

{
T (t− s)

(
−βF [w(s)]−2 + βp (u(s)− 1)

0

)}
ds,
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Here, {T (t) : t ≥ 0} is the strongly continuous semigroup (C0-semigroup) from Lemma 3.2. Note
that ũ0 = u0 − θ1 and ũ = u − θ1. If ũ ∈ C ([0, T ];BH2(ũ0, r)), then from the existence of the
mild solution of the semilinear evolution equation (3.11), i.e. Theorem 3.3, the functions v and w
depending on u can be regarded as the solution operators satisfying the definition (4.6) of solution
operator W and

v : C ([0, T ];BH2(ũ0, r)) −→ C ([0, T ];BL2(v0, r)) , ũ 7−→ v(ũ+ θ1),

w : C ([0, T ];BH2(ũ0, r)) −→ C ([0, T ];BH2(w0, r)) , ũ 7−→ w(ũ+ θ1).

Hence F (ũ) is given by

ũ 7−→ F (ũ) : C ([0, T ];BH2(ũ0, r)) −→ C
(
[0, T ];L2(Ω)

)
, (5.2a)

F (ũ) =
1

w(ũ+ θ1)
∇ ·
(
[w(ũ+ θ1)]

3
(ũ+ θ1)∇ũ

)
− v(ũ+ θ1)

w(ũ+ θ1)
(ũ+ θ1). (5.2b)

The linearization of F (ũ) is defined by

q 7−→ F ′(ũ0)q : C
(
[0, T ];H2

∗ (Ω)
)
−→ C

(
[0, T ];L2(Ω)

)
. (5.3)

Here, F ′(ũ0)q is the Fréchet derivative of F (ũ) on ũ at ũ0, F
′(ũ0)q at t is given as:

[F ′(ũ0)q] (t) =
1

[w(u0)](t)
∇ ·
{
[w(u0)]

3(t)u0∇q(t) + [w(u0)]
3(t)q(t)∇u0

}
+

1

[w(u0)](t)
∇ ·
{
3[w(u0)]

2(t)[w′(u0)q](t)u0∇u0
}

− [w′(u0)q](t)

[w(u0)]2(t)
∇ ·
(
[w(u0)]

3(t)u0∇u0
)
− [v(u0)](t)

[w(u0)](t)
q(t)

− [w(u0)](t)[v
′(u0)q](t)− [v(u0)](t)[w

′(u0)q](t)

[w(u0)]2(t)
u0, (5.4)

where the functions v(u0) and w(u0) satisfy the definition (4.6) of the solution operator W with
u = u0. Equivalently, (ṽ, w̃) = (v(u0), w(u0) − θ2) is a unique mild solution of the semilinear
evolution equation (3.11) with ũ = u0 − θ1, and ([v(u0)](0), [w(u0)](0)) = (v0, w0). Define

P∗q(t) =
1

w0
∇ ·
{
w3

0u0∇q(t) + w3
0q(t)∇u0

}
+

1

w0
∇ ·
{
3w2

0[w
′(u0)q](0)u0∇u0

}
− [w′(u0)q](0)

w2
0

∇ ·
(
w3

0u0∇u0
)
− v0
w0
q(t)− w0[v

′(u0)q](0)− v0[w
′(u0)q](0)

w2
0

u0. (5.5)

Note that the Fréchet derivative w′(u) at u = u0 and t = 0 is given by

[w′(u0)q](0) = lim
h→0

1

h
{[w(u0 + hq)](0)− [w(u0)](0)} .

Here h ∈ R is small such that, for any q ∈ C
(
[0, T ];H2

∗ (Ω)
)
, u0 + hq ∈ C ([0, T ];BH2(u0, r)).

Because (ṽh, w̃h) := (v(u0+hq), w(u0+hq)−θ2) is a unique mild solution of the semilinear evolution
equation (3.11) with ũ = u0 + hq − θ1, then ([v(u0 + hq)](0), [w(u0 + hq)](0)) = (v0, w0). Since
([v(u0)](0), [w(u0)](0)) = (v0, w0), then [w′(u0)q](0) = 0 and [v′(u0)q](0) = 0, hereby (5.5) becomes

P∗q(t) =
1

w0
∇ ·
{
w3

0u0∇q(t) + w3
0q(t)∇u0

}
− v0
w0
q(t).

P∗ is a linear operator defined by

P∗ : D (P∗) ⊆ H2
∗ (Ω) −→ L2(Ω), P∗ψ =

1

w0
∇ ·
{
w3

0u0∇ψ +
(
w3

0∇u0
)
ψ
}
− v0
w0
ψ. (5.6)

We remind the reader that P∗ is the Dirichlet realization of the differential expression in (5.1a).
Using the definition of P∗, we rewrite (5.1) as the equation (5.7) on unknown function ũ:

ũ′(t) = P∗ũ(t) + [F (ũ)](t)− P∗ũ(t), t ∈ [0, T ], ũ(0) = ũ0 ≥ ϵ1 > 0. (5.7)

Here ϵ1 is a given positive constant. We are going to show that the linearization operator P∗ satisfies
the elliptic estimate:
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Lemma 5.1. There exist positive constants K and Ko depending on u0, w0, such that ∀ q(t) ∈ D(P∗)
and t ∈ [0, T ], P∗ satisfies the elliptic estimate∣∣∣∣∫

Ω

q(t)

w0
∇ ·
[
w3

0u0∇q(t)
]
dx

∣∣∣∣ ≥ K

∫
Ω

|∇q(t)|2 dx−Ko

∫
Ω

|q(t)|2dx. (5.8)

Proof. For q(t) ∈ D(P∗) and t ∈ [0, T ],

P∗
hq(t) =

1

w0
∇ ·
{
w3

0u0∇q(t)
}
, ∀ t ∈ [0, T ],

denotes the highest order derivative term of P∗q(t), then by the divergence theorem, we obtain∫
Ω

q(t)

w0
∇ ·
{
w3

0u0∇q(t)
}
dx =

∫
∂Ω

{
w2

0u0q(t)∇q(t)
}
· n⃗dS −

∫
Ω

∇
[
q(t)

w0

]
·
{
w3

0u0∇q(t)
}
dx. (5.9)

Since q(t) ∈ D(P∗), D(P∗) ⊆ H2
∗ (Ω) and H

2
∗ (Ω) = H2(Ω) ∩H1

0 (Ω), then q(t) ∈ H1
0 (Ω), hence∫

∂Ω

{
w2

0u0q(t)∇q(t)
}
· n⃗dS = 0.

Because u0(x) ≥ ϵ1 > 0, ϵ1 is a given constant, and κ = inf
x∈Ω

w0(x), (5.9) becomes

∣∣∣∣∫
Ω

q(t)

w0
∇ ·
{
w3

0u0∇q(t)
}
dx

∣∣∣∣ = ∣∣∣∣∫
Ω

∇
[
q(t)

w0

]
·
{
w3

0u0∇q(t)
}
dx

∣∣∣∣
=

∣∣∣∣∫
Ω

w0u0 {w0∇q(t)− q(t)∇w0} · ∇q(t)dx
∣∣∣∣

≥
∣∣∣∣∫

Ω

u0w
2
0 |∇q(t)|

2
dx

∣∣∣∣− ∣∣∣∣∫
Ω

u0w0∇w0 · [q(t)∇q(t)]dx
∣∣∣∣

≥ϵ1κ2
∫
Ω

|∇q(t)|2 dx−
∣∣∣∣∫

Ω

u0w0∇w0 · [q(t)∇q(t)]dx
∣∣∣∣ . (5.10)

Notice that w0 ∈ H4(Ω) and u0 ∈ H2(Ω) and write C = C(Ω) > 0 a constant, hence∣∣∣∣∫
Ω

u0w0∇w0 · [q(t)∇q(t)]dx
∣∣∣∣ ≤∥u0w0∇w0∥L∞(Ω)

∣∣∣∣∫
Ω

q(t)∇q(t)dx
∣∣∣∣

≤C ∥u0w0∇w0∥H2(Ω)

∣∣∣∣∫
Ω

q(t)∇q(t)dx
∣∣∣∣

≤C ∥u0∥H2(Ω) ∥w0∥H2(Ω) ∥∇w0∥H2(Ω)

∣∣∣∣∫
Ω

q(t)∇q(t)dx
∣∣∣∣

≤C ∥u0∥H2(Ω) ∥w0∥2H3(Ω)

∣∣∣∣∫
Ω

q(t)∇q(t)dx
∣∣∣∣

With K2 = C ∥u0∥H2(Ω) ∥w0∥2H3(Ω) and Young’s inequality,∣∣∣∣∫
Ω

q(t)

w0
∇ ·
{
w3

0u0∇q(t)
}
dx

∣∣∣∣ ≥(ϵ1κ
2 − ε2K2)

∫
Ω

|∇q(t)|2 dx− K2

4ε2

∫
Ω

|q(t)|2dx. (5.11)

The assertion (5.8) follows for ε sufficiently small.

Corollary 5.2. P∗, defined by (5.6), is a sectorial operator and generates an analytic semigroup{
etP

∗
: t ≥ 0

}
on H2

∗ (Ω).

Proof. Using the Corollary 12.19 and Corollary 12.21 in [12], we obtain that the operator P∗ in
Lemma 5.1 satisfies the elliptic estimate (5.8), as well as the following estimate for the resolvent set:

ρ(P∗) ⊃ SΘ,ω =
{
λ ∈ C : λ ̸= ω, | arg(λ− ω)| < Θ, ω ∈ R,Θ ∈

(π
2
, π
)}

. (5.12)
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Proposition 1.22, Proposition 1.51 and Theorem 1.52 in [24] then imply the following estimates of its
resolvent (λ− P∗)−1:

∥(λ− P∗)−1∥B(L2(Ω),H2(Ω)) ≤
M

|λ− ω|
, (5.13)

for ω ∈ R,M > 0 and λ ∈ SΘ,ω, and P∗ is a sectorial operator which generates an analytic semigroup
{etP∗

: t ≥ 0} on H2
∗ (Ω).

Graph Norm of P∗

If the domain D(P∗) of P∗ is endowed with the graph norm of P∗, ∥g∥D(P∗) = ∥g∥L2(Ω)+∥P∗g∥L2(Ω),
then there exists a constant γ0 ≥ 1, such that

γ0
−1
(
∥g∥L2(Ω) + ∥P∗g∥L2(Ω)

)
≤ ∥g∥H2(Ω) ≤ γ0

(
∥g∥L2(Ω) + ∥P∗g∥L2(Ω)

)
. (5.14)

In fact, because H2
∗ (Ω) ↪→ L2(Ω), P∗ ∈ B

(
H2

∗ (Ω), L
2(Ω)

)
, there exists a constant c0 > 0 such that

∥g∥L2(Ω) + ∥P∗g∥L2(Ω) ≤ c0∥g∥H2(Ω), ∀ g ∈ H2
∗ (Ω), i.e. H

2
∗ (Ω) ↪→ D(P∗).

Equations (5.12) and (5.13) imply that P∗ is a closed operator, so that D(P∗) is a complete Banach
space. We conclude D (P∗) = H2

∗ (Ω), which is assertion (5.14).
Because H2

∗ (Ω) = H2(Ω) ∩ H1
0 (Ω) is dense in L2(Ω), we obtain P∗ is densely defined in L2(Ω)

and D (P∗) = L2(Ω).

If t > 0 and ψ ∈ L2(Ω) then etP
∗
ψ ∈ D

(
(P∗)

k
)
for each k ∈ N. Moreover, there exist M0, M1,

M2 > 0 (depending on Θ in (5.12) and M in (5.13)), such that∥∥∥tk (P∗)
k
etP

∗
∥∥∥
B(L2(Ω))

≤Mk, s > 0, k = 0, 1, 2, t ∈ [0, T0). (5.15)

Theorem 5.3. Let P∗ : D(P∗) −→ L2(Ω) be a sectorial operator and generate an analytic semigroup
etP

∗
, D (P∗) ∼= H2

∗ (Ω) and D (P∗) = L2(Ω). If T ∈ (0, T0), α ∈ (0, 1) and

ũ0 ∈ D(P∗), F(0) + P∗ũ0 ∈ D (P∗), F ∈ Cα
(
[0, T ];L2(Ω)

)
,

then

φ(t) = etP
∗
ũ0 +

∫ t

0

e(t−s)P∗
F(s)ds, (5.16)

is the unique function belonging to C1([0, T ];L2(Ω)) ∩ C([0, T ];D(P∗)) which solves the problem

φ′(t) = P∗φ(t) + F(t), t ∈ [0, T ], φ(0) = ũ0. (5.17)

Moreover, the following maximal regularity property holds:

F ∈ Cα([0, T ];L2(Ω)), P∗ũ0 + F(0) ∈ DP∗(α,∞) =⇒

φ ∈ Cα+1([0, T ];L2(Ω)) ∩ Cα([0, T ];H2
∗ (Ω)), φ′(t) ∈ DP∗(α,∞), ∀ t ∈ [0, T ],

and there exists a continuous and increasing function I : R+ → R+ (depending on M0, M1, M2 and
α) such that

∥φ∥Cα([0,T ];D(P∗)) ≤ I(T )
[
∥ũ0∥L2(Ω) + ∥F∥Cα([0,T ];L2(Ω)) + ∥P∗ũ0 + F(0)∥DP∗ (α,∞)

]
. (5.18)

Remark 5.4. Theorem 5.3, corresponding to Theorem 1.2 of Lunardi [21], is a maximal regularity
result for linear autonomous evolution equations of parabolic type. Its proof follows the proof of
Theorem 4.5 in Sinestrari [27]. We are going to use this result to prove the existence of a strict
solution to the coupled system, which is Theorem 5.6. Before our proof, we need Lemma 5.5. The
detailed proof of Lemma 5.5 can be found in Appendix C.
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Lemma 5.5. Let F (ũ) and P∗ be defined by (5.2) and (5.6) respectively, T ∈ (0, T0). Set u0 = ũ0+θ1.
If ũ, q ∈ Cα ([0, T ];BH2 (ũ0, r)), then there exist postive constants LA = LA (u0, v0, w0,Ω) and
LB = LB (u0, v0, w0,Ω, α, T0, LU , LW , LM ), such that ∀ 0 ≤ t < t+ h ≤ T ,

∥[F (ũ)] (t+ h)− [F (ũ)] (t)∥L2(Ω) ≤
{
[ũ+ θ1]Cα([0,T ];H2(Ω)) + LU

}
LAh

α, (5.19)

and

∥[F ′(ũ)q] (t+ h)− [F ′(ũ)q] (t)− P∗ [q(t+ h)− q(t)]∥L2(Ω)

≤hαTαLB ∥q∥Cα([0,T ];H2(Ω)) + hαTαLB ∥ũ+ θ1∥Cα([0,T ];H2(Ω)) ∥q∥Cα([0,T ];H2(Ω))

+hαLB sup
t∈[0,T ]

∥q(t)∥H2(Ω) + hαLB ∥ũ+ θ1∥Cα([0,T ];H2(Ω)) sup
t∈[0,T ]

∥q(t)∥H2(Ω) . (5.20)

Here the constants LU , LW and LM are given by Corollary 3.5, Theorem 4.1 and Corollary 4.3
respectively.

Theorem 5.6. Assume the initial value u0 ∈
{
ψ ∈ H2+σ(Ω) : ψ(x) = θ1, x ∈ ∂Ω

}
is given for

σ ∈
(
0, 1

2

)
such that the compatibility condition

1

w0
∇ ·
(
w3

0u0∇u0
)
∈ Hσ(Ω) ⊆ DP∗(α,∞)

holds for α ∈
(
0, σ

2

)
and ũ0 = u0 − θ1 ∈ H2+σ(Ω) ∩H1

0 (Ω).
Then there exists T1 > 0, such that the nonlinear problem (5.7) has a unique strict solution

ũ ∈ Cα
(
[0, T1);H

2
∗ (Ω)

)
∩ Cα+1

(
[0, T1);L

2(Ω)
)
and ũ′(t) ∈ DP∗(α,∞), ∀ t ∈ [0, T1).

Proof. We set σ ∈
(
0, 1

2

)
, α ∈

(
0, σ

2

)
and divide the proof into three parts.

Hölder Continuity. Let us first state some refinements of the results in Section 4. They concern
the Hölder continuity of the solution operators ũ −→ v(ũ + θ1) and ũ −→ w(ũ + θ1) needed later.
Take T ∈ (0, T0) to be specified below. According to estimate (3.14) of Corollary 3.5, v and w are
the solution operators satisfying

v : Cα ([0, T ];BH2(ũ0, r)) −→ Cα ([0, T ];BL2(v0, r)) , ũ 7−→ v(ũ+ θ1),

w : Cα ([0, T ];BH2(ũ0, r)) −→ Cα ([0, T ];BH2(w0, r)) , ũ 7−→ w(ũ+ θ1).

Thus, following the inequality (5.19) in Lemma 5.5, F (ũ), defined by (5.2) satisfies

F (ũ) ∈ Cα
(
[0, T ];L2(Ω)

)
.

Theorem 4.1 with its following discussion about Fréchet derivative and the estimate (4.11) of Corollary
4.2 imply that the Fréchet derivative (v′(ũ+ θ1)q, w

′(ũ+ θ1)q) of the function (v(ũ+ θ1), w(ũ+ θ1))
on ũ ∈ C

(
[0, T ];H2

∗ (Ω)
)
exists in C

(
[0, T ];L2(Ω)×H2

∗ (Ω)
)
and depends Lipschitz continuously on

ũ ∈ C
(
[0, T ];H2

∗ (Ω)
)
for q ∈ C

(
[0, T ];H2

∗ (Ω)
)
. If ũ ∈ Cα

(
[0, T ];H2

∗ (Ω)
)
∩C ([0, T ];BH2 (ũ0, r)), then

by using inequality (4.18) in Corollary 4.3, (v′(ũ+ θ1)q, w
′(ũ+ θ1)q) ∈ Cα

(
[0, T ];L2(Ω)×H2

∗ (Ω)
)
,

∀ q ∈ Cα
(
[0, T ];H2

∗ (Ω)
)
. Thus, following (5.20) in Lemma 5.5, the Fréchet derivative F ′(ũ)q of F (ũ)

and P∗q, defined by (5.4) and (5.6) respectively, satisfy

F ′(ũ)q − P∗q ∈ Cα
(
[0, T ];L2(Ω)

)
, ∀ q ∈ Cα

(
[0, T ];H2

∗ (Ω)
)
.

v0 ∈ H2
∗ (Ω), w0 ∈ H4(Ω) with w0(x) = θ1, ∆w0(x) = 0, ∀ x ∈ ∂Ω and the compatibility assumption

of Theorem 5.6 imply

[F (ũ)](0) =
1

w0
∇ ·
[
w3

0u0∇u0
]
− v0
w0
u0 ∈ Hσ(Ω) ⊆ DP∗(α,∞), ũ0 ∈ D(P∗).

By the definition (5.6) of P∗ and (5.14), we know

D(P∗) = H2
∗ (Ω), D(P∗) = L2(Ω), Cα

(
[0, T ];H2

∗ (Ω)
)
= Cα ([0, T ];D(P∗)) , ∀ T ∈ (0, T0).

Equivalence. We now study the nonlinear problem

ũ′(t) = P∗ũ(t) + [F (ũ)](t)− P∗ũ(t), t ∈ [0, T ], ũ(0) = ũ0 (5.21)
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whose integrated form is given by

ũ(t) = etP
∗
ũ0 +

∫ t

0

e(t−s)P∗
{[F (ũ)](s)− P∗ũ(s)} ds, t ∈ [0, T ]. (5.22)

We will prove that if ũ ∈ Cα
(
[0, T ];H2

∗ (Ω)
)
satisfies (5.22) and ũ(t) ∈ BH2(ũ0, r), ∀ t ∈ [0, T ],

r ∈
(
0, κ

2C

)
, κ = inf

x∈Ω
w0(x) > 0 and C = C(Ω) > 0 is a constant, then ũ ∈ Cα+1

(
[0, T ];L2(Ω)

)
,

ũ′(t) ∈ DP∗(α,∞), ∀ t ∈ [0, T ], and ũ satisfies the equation (5.21). To prove this assertion, for each
ũ ∈ Cα ([0, T ];BH2(ũ0, r)), we set

[F(ũ)](t) = [F (ũ)](t)− P∗ũ(t), ∀ t ∈ [0, T ], (5.23)

and prove that
F(ũ) ∈ Cα

(
[0, T ];L2(Ω)

)
. (5.24)

In fact, for 0 ≤ t < t+ h ≤ T , by using (5.19) in Lemma 5.5, we have

∥[F(ũ)](t+ h)− [F(ũ)](t)∥L2(Ω) ≤∥[F (ũ)](t+ h)− [F (ũ)](t)∥L2(Ω)

+ ∥P∗ũ(t+ h)− P∗ũ(t)∥L2(Ω)

≤
(
LA + ∥P∗∥B(H2(Ω),L2(Ω))

)
∥ũ(t+ h)− ũ(t)∥H2(Ω) ,

because ũ ∈ Cα
(
[0, T ];H2

∗ (Ω)
)
, we get (5.24).

In addition, if ũ(0) = ũ0 ∈ H2
∗ (Ω) = D(P∗) and [F (ũ)](0) ∈ DP∗(α,∞), then we obtain

P∗ũ0 + [F(ũ)](0) = [F (ũ)](0) ∈ DP∗(α,∞).

Hence, by Theorem 1.2 of [21] and Theorem 5.3 we conclude that if ũ ∈ Cα ([0, T ];BH2(ũ0, r)) is a
solution of (5.22), then there exist ũ′ ∈ Cα

(
[0, T ];L2(Ω)

)
, ũ′(t) ∈ DP∗(α,∞), ∀ t ∈ [0, T ], and ũ

satisfies (5.21).
Conversely, let ũ ∈ Cα ([0, T ];BH2(ũ0, r)) ∩ Cα+1

(
[0, T ];L2(Ω)

)
satisfy (5.21), i.e.

ũ′(t) = P∗ũ(t) + [F(ũ)](t), t ∈ [0, T ], ũ(0) = ũ0.

As we have proved that F(ũ) ∈ Cα
(
[0, T ];L2(Ω)

)
, we can apply again Theorem 5.3 and deduce that

ũ is a solution of the integrated form (5.22).
In conclusion, it is sufficient to solve (5.22) in the space Cα ([0, T ];BH2(ũ0, r)). To this end, we

take T ∈ (0, T0) to be fixed later and find a fixed point for the mapping Γ defined by

Γ : Y −→ Y, [Γũ](t) = etP
∗
ũ0 +

∫ t

0

e(t−s)P∗
{[F (ũ)](s)− P∗ũ(s)} ds, t ∈ [0, T ], (5.25)

Y =
{
ũ ∈ Cα

(
[0, T ];H2

∗ (Ω)
)
: ũ(0) = ũ0, ∥ũ(·)− ũ0∥Cα([0,T ];H2(Ω)) ≤ r

}
, ∀ r ∈

(
0,

κ

2C

)
.

Contraction Mapping. If Y is endowed with the metric induced by the norm of the space
Cα
(
[0, T ];H2

∗ (Ω)
)
we will show that Γ is a contractive mapping of Y into itself provided T is suffi-

ciently small.
From the preceding results and following the proof of Theorem 4.3.1 in [20], we know that Γu ∈

Cα
(
[0, T ];H2

∗ (Ω)
)
if ũ ∈ Y , because Y ⊂ Cα ([0, T ];BH2(ũ0, r)). Now we will show that when T is

sufficiently small we have

∥Γũ1 − Γũ2∥Cα([0,T ];H2(Ω)) ≤
1

2
∥ũ1 − ũ2∥Cα([0,T ];H2(Ω)) , ∀ ũ1, ũ2 ∈ Y. (5.26)

From (5.23) and (5.25), we get

[Γũ1](t)− [Γũ2](t) =

∫ t

0

e(t−s)P∗
{[F(ũ1)](s)− [F(ũ2)](s)} ds, t ∈ [0, T ],
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hence, by using (5.14) and applying (5.18) of Theorem 5.3, we obtain

∥Γũ1 − Γũ2∥Cα([0,T ];H2(Ω)) ≤γ0I(T ) ∥F(ũ1)−F(ũ2)∥Cα([0,T ];L2(Ω))

≤γ0I(T0) ∥F(ũ1)−F(ũ2)∥Cα([0,T ];L2(Ω)) . (5.27)

Here I(·) is a continuous and increasing function given by Theorem 5.3 when applied to P∗ which is
defined by (5.6) and satisfies Lemma 5.1 and Corollary 5.2. As ũ1(t) and ũ2(t) belong to BH2(ũ0, r)
for t ∈ [0, T ], we can use inequality (2.11) in Lemma 2.4 to estimate the right hand side, obtaining
for all t ∈ [0, T ],

∥[F(ũ1)](t)− [F(ũ2)](t)∥L2(Ω) ≤∥[F (ũ1)](t)− [F (ũ2)](t)∥L2(Ω) + ∥P∗ũ1(t)− P∗ũ2(t)∥L2(Ω)

≤
(
Le + ∥P∗∥B(H2(Ω),L2(Ω))

)
∥ũ1(t)− ũ2(t)∥H2(Ω) . (5.28)

As ũ1(0) = ũ2(0) = ũ0 ∈ H2
∗ (Ω) = D(P∗), then we have

sup
t∈[0,T ]

∥ũ1(t)− ũ2(t)∥H2(Ω) ≤ Tα ∥ũ1 − ũ2∥Cα([0,T ];H2(Ω)) , (5.29)

and so

∥F(ũ1)−F(ũ2)∥C([0,T ];L2(Ω)) ≤
[
Le + ∥P∗∥B(H2(Ω),L2(Ω))

]
Tα ∥ũ1 − ũ2∥Cα([0,T ];H2(Ω)) . (5.30)

On the other hand for 0 ≤ t < t+ h ≤ T , by using (5.20) in Lemma 5.5 and (5.29), we get

∥[F(ũ1)](t+ h)− [F(ũ2)](t+ h)− [F(ũ1)](t) + [F(ũ2)](t)∥L2(Ω)

=

∥∥∥∥ ∫ 1

0

[F ′(γũ1 + (1− γ)ũ2)(ũ1 − ũ2)](t+ h)− [F ′(γũ1 + (1− γ)ũ2)(ũ1 − ũ2)](t)

−P∗ [ũ1(t+ h)− ũ2(t+ h)− ũ1(t) + ũ2(t)] dγ

∥∥∥∥
L2(Ω)

≤2hαTαLB ∥ũ1 − ũ2∥Cα([0,T ];H2(Ω))

+2hαTαLB ∥γũ1 + (1− γ)ũ2 + θ1∥Cα([0,T ];H2(Ω)) ∥ũ1 − ũ2∥Cα([0,T ];H2(Ω))

≤2hαTαLB

[
∥ũ1 − ũ2∥Cα([0,T ];H2(Ω)) +

(
∥u0∥H2(Ω) + κ(2C)−1

)
∥ũ1 − ũ2∥Cα([0,T ];H2(Ω))

]
, (5.31)

as well as

[F(ũ1)−F(ũ2)]Cα([0,T ];L2(Ω))

= sup
0≤t<t+h≤T

1

hα
{
∥[F(ũ1)](t+ h)− [F(ũ2)](t+ h)− [F(ũ1)](t) + [F(ũ2)](t)∥L2(Ω)

}
≤2TαLB

[
1 +

(
∥u0∥H2(Ω) + κ(2C)−1

)]
∥ũ1 − ũ2∥Cα([0,T ];H2(Ω)) . (5.32)

Hence we can deduce from (5.27), (5.30) and (5.32):

∥Γũ1 − Γũ2∥Cα([0,T ];H2(Ω))

≤γ0I(T0) ∥F(ũ1)−F(ũ2)∥Cα([0,T ];L2(Ω))

≤γ0I(T0)
[
∥F(ũ1)−F(ũ2)∥C([0,T ];L2(Ω)) + [F(ũ1)−F(ũ2)]Cα([0,T ];L2(Ω))

]
≤γ0I(T0)

[
Le + ∥P∗∥B(H2(Ω),L2(Ω)) + 2LB

[
1 +

(
∥u0∥H2(Ω) + κ(2C)−1

)]]
Tα

· ∥ũ1 − ũ2∥Cα([0,T ];H2(Ω)) . (5.33)

Set

T ∗
0 :=

[
2γ0I(T0)

(
Le + ∥P∗∥B(H2(Ω),L2(Ω)) + 2LB

[
1 +

(
∥u0∥H2(Ω) + κ(2C)−1

)])]− 1
α

. (5.34)

If 0 < T ≤ min{T0, T ∗
0 }, then Γ satisfies the contraction property (5.26) by using (5.33).
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To prove that Γ(Y ) ⊆ Y , it remains to check that

∥Γũ− ũ0∥Cα([0,T ];H2(Ω)) ≤ r, ∀ ũ ∈ Y. (5.35)

Let us observe that if 0 < T < min{T0, T ∗
0 }, then from contraction property (5.26), we get

∥Γũ− ũ0∥Cα([0,T ];H2(Ω)) ≤∥Γũ− Γũ0∥Cα([0,T ];H2(Ω)) + ∥Γũ0 − ũ0∥Cα([0,T ];H2(Ω))

≤1

2
∥ũ− ũ0∥Cα([0,T ];H2(Ω)) + ∥Γũ0 − ũ0∥Cα([0,T ];H2(Ω))

≤r
2
+ ∥Γũ0 − ũ0∥Cα([0,T ];H2(Ω)) .

Now Γũ0 − ũ0 ∈ Cα
(
[0, T ];H2

∗ (Ω)
)
and it vanishes at t = 0, so there exists a δ∗ = δ∗(r) > 0 such

that, if 0 < T ≤ δ∗, then

∥Γũ0 − ũ0∥Cα([0,T ];H2(Ω)) ≤
r

2
,

and consequently (5.35) is true by choosing 0 < T ≤ min{T0, T ∗
0 , δ

∗}. Because r is controlled by
C = C(Ω) and κ, we also note δ∗ = δ∗(κ,Ω).

Summing up, set
T1 := min {T0, T ∗

0 , δ
∗} , (5.36)

Γ, defined by (5.25), is a contractive mapping of Y into itself provided

0 < T < T1.

Hereby, Γ has a unique fixed point ũ in Y , ũ ∈ Cα
(
[0, T1);H

2
∗ (Ω)

)
is a unique solution of the integral

form (5.22), and ũ ∈ Cα
(
[0, T1);H

2
∗ (Ω)

)
∩ Cα+1

(
[0, T1);L

2(Ω)
)
is a unique strict solution of the

nonlinear problem (5.21), by preceding results in Equivalence, Theorem 5.3, Theorem 1.2 of [21] and
Theorem 4.5 of [27].

Recall that [F (ũ)](0) ∈ DP∗(α,∞), ũ0 ∈ H2
∗ (Ω) = D(P∗), F (ũ) ∈ Cα

(
[0, T1);L

2(Ω)
)
with

L2(Ω) = D(P∗), as P∗ũ0+[F(ũ)](0) = [F (ũ)](0) = ũ′(0), Theorem 1.2 of [21] and Theorem 5.3 state
in particular if ũ′(t) ∈ DP∗(α,∞) for t = 0, then the same is true for t > 0, i.e. ũ′(t) ∈ DP∗(α,∞),
∀ t ∈ [0, T1), provided

F(ũ) = F (ũ)− P∗ũ ∈ Cα
(
[0, T1);L

2(Ω)
)
.

Meanwhile, [F (ũ)](t) ∈ DP∗(α,∞) as ũ′(t) = [F (ũ)](t) and ũ′(t) ∈ DP∗(α,∞) for all t ∈ [0, T1).
Because of Theorem 3.6 and u = ũ + θ1, the initial-boundary value problem (1.1) has a unique

strict solution (u,w),
u ∈ Cα

(
[0, T1);H

2(Ω)
)
∩ Cα+1

(
[0, T1);L

2(Ω)
)
,

w ∈ C
(
[0, T1);H

4(Ω)
)
∩ C1

(
[0, T1);H

2(Ω)
)
∩ C2

(
[0, T1);L

2(Ω)
)
.

This concludes the proof of Theorem 5.6.

Theorem 5.6 directly implies Theorem 1.1.

Maximal Time of Existence

Corollary 5.7. Assume that there are positive constants C∞ and δ∞ such that the solution (u,w)
from Theorem 5.6 satisfies

u′(t) ∈ DP∗(α, ∞), ∥u(t)∥H2+α(Ω) < C∞, inf
Ω
w(t) > δ∞, (5.37)

for all t ∈ [0, T1]. Then there exists T2 > T1 such that (u,w) uniquely extends to a solution of (1.1)
on the time interval [0, T2).

Proof. As (5.37), u′(T1) ∈ DP∗(α, ∞), ∥u(T1)∥H2+α(Ω) < C∞, inf
Ω
w(T1) > δ∞ and Theorem 5.6

implies there exists T
′

1, such that the nonlinear coupled system (1.1), with the admissible initial
values u(x, T1), w(x, T1),

∂w
∂t (x, T1), has a solution (u1, w1) on [0, T

′

1),

u1 ∈ Cα
(
[0, T

′

1);H
2(Ω)

)
∩ Cα+1

(
[0, T

′

1);L
2(Ω)

)
,
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w1 ∈ C
(
[0, T

′

1);H
4(Ω)

)
∩ C1

(
[0, T

′

1);H
2(Ω)

)
∩ C2

(
[0, T

′

1);L
2(Ω)

)
.

Define the functions by

u2(t) =

{
u(t), 0 ≤ t ≤ T1,

u1(t− T1), T1 ≤ t < T1 + T
′

1,
w2(t) =

{
w(t), 0 ≤ t ≤ T1,

w1(t− T1), T1 ≤ t < T1 + T
′

1,

(u2, w2) is continuous and it is a strict solution of (1.1) for t ∈ [0, T1]. For t ∈ (T1, T1 + T
′

1), set

ũ2 = u2 − θ1,

(
ṽ2
w̃2

)
=

(
∂w2

∂t
w2 − θ2

)
.

Based on Lemma 8.5 from [15], we use the integral formulation (5.22) for ũ(T1) and calculate (5.38).
Then we similarly get (5.39) from the calculation for (5.38) and the integral form (3.12):

ũ2(t) = ũ1(t− T1) = e(t−T1)P∗
ũ(T1) +

∫ t−T1

0

e(t−T1−s)P∗
{[F (ũ1)](s)− P∗ũ1(s)} ds

= e(t−T1)P∗
eT1P∗

ũ0 + e(t−T1)P∗
∫ T1

0

e(T1−s)P∗
{[F (ũ)](s)− P∗ũ(s)} ds

+

∫ t

T1

e(t−s)P∗
{[F (ũ1)](s− T1)− P∗ũ1(s− T1)} ds

= etP
∗
ũ0 +

∫ t

0

e(t−s)P∗
{[F (ũ2)](s)− P∗ũ2(s)} ds, (5.38)(

ṽ2(t)
w̃2(t)

)
= T (t)

(
ṽ0
w̃0

)
+

∫ t

0

{
T (t− s)

(
[G(w̃2)](s) + βpũ2(s)

0

)}
ds. (5.39)

Setting T2 = T1 + T
′

1, we conclude Corollary 5.7.

Define the maximal existence time of the coupled system (1.1) by

Tmax = sup {T > 0 : (1.1) has a solution (u,w) on [0, T ]} .

Theorem 5.6, Corollary 5.7 and Theorem 8.6 from [15] (page 80) imply that if Tmax <∞,

either lim
t→T−

max

inf
x∈Ω

w(x, t) = 0 or lim sup
t→T−

max

∥u(t)∥L∞(Ω) = ∞.

A Proofs of Lemmas in Section 2

Before the proofs, we recall some well-known properties of the Sobolev spaces Hk(Ω), where k > 0.

A.1 Sobolev Spaces and Algebraic Properties

The algebra property of Sobolev spaces will be crucial in this work, see [30] for a proof.

Lemma A.1. Hk(Ω) is an algebra whence k > n
2 . In particular, H1(Ω) is an algebra if Ω ⊂ R and

H2(Ω) is an algebra if Ω ⊂ Rn, n = 1, 2.

We deduce some immediate consequences.

Corollary A.2. If f1 ∈ H2(Ω) and f2 ∈ L2(Ω), then

∥f1f2∥L2(Ω) ≤ C ∥f1∥H2(Ω) ∥f2∥L2(Ω) . (A.1)

If g1, g2, g3 ∈ H2(Ω), then

∥g1∇ · (g2∇g3)∥L2(Ω) ≤ 2C ∥g1∥H2(Ω) ∥g2∥H2(Ω) ∥g3∥H2(Ω) . (A.2)
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Proof. The Sobolev embedding theorem implies

∥f1f2∥L2(Ω) ≤ ∥f1∥L∞(Ω) ∥f2∥L2(Ω) ≤ C ∥f1∥H2(Ω) ∥f2∥L2(Ω) .

∥g1∇ · (g2∇g3)∥L2(Ω) ≤ ∥g1∥L∞(Ω)

(
∥∇g2 · ∇g3∥L2(Ω) + ∥g2∆g3∥L2(Ω)

)
≤ C ∥g1∥H2(Ω)

(∣∣∣∣∫
Ω

|∇g2 · ∇g3|2 dx
∣∣∣∣ 12 + ∥g2∥L∞(Ω) ∥∆g3∥L2(Ω)

)
≤ C ∥g1∥H2(Ω)

[
∥∇g2∥L4(Ω) ∥∇g3∥L4(Ω) + ∥g2∥H2(Ω) ∥∆g3∥L2(Ω)

]
≤ C ∥g1∥H2(Ω)

[
∥∇g2∥H1(Ω) ∥∇g3∥H1(Ω) + ∥g2∥H2(Ω) ∥g3∥H2(Ω)

]
≤ 2C ∥g1∥H2(Ω) ∥g2∥H2(Ω) ∥g3∥H2(Ω) .

A.2 Proof of Lemma 2.2

Proof. We first prove assertion (2.3) of Lemma 2.2.
Since w ∈ C ([0, T ];BH2 (w0, r)), then ∥w(t)− w0∥H2(Ω) ≤ r holds for all t ∈ [0, T ].
According to the triangle inequality and the Sobolev embedding theorem, there exists a constant

C = C(Ω), such that for all r ∈
(
0, κ

2C

)
, it follows that

w(t) = w0 + w(t)− w0 ≥ κ− ∥w(t)− w0∥L∞(Ω) ≥ κ− C ∥w(t)− w0∥H2(Ω) ≥ κ− Cr ≥ κ

2
, (A.3a)

∥w(t)∥H2(Ω) ≤ C̃, (A.3b)

hold for all t ∈ [0, T ]. Here, C̃ = κ
2C + ∥w0∥H2(Ω). Hereby, we prove assertion (2.3).

According to (A.3) and r ∈
(
0, κ

2C

)
, we have

sup
t∈[0,T ]

[∫
Ω

∣∣∣∣ 1

w(t)

∣∣∣∣2 dx
]
≤ 4C

κ2
, sup

t∈[0,T ]

[∫
Ω

∣∣∣∣∇ [ 1

w(t)

]∣∣∣∣2 dx
]
= sup

t∈[0,T ]

[∫
Ω

|∇w(t)|2

|w(t)|4
dx

]

≤ 16

κ4
sup

t∈[0,T ]

[∫
Ω

|∇w(t)|2 dx
]

≤ 16

κ4
sup

t∈[0,T ]

∥w(t)∥2H2(Ω)

≤ 16

κ4
C̃2.

sup
t∈[0,T ]

{∫
Ω

∣∣∣∣∆ [ 1

w(t)

]∣∣∣∣2 dx
}

≤ sup
t∈[0,T ]

∥∥∥∥∆w(t)[w(t)]2

∥∥∥∥
L2(Ω)

+

∥∥∥∥∥2 (∇w(t))2[w(t)]3

∥∥∥∥∥
L2(Ω)

2

≤ sup
t∈[0,T ]

[
4

κ2
∥∆w(t)∥L2(Ω) +

16

κ3

∥∥∥(∇w(t))2∥∥∥
L2(Ω)

]2
≤ sup

t∈[0,T ]

[
4

κ2
∥w(t)∥H2(Ω) +

16

κ3
∥∇w(t)∥2L4(Ω)

]2
≤ sup

t∈[0,T ]

[
4

κ2
∥w(t)∥H2(Ω) +

16C

κ3
∥∇w(t)∥2H1(Ω)

]2
≤ sup

t∈[0,T ]

[
4

κ2
+

16C

κ3
∥w(t)∥H2(Ω)

]2
∥w(t)∥2H2(Ω)

≤
[
4

κ2
+

16C

κ3
C̃

]2
C̃2.
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sup
t∈[0,T ]

∥∥∥∥ 1

w(t)

∥∥∥∥2
H2(Ω)

= sup
t∈[0,T ]

{∫
Ω

∣∣∣∣ 1

w(t)

∣∣∣∣2 + ∣∣∣∣∇ [ 1

w(t)

]∣∣∣∣2 + ∣∣∣∣∆ [ 1

w(t)

]∣∣∣∣2 dx
}

≤4C

κ2
+

16

κ4
C̃2 +

[
4

κ2
+

16C

κ3
C̃

]2
C̃2. (A.4)

We set C2
1 = 4C

κ2 + 16
κ4 C̃

2 +
[

4
κ2 + 16C

κ3 C̃
]2
C̃2, C1 is a positive constant depending on Ω, κ, and

∥w0∥H2(Ω). Because H2(Ω) is an algebra, i.e. Lemma A.1, the assertion (2.4) of Lemma 2.2 holds

for t ∈ [0, T ]. With these facts, we continue on to show the assertions (2.5) of Lemma 2.2. For all w1

and w2 ∈ C ([0, T ];BH2(w0, r)), the algebraic property of H2(Ω) from Lemma A.1 and the triangle
inequality imply

sup
t∈[0,T ]

∥∥∥∥ [w1(t) + w2(t)]

[w1(t)]2[w2(t)]2

∥∥∥∥
H2(Ω)

≤ 2C3
1 , sup

t∈[0,T ]

∥∥∥∥ [w1(t)]
2 + [w2(t)]

2 + w1(t)w2(t)

[w1(t)]3[w2(t)]3

∥∥∥∥
H2(Ω)

≤ 3C4
1 .

Setting C2 = 2C3
1 and C3 = 3C4

1 , hence we deduce (2.5) of Lemma 2.2.
This concludes the proof of Lemma 2.2.

A.3 Proof of Lemma 2.3

Proof. Recall that r ∈
(
0, κ

2C

)
, w0 = w̃0+ θ2, κ = inf

Ω
w0 > 0, w = w̃+ θ2, w̃ ∈ C ([0, T ];BH2(w̃0, r)).

For small h ∈ (0, T ) such that t + h ∈ (0, T ], ∥w̃(t+ h)− w̃0∥H2(Ω) ≤ r, (2.4) and (2.5) of Lemma

2.2 imply (2.6) and (2.7) of Lemma 2.3 are valid with LG = βFC2.
In particular, for w̃1 ∈ C ([0, T ];BH2 (w̃0, r)), setting w̃2(t) = w̃0, ∀ t ∈ [0, T ], then one can obtain

[G(w̃2)](t) = G(w̃0). Hence (2.8) of Lemma 2.3 is valid since the assertion (2.7) of Lemma 2.3.
Set w̃2 = w̃ ∈ C ([0, T ];BH2 (w̃0, r)), for q ∈ C

(
[0, T ];H2

∗ (Ω)
)
, choose small λ ∈ R, such that

w̃1 = w̃ + λq ∈ C ([0, T ];BH2 (w̃0, r)) .

Then the Fréchet derivative G′ (w̃) q of G with respect to w̃ ∈ C ([0, T ];BH2 (w̃0, r)) exists as a linear
operator G′(w̃) : C

(
[0, T ];H2

∗ (Ω)
)
−→ C

(
[0, T ];H2

∗ (Ω)
)
given by

G′ (w̃) q = lim
λ→0

1

λ
[G (w̃ + λq)−G (w̃)] =

2βF

(w̃ + θ2)
3 q,

[G′ (w̃) q] (t) = [G′ (w̃(t))] q(t) =
2βF

(w̃(t) + θ2)
3 q(t).

According to the assertion (2.7), the inequality (2.9) holds by the following computation:

sup
t∈[0,T ]

∥[G′ (w̃) q] (t)∥H2(Ω) = sup
t∈[0,T ]

∥∥∥∥ limλ→0

[G (w̃ + λq)](t)− [G (w̃)](t)

λ

∥∥∥∥
H2(Ω)

= lim
λ→0

1

λ
sup

t∈[0,T ]

∥[G (w̃1)](t)− [G (w̃2)](t)∥H2(Ω)

≤ lim
λ→0

1

λ
LG sup

t∈[0,T ]

∥w̃1(t)− w̃2(t)∥H2(Ω)

=LG sup
t∈[0,T ]

∥q(t)∥H2(Ω) .

For all t ∈ [0, T ], choose small h ∈ (0, T ) and τ ∈ [0, 1] such that t+ h ∈ (0, T ],

∥w̃(t) + τ [w̃(t+ h)− w̃(t)]− w̃0∥H2(Ω) ≤ r,

then for ψ ∈ H2
∗ (Ω) with ∥ψ∥H2(Ω) ≤ 1, G′(w̃(t)) : ψ ∈ H2

∗ (Ω) −→ [G′(w̃(t))]ψ ∈ H2
∗ (Ω). By the
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algebraic properties of H2(Ω), i.e. (2.4) and (2.5) from Lemma 2.2, we have

∥G′(w̃(t) + τ [w̃(t+ h)− w̃(t)])−G′(w̃(t))∥B(H2(Ω))

= ∥[G′(w̃(t) + τ [w̃(t+ h)− w̃(t)])]ψ − [G′(w̃(t))]ψ∥H2(Ω)

≤2βF sup
0≤t<t+h≤T

0≤τ≤1

∥∥∥∥∥ 1

(w(t) + τ [w(t+ h)− w(t)])
3 − 1

[w(t)]3

∥∥∥∥∥
H2(Ω)

∥ψ∥H2(Ω)

≤2βFC3 sup
0≤t<t+h≤T

∥w̃(t+ h)− w̃(t)∥H2(Ω).

Since w̃ ∈ C
(
[0, T ];H2(Ω)

)
, w̃ are uniformly continuous with respect to t ∈ [0, T ], hence the assertion

(2.10) is proved by
lim

h→0+
sup

0≤t<t+h≤T
∥w̃(t+ τh)− w̃(t)∥H2(Ω) = 0.

This concludes the proof of Lemma 2.3.

A.4 Proof of Lemma 2.4

Proof. Let u1, u2 ∈ C ([0, T ];BH2(u0, r)), according to the definitions of the operators u 7−→ v(u)
and u 7−→ w(u), it follows that (v1, w1) = (v(u1), w(u1)) and (v2, w2) = (v(u2), w(u2)) belong
to C ([0, T ];BH2(v0, r)×BH2(w0, r)). Setting that C̃ = ∥w0∥H2(Ω) +

κ
2C , C̃1 = ∥u0∥H2(Ω) +

κ
2C ,

C̃2 = ∥v0∥L2(Ω) +
κ
2C . Thus, ∀ t ∈ [0, T ], ∥u1(t)∥H2(Ω) ≤ C̃1, ∥u2(t)∥H2(Ω) ≤ C̃1, ∥v1(t)∥L2(Ω) ≤ C̃2,

∥v2(t)∥L2(Ω) ≤ C̃2, ∥w1(t)∥H2(Ω) ≤ C̃, ∥w2(t)∥H2(Ω) ≤ C̃.

Because the estimate ∥w1(t)− w2(t)∥H2(Ω) ≤ LW ∥u1(t)− u2(t)∥H2(Ω) for all t ∈ [0, T ] andH2(Ω)

is an algebra for Ω ⊂ Rn, n = 1, 2, i.e. (2.4) and (2.5) in Lemma 2.2, we obtain similar bounds for
[w1(t)]

−1 − [w2(t)]
−1 and [w1(t)]

3 − [w2(t)]
3:∥∥[w1(t)]

−1 − [w2(t)]
−1
∥∥
H2(Ω)

≤ C2
1LW ∥u1(t)− u2(t)∥H2(Ω) , (A.5)∥∥[w1(t)]

3 − [w2(t)]
3
∥∥
H2(Ω)

≤ 3C̃2LW ∥u1(t)− u2(t)∥H2(Ω) . (A.6)

Similarly, the algebraic property of H2(Ω) from Lemma A.1 implies∥∥[u1(t)]2 − [u2(t)]
2
∥∥
H2(Ω)

≤ 2C̃1 ∥u1(t)− u2(t)∥H2(Ω) . (A.7)

The algebraic properties of H2(Ω), i.e. Lemma A.1 and (A.2) of Corollary A.2, imply

1

2

∥∥{[w1(t)]
−1 − [w2(t)]

−1
}
∇ ·
{
[w1(t)]

3∇[u1(t)]
2
}∥∥

L2(Ω)

≤C
∥∥[w1(t)]

−1 − [w2(t)]
−1
∥∥
H2(Ω)

∥∥[w1(t)]
3
∥∥
H2(Ω)

∥∥[u1(t)]2∥∥H2(Ω)

≤CC2
1 C̃

3C̃2
1LW ∥u1(t)− u2(t)∥H2(Ω) . (A.8)

Similarly, set Ĉ1 = 3CC1LW C̃2C̃2
1 and Ĉ2 = 2CC1C̃

3C̃1, then

1

2

∥∥[w2(t)]
−1∇ ·

{(
[w1(t)]

3 − [w2(t)]
3
)
∇[u1(t)]

2
}∥∥

L2(Ω)
≤ Ĉ1 ∥u1(t)− u2(t)∥H2(Ω) ,

1

2

∥∥[w2(t)]
−1∇ ·

{
[w2(t)]

3∇
(
[u1(t)]

2 − [u2(t)]
2
)}∥∥

L2(Ω)
≤ Ĉ2 ∥u1(t)− u2(t)∥H2(Ω) .

Because of the estimates (A.5) and ∥v1(t)− v2(t)∥L2(Ω) ≤ LW ∥u1(t)− u2(t)∥H2(Ω), and H
2(Ω) is an

algebra, i.e. (A.1) in Corollary A.2, we obtain∥∥∥∥ v1(t)w1(t)
u1(t)−

v2(t)

w2(t)
u2(t)

∥∥∥∥
L2(Ω)

≤C ∥v1(t)∥L2(Ω)

∥∥[w1(t)]
−1
∥∥
H2(Ω)

∥u1(t)− u2(t)∥H2(Ω)

+C ∥u2(t)∥H2(Ω)

∥∥[w1(t)]
−1
∥∥
H2(Ω)

∥v1(t)− v2(t)∥L2(Ω)

+C ∥u2(t)∥H2(Ω) ∥v2(t)∥L2(Ω)

∥∥[w1(t)]
−1 − [w2(t)]

−1
∥∥
H2(Ω)

≤Ĉ3 ∥u1(t)− u2(t)∥H2(Ω) . (A.9)
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Here Ĉ3 = C
(
C̃2C1 + C̃1C1LW + C̃1C̃2C

2
1LW

)
.

Consequently, (2.11) holds by setting Le = CC2
1 C̃

3C̃2
1LW + Ĉ1 + Ĉ2 + Ĉ3 and computing

∥[f(u1)](t)− [f(u2)](t)∥L2(Ω) ≤
1

2

∥∥{[w1(t)]
−1 − [w2(t)]

−1
]
∇ ·
{
[w1(t)]

3∇[u1(t)]
2
}∥∥

L2(Ω)

+
1

2

∥∥[w2(t)]
−1∇ ·

{(
[w1(t)]

3 − [w2(t)]
3
)
∇[u1(t)]

2
}∥∥

L2(Ω)

+
1

2

∥∥[w2(t)]
−1∇ ·

{
[w2(t)]

3∇
(
[u1(t)]

2 − [u2(t)]
2
)}∥∥

L2(Ω)

+

∥∥∥∥ v1(t)w1(t)
u1(t)−

v2(t)

w2(t)
u2(t)

∥∥∥∥
L2(Ω)

≤Le ∥u1(t)− u2(t)∥H2(Ω) . (A.10)

This concludes the proof of Lemma 2.4.

B Proofs of Results in Section 3

B.1 Proof of Lemma 3.1

Proof. Let w̃ ∈ C2
(
[0, T ];L2(Ω)

)
∩C1

(
[0, T ];H2

∗ (Ω)
)
∩C

(
[0, T ];H4

∗ (Ω)
)
solve the semilinear fourth-

order equation (3.7). Then Φ := (w̃′, w̃) ∈ C1([0, T ];X), Φ(t) = (w̃′(t), w̃(t)) ∈ D(A) for all t ∈ [0, T ],
Φ ∈ C([0, T ];D(A)) and

Φ′(t) =

(
w̃

′′
(t)

w̃′(t)

)
=

(
Aw̃(t)− βF

(w̃(t)+θ2)2
+ βp(ũ(t) + θ1 − 1)

w̃′(t)

)
= AΦ(t) + [G(Φ)](t),

holds for all t ∈ [0, T ]. Moreover, Φ(0) = (w̃′(0), w̃(0)) = (ṽ0, w̃0) = Φ0.
Therefore, Φ ∈ C([0, T ];D(A)) ∩ C1([0, T ];X) solves the equation (3.10).
Conversely, let Φ = (φ1, φ2) ∈ C1([0, T ];X) ∩ C([0, T ];D(A)) solves the semilinear evolution

equation (3.10). We set w̃ := φ2, obtaining w̃ ∈ C1
(
[0, T ];H2

∗ (Ω)
)
, w̃(t) ∈ H4

∗ (Ω), ∀ t ∈ [0, T ], and

w̃ ∈ C
(
[0, T ];H4

∗ (Ω)
)
. It further follows, ∀ t ∈ [0, T ],(

φ′
1(t)
w̃′(t)

)
= A

(
φ1(t)
w̃(t)

)
+ [G(Φ)](t) =

(
Aw̃(t)− βF

(w̃(t)+θ2)2
+ βp(ũ(t) + θ1 − 1)

φ1(t)

)
.

Thus, w̃′ = φ1 ∈ C1
(
[0, T ];L2(Ω)

)
and Φ = (w̃′, w̃), so that w̃ ∈ C2

(
[0, T ];L2(Ω)

)
, (w̃′(0), w̃(0)) =

(ṽ0, w̃0). So w̃ ∈ C2
(
[0, T ];L2(Ω)

)
∩ C1

(
[0, T ];H2

∗ (Ω)
)
∩ C

(
[0, T ];H4

∗ (Ω)
)
solves the semilinear

fourth-order equation (3.7).
This equivalence also yields that the solutions to the semilinear evolution equation (3.10) are

unique if and only if the solutions to the semilinear fourth-order equation (3.7) are unique.

B.2 Proof of Lemma 3.2

Proof. We aim to show that A, defined by (3.4), is skew adjoint on the Hilbert space X defined by
(3.1), and thus generates a strongly continuous semigroup (C0-semigroup) on X by using Stone’s
Lemma (see 3.24 Theorem, Section 3, Chapter II, [6]).

From the definition (3.4) of A, A is densely defined in X, i.e. D(A) = X, then A is skew
symmetric (i.e. iA is symmetric) for any two (ϕ1, ϕ2) ∈ D(A) and (ψ1, ψ2) ∈ D(A) by the following
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computations:〈
A
(
ϕ1
ϕ2

)
,

(
ψ1

ψ2

)〉
X

=

〈(
Aϕ2
ϕ1

)
,

(
ψ1

ψ2

)〉
X

=

∫
Ω

Aϕ2 · ψ1 +∇ϕ1 · ∇ψ2 +∆ϕ1 ·∆ψ2dx

=

∫
Ω

−∇ϕ2 · ∇ψ1 −∆ϕ2 ·∆ψ1 +∇ϕ1 · ∇ψ2 +∆ϕ1 ·∆ψ2dx

= −
[∫

Ω

∇ϕ2 · ∇ψ1 +∆ϕ2 ·∆ψ1 −∇ϕ1 · ∇ψ2 −∆ϕ1 ·∆ψ2dx

]
= −

[∫
Ω

∇ϕ2 · ∇ψ1 +∆ϕ2 ·∆ψ1 + ϕ1 · Aψ2dx

]
= −

〈(
ϕ1
ϕ2

)
,

(
Aψ2

ψ1

)〉
X

= −
〈(

ϕ1
ϕ2

)
,A
(
ψ1

ψ2

)〉
X

.

Furthermore, Re

〈
A
(
ψ
ϕ

)
,

(
ψ
ϕ

)〉
X

= 0 for all (ψ, ϕ) ∈ D(A), so A is dissipative. By using the

Lax-Milgram Theorem (Theorem 1, Section 6.2, [9]), we have the inverse A−1 of A exists, thus we
define an operator

R =

(
0 1

A−1 0

)
.

Then

RX ⊂ D(A), AR = I, RA
(
ψ
ϕ

)
=

(
ψ
ϕ

)
, ∀ (ψ, ϕ) ∈ D(A).

Therefore, iA is invertible and the resolvent set ρ(iA) of iA satisfies ρ(iA)∩R ̸= ∅, so the spectrum
σ(iA) ⊆ R, consequently, iA is selfadjoint, as a result, A is skew adjoint. According to Stone’s
Lemma, we have the linear operator A generates a C0-semigroup

{T (t) ∈ B(X) : t ∈ [0,∞)} .

B.3 Proof of Theorem 3.3

Proof. We let T ∈ (0,∞) be taken to be specified below. Because A, defined by (3.4), gener-
ates a strongly continuous semigroup (C0-semigroup)

{
T (t) ∈ B

(
L2(Ω)×H2

∗ (Ω)
)
: t ∈ [0,∞)

}
, and

[G (w̃)](t) = −βF [w̃(t) + θ2]
−2 + βp (θ1 − 1), we introduce a nonlinear operator Φ on Z(T ) by

[Φ(ṽ, w̃)] (t) := T (t)

(
ṽ0
w̃0

)
+

∫ t

0

{
T (t− s)

(
[G(w̃)](s) + βpũ(s)

0

)}
ds, ∀ t ∈ [0, T ].

We notice that

[Φ(ṽ, w̃)] (0) = T (0)

(
ṽ0
w̃0

)
=

(
ṽ0
w̃0

)
∈ D(A).

According to Lemma 1.3 of Chapter II in [6],

T (t)

(
ṽ0
w̃0

)
∈ D(A), ∀ t ∈ [0, T ].

Since (ṽ, w̃) ∈ Z(T ), ũ ∈ C ([0, T ];BH2 (ũ0, r)) such that G(w̃) + βpũ ∈ C([0, T ];H2(Ω)), hence(
[G(w̃)](t) + βpũ(t)

0

)
,

∫ t

0

{
T (t− s)

(
[G(w̃)](s) + βpũ(s)

0

)}
ds ∈ L2(Ω)×H2

∗ (Ω).
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Therefore, Φ is a nonlinear operator which maps Z(T ) into C
(
[0, T ];L2(Ω)×H2

∗ (Ω)
)
.

We next show that there exists a unique mild solution (ṽ, w̃) ∈ Z(T ) of the semilinear evolution
equation (3.11) which is a fixed point of Φ on Z(T ).

We denote by M0 = sup
t∈[0,∞)

∥T (t)∥B(L2(Ω)×H2(Ω)) an operator norm of {T (t)}0≤t<∞ on the space

L2(Ω)×H2
∗ (Ω). For given ũ ∈ C ([0, T ];BH2 (ũ0, r)), if (ṽ1, w̃1), (ṽ2, w̃2) ∈ Z(T ), then

[G(w̃1)](t)− [G(w̃2)](t) ∈ H2(Ω), ∀ t ∈ [0, T ]. By using the estimate (2.7) of Lemma 2.2, we obtain

sup
t∈[0,T ]

∥[Φ(ṽ1, w̃1)](t)− [Φ(ṽ2, w̃2)](t)∥L2(Ω)×H2(Ω)

= sup
t∈[0,T ]

∥∥∥∥∫ t

0

T (t− s)

(
[G(w̃1)](s) + βpũ(s)− [G(w̃2)](s)− βpũ(s)

0

)
ds

∥∥∥∥
L2(Ω)×H2(Ω)

≤TM0 sup
t∈[0,T ]

∥[G(w̃1)](t)− [G(w̃2)](t)∥L2(Ω)

≤TM0 sup
t∈[0,T ]

∥[G(w̃1)](t)− [G(w̃2)](t)∥H2(Ω)

≤TM0LG sup
t∈[0,T ]

∥w̃1(t)− w̃2(t)∥H2(Ω)

≤TM0LG sup
t∈[0,T ]

∥∥∥∥( ṽ1(t)− ṽ2(t)
w̃1(t)− w̃2(t)

)∥∥∥∥
L2(Ω)×H2(Ω)

. (B.1)

Because {T (t) ∈ B
(
L2(Ω)×H2

∗ (Ω)
)
: t ≥ 0} is a strongly continuous semigroup, according to the

definition of strong continuity, for (ṽ0, w̃0) ∈ D(A) and given constant r ∈
(
0, κ

2C

)
, there exists

δo = δo(r) > 0, such that if 0 < t ≤ δo, then

0 <

∥∥∥∥T (t)( ṽ0w̃0

)
−
(
ṽ0
w̃0

)∥∥∥∥
L2(Ω)×H2(Ω)

≤ r

2
. (B.2)

Since r ∈
(
0, κ

2C

)
and C = C(Ω) is a constant, δo depends on κ and Ω, i.e. δo = δo(κ,Ω).

As ũ ∈ C ([0, T ];BH2 (ũ0, r)) and (ṽ1, w̃1) ∈ Z(T ), then ṽ1(t) ∈ L2(Ω), w̃1(t), ũ(t) ∈ H2
∗ (Ω),

∀ t ∈ [0, T ], and sup
t∈[0,T ]

∥ũ(t)− ũ0∥H2(Ω) ≤ r, thus [G(w̃1)](t) + βpũ(t) ∈ H2(Ω), ∀ t ∈ [0, T ]. Because

G0 = G(w̃0) + βpũ0 ∈ H2(Ω), the inequality (2.8) of Lemma 2.2 implies

sup
t∈[0,T ]

∥∥∥∥[Φ(ṽ1, w̃1)] (t)−
(
ṽ0
w̃0

)∥∥∥∥
L2(Ω)×H2(Ω)

= sup
t∈[0,T ]

∥∥∥∥T (t)( ṽ0w̃0

)
−
(
ṽ0
w̃0

)
+

∫ t

0

{
T (t− s)

(
[G(w̃1)](s) + βpũ(s)

0

)}
ds

∥∥∥∥
L2(Ω)×H2(Ω)

≤ sup
t∈[0,T ]

∥∥∥∥T (t)( ṽ0w̃0

)
−
(
ṽ0
w̃0

)∥∥∥∥
L2(Ω)×H2(Ω)

+ TM0 ∥G0∥L2(Ω)

+TM0 sup
t∈[0,T ]

∥[G(w̃1)](t)−G(w̃0)∥L2(Ω) + TM0 sup
t∈[0,T ]

∥ũ(t)− ũ0∥L2(Ω)

≤ sup
t∈[0,T ]

∥∥∥∥T (t)( ṽ0w̃0

)
−
(
ṽ0
w̃0

)∥∥∥∥
L2(Ω)×H2(Ω)

+ TM0 ∥G0∥H2(Ω)

+TM0 sup
t∈[0,T ]

∥[G(w̃1)](t)−G(w̃0)∥H2(Ω) + TM0 sup
t∈[0,T ]

∥ũ(t)− ũ0∥H2(Ω)

≤ sup
t∈[0,T ]

∥∥∥∥T (t)( ṽ0w̃0

)
−
(
ṽ0
w̃0

)∥∥∥∥
L2(Ω)×H2(Ω)

+ TM0

(
∥G0∥H2(Ω) + (LG + 1) r

)
. (B.3)

For fixed small r ∈
(
0, κ

2C

)
, then there exists a number T0 > 0,

T0 = inf

{
δo,

1

2M0LG
,

κ

2M0

[
(LG + 1)κ+ 2C ∥G0∥H2(Ω)

]−1
}
, (B.4)

such that for every T ∈ (0, T0), it follows that

sup
t∈[0,T ]

∥∥∥∥[Φ(ṽ1, w̃1)] (t)−
(
ṽ0
w̃0

)∥∥∥∥
L2(Ω)×H2(Ω)

≤ r,
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sup
t∈[0,T ]

∥[Φ(ṽ1, w̃1)](t)− [Φ(ṽ2, w̃2)](t)∥L2(Ω)×H2(Ω) ≤
1

2
sup

t∈[0,T ]

∥∥∥∥( ṽ1(t)− ṽ2(t)
w̃1(t)− w̃2(t)

)∥∥∥∥
L2(Ω)×H2(Ω)

.

Hereby Φ(ṽ1, w̃1) ∈ Z(T ) for (ṽ1, w̃1) ∈ Z(T ), Φ(ṽ, w̃) is Lipschitz continuous on the bounded set
Z(T ) with Lipschitz constant smaller than or equal to 1

2 , and Φ(ṽ, w̃) is a contractive mapping of
Z(T ) into itself.

According to the Banach fixed point theorem, for each T ∈ (0, T0), there exists a unique fixed
point (ṽT , w̃T ) ∈ Z(T ), such that (ṽT , w̃T ) = Φ(ṽT , w̃T ) for given ũ ∈ C ([0, T ];BH2 (ũ0, r)).

Hence, (ṽT , w̃T ) ∈ Z(T ) is the unique mild solution of the semilinear evolution equation (3.11)
on [0, T ], and (ṽT , w̃T ) satisfies the integral formulation (3.12). Due to the uniqueness of the fixed
point, we set (ṽ, w̃) = (ṽT , w̃T ) and note that (ṽT , w̃T ) is the restriction (ṽ|[0,T ], w̃|[0,T ]) ∈ Z(T ) of
(ṽ, w̃). As a result, the assertion is proved.

B.4 Proof of Corollary 3.4

Proof. Take 0 ≤ t < t+ h ≤ T . Equation (3.12) leads to(
ṽ(t+ h)− ṽ(t)
w̃(t+ h)− w̃(t)

)
=T (t)

[
T (h)

(
ṽ0
w̃0

)
−
(
ṽ0
w̃0

)]
+

∫ h

0

T (t+ h− s)

(
[G(w̃)](s) + βpũ(s)

0

)
ds

+

∫ t

0

T (t− s)

(
[G(w̃)](s+ h)− [G(w̃)](s) + βp[ũ(s+ h)− ũ(s)]

0

)
ds

=

∫ h

0

T (t+ s)A
(
ṽ0
w̃0

)
ds+

∫ h

0

T (t+ h− s)

(
[G(w̃)](s) + βpũ(s)

0

)
ds

+

∫ t

0

T (t− s)

(
[G(w̃)](s+ h)− [G(w̃)](s) + βp[ũ(s+ h)− ũ(s)]

0

)
ds. (B.5)

Notice that

M0 = sup
t∈[0,∞)

∥T (t)∥B(L2(Ω)×H2(Ω)) ,

∥∥∥∥A( ṽ0w̃0

)∥∥∥∥
L2(Ω)×H2(Ω)

≤ ∥(ṽ0, w̃0)∥D(A) . (B.6)

For T ∈ (0, T0) and ũ ∈ C ([0, T ];BH2 (ũ0, r)), the semilinear evolution equation (3.11) has a unique
mild solution (ṽ, w̃) ∈ Z(T ), by using the estimate (2.8) in Lemma 2.3, we have

sup
t∈[0,T ]

∥∥∥∥([G(w̃)](t) + βpũ(t)
0

)∥∥∥∥
L2(Ω)×H2(Ω)

≤ sup
t∈[0,T ]

∥[G(w̃)](t) + βpũ(t)∥H2(Ω)

≤ sup
t∈[0,T ]

∥[G(w̃)](t)−G(w̃0)∥H2(Ω)

+ βp sup
t∈[0,T ]

∥ũ(t)− ũ0∥H2(Ω) + ∥G0∥H2(Ω)

≤ (LG + 1) r + ∥G0∥H2(Ω)

≤ κ (LG + 1)

2C
+ ∥G0∥H2(Ω) . (B.7)

Here LG is given by Lemma 2.3 and G0 = G(w̃0) + βpũ0 ∈ H2(Ω).
Moreover, ũ(s + h), ũ(s), w̃(s + h), w̃(s) ∈ H2

∗ (Ω), ∀ 0 ≤ s < s + h ≤ t ≤ T , therefore,
[G(w̃)](s+ h) + βpũ(s+ h)− [G(w̃)](s)− βpũ(s) ∈ H2(Ω).

Since ũ ∈ C1
(
[0, T0);L

2(Ω)
)
, then, ∀ T ∈ (0, T0),

sup
t∈[0,T ]

∫ t

0

∥ũ(s+ h)− ũ(s)∥L2(Ω) ds ≤T0 sup
0≤s≤T,

0≤s+σh≤T

h

∫ 1

0

∥ũ′(s+ σh)∥L2(Ω) dσ

≤T0h ∥ũ∥C1([0,T0);L2(Ω)) .
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According to inequality (2.6) of Lemma 2.3, we have∥∥∥∥∫ t

0

T (t− s)

(
[G(w̃)](s+ h)− [G(w̃)](s) + βp[ũ(s+ h)− ũ(s)]

0

)
ds

∥∥∥∥
L2(Ω)×H2(Ω)

=M0

∫ t

0

∥[G(w̃)](s+ h)− [G(w̃)](s) + βp[ũ(s+ h)− ũ(s)]∥L2(Ω) ds

≤M0

∫ t

0

βp ∥ũ(s+ h)− ũ(s)∥L2(Ω) + ∥[G(w̃)](s+ h)− [G(w̃)](s)∥H2(Ω) ds

≤hM0βpT0 ∥ũ∥C1([0,T0);L2(Ω)) +M0LG

∫ t

0

∥∥∥∥( ṽ(s+ h)− ṽ(s)
w̃(s+ h)− w̃(s)

)∥∥∥∥
L2(Ω)×H2(Ω)

ds. (B.8)

Combing (B.5), (B.6), (B.7) and (B.8) gives∥∥∥∥( ṽ(t+ h)− ṽ(t)
w̃(t+ h)− w̃(t)

)∥∥∥∥
L2(Ω)×H2(Ω)

≤ hM0 ∥(ṽ0, w̃0)∥D(A) + hM0

(
κ (LG + 1)

2C
+ ∥G0∥H2(Ω)

)
+ hM0βpT0 ∥ũ∥C1([0,T0);L2(Ω))

+M0LG

∫ t

0

∥∥∥∥( ṽ(s+ h)− ṽ(s)
w̃(s+ h)− w̃(s)

)∥∥∥∥
L2(Ω)×H2(Ω)

ds.

Set Vo = ∥(ṽ0, w̃0)∥D(A) +
(

κ(LG+1)
2C + ∥G0∥H2(Ω)

)
+ βpT0 ∥ũ∥C1([0,T0);L2(Ω)).

Gronwall’s inequality then implies that∥∥∥∥( ṽ(t+ h)− ṽ(t)
w̃(t+ h)− w̃(t)

)∥∥∥∥
L2(Ω)×H2(Ω)

≤M0Vo
(
eM0LGT0

)
h.

Therefore, (3.13) holds for all h ∈ (0, T ] by setting LV =M0Vo
(
eM0LGT0

)
.

B.5 Proof of Corollary 3.5

Proof. Note that

sup
t∈[0,T ]

∫ t

0

∥ũ(s+ h)− ũ(s)∥L2(Ω) ds ≤T0 sup
0≤s<s+h≤T

∥ũ(s+ h)− ũ(s)∥L2(Ω)

≤T0 sup
0≤s<s+h≤T

∥ũ(s+ h)− ũ(s)∥H2(Ω)

≤T0hα [ũ]Cα([0,T0);H2(Ω)) . (B.9)

According to (B.5), (B.6), (B.7), (B.8) and (B.9), and for 0 ≤ t < t+ h ≤ T , h ∈ (0, T ],∥∥∥∥( ṽ(t+ h)− ṽ(t)
w̃(t+ h)− w̃(t)

)∥∥∥∥
L2(Ω)×H2(Ω)

≤ hM0 ∥(ṽ0, w̃0)∥D(A) + hαM0βpT0 [ũ]Cα([0,T0);H2(Ω))

+ hM0

(
κ (LG + 1)

2C
+ ∥G(w̃0) + βpũ0∥H2(Ω)

)
+M0LG

∫ t

0

∥∥∥∥( ṽ(s+ h)− ṽ(s)
w̃(s+ h)− w̃(s)

)∥∥∥∥
L2(Ω)×H2(Ω)

ds.

Set P0 = κ(LG+1)
2C + ∥G(w̃0) + βpũ0∥H2(Ω), and Gronwall’s inequality then implies that∥∥∥∥( ṽ(t+ h)− ṽ(t)

w̃(t+ h)− w̃(t)

)∥∥∥∥
L2(Ω)×H2(Ω)

≤
(
eM0LGT0

)
M0

{
∥(ṽ0, w̃0)∥D(A) + P0

}
h

+
(
eM0LGT0

)
M0βpT0 [ũ]Cα([0,T0);H2(Ω)) h

α

:=I1h+ I2h
α.
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Note that
I1h ≤

(
eM0LGT0

)
M0

{
∥(ṽ0, w̃0)∥D(A) + P0

}
T 1−α
0 hα,

and

I2 ≤
(
eM0LGT0

)
M0βpT0 ∥ũ∥Cα([0,T0);H2(Ω))

≤
(
eM0LGT0

)
M0βpT0

(
∥ũ− ũ0∥Cα([0,T0);H2(Ω)) + ∥ũ0∥H2(Ω)

)
≤
(
eM0LGT0

)
M0βpT0

(
r + ∥ũ0∥H2(Ω)

)
≤
(
eM0LGT0

)
M0βpT0

( κ

2C
+ ∥ũ0∥H2(Ω)

)
Set LU =

(
eM0LGT0

)
M0

{
∥(ṽ0, w̃0)∥D(A) + P0

}
T 1−α
0 +

(
eM0LGT0

)
M0βpT0

(
κ
2C + ∥ũ0∥H2(Ω)

)
and

LU is a Lipschitz constant depending on α, T0, κ, Ω, βp, βF , ∥ũ0∥H2(Ω), ∥w̃0∥H2(Ω), ∥(ṽ0, w̃0)∥D(A)

and M0 = sup
t∈[0,∞)

∥T (t)∥B(L2(Ω)×H2(Ω)).

Therefore, (3.14) holds for all h ∈ (0, T ].

B.6 Proof of Theorem 3.6

Proof. Let T ∈ (0, T0), G0 = G (w̃0)+βpũ0 and (ṽ, w̃) be the mild solution of the semilinear evolution
equation (3.11) defined by (3.12). Take ũ ∈ C ([0, T ];BH2 (ũ0, r))∩C1([0, T ];L2(Ω)) to be given such
that ũ′(t) ∈ L2(Ω) is uniformly continuous for all t ∈ [0, T ].

We first prove the linear non-autonomous problem(
p̃(t)
q̃(t)

)
= T (t)

((
G0

0

)
+A

(
ṽ0
w̃0

))
+

∫ t

0

T (t− s)

(
[H(q̃)](s) + βpũ

′(s)
0

)
ds, (B.10)

can be solved for t ∈ [0, T ]. Here

[H(q̃)](s) =
2βF q̃(s)

[w̃(s) + θ2]
3 = [G′(w̃(s))]q(s) = [G′(w̃)q](s), s ∈ [0, t]. (B.11)

We define a nonlinear operator Ψ by

Ψ : C
(
[0, T ];L2(Ω)×H2

∗ (Ω)
)
−→ C

(
[0, T ];L2(Ω)×H2

∗ (Ω)
)
,

[Ψ (p̃, q̃)] (t) = T (t)

((
G0

0

)
+A

(
ṽ0
w̃0

))
+

∫ t

0

T (t− s)

(
[H(q̃)](s) + βpũ

′(s)
0

)
ds.

For any (p̃1, q̃1) , (p̃2, q̃2) ∈ C
(
[0, T ];L2(Ω)×H2

∗ (Ω)
)
, w̃ ∈ C

(
[0, T ];H2

∗ (Ω)
)
, then

H(q̃1)−H(q̃2) =
2βF

[w̃ + θ2]
3 [q̃1 − q̃2] = G′(w̃)(q1 − q2) ∈ C

(
[0, T ];H2

∗ (Ω)
)
.

Hence, according to the estimate (2.9) of Fréchet derivative G′ (w̃) q from Lemma 2.3 and the defini-
tion of T0 in Theorem 3.3, Ψ is a contractive mapping on C

(
[0, T ];L2(Ω)×H2

∗ (Ω)
)
because

sup
t∈[0,T ]

∥[Ψ (p̃1, q̃1)] (t)− [Ψ (p̃2, q̃2)] (t)∥L2(Ω)×H2(Ω)

= sup
t∈[0,T ]

∥∥∥∥∫ t

0

T (t− s)

(
[H(q̃1)](s)− [H(q̃2)](s)

0

)
ds

∥∥∥∥
L2(Ω)×H2(Ω)

≤T sup
0≤s≤t≤T

∥T (t− s)∥B(L2(Ω)×H2(Ω)) sup
t∈[0,T ]

∥[H(q̃1)](t)− [H(q̃2)](t)∥L2(Ω)

≤TM0LG sup
t∈[0,T ]

∥q̃1(t)− q̃2(t)∥H2(Ω) ≤
1

2
sup

t∈[0,T ]

∥∥∥∥(p̃1(t)− p̃2(t)
q̃1(t)− q̃2(t)

)∥∥∥∥
L2(Ω)×H2(Ω)

.

According to the Banach fixed point theorem, for any ũ ∈ C ([0, T ];BH2 (ũ0, r))∩C1
(
[0, T ];L2(Ω)

)
,

there exists a unique fixed point (p̃, q̃) ∈ C
(
[0, T ];L2(Ω)×H2

∗ (Ω)
)
, such that (p̃, q̃) = Ψ(p̃, q̃). Hereby,

the R-linear non-autonomous problem (B.10) can be solved for t ∈ [0, T ].
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We next prove that (p̃, q̃) is the time derivative of the mild solution (ṽ, w̃).
Let 0 ≤ t < t+ h ≤ T for some h ∈ (0, T ], equations (3.12) and (B.10) imply that

E(h, t) :=
1

h

(
ṽ(t+ h)− ṽ(t)
w̃(t+ h)− w̃(t)

)
−
(
p̃(t)
q̃(t)

)
= T (t)

1

h
(T (h)− I)

(
ṽ0
w̃0

)
− T (t)A

(
ṽ0
w̃0

)
+

1

h

∫ h

0

{
T (t+ h− s)

(
[G(w̃)](s) + βpũ(s)

0

)}
ds− T (t)

(
G0

0

)
+

∫ t

0

T (t− s)

(
1
h {[G(w̃)](s+ h)− [G(w̃)](s)} − [H(q̃)](s)

0

)
ds

+

∫ t

0

T (t− s)

(
βp
[
1
h {ũ(s+ h)− ũ(s)} − ũ′(s)

]
0

)
ds.

Let

E(1)(h, t) := T (t)
1

h
(T (h)− I)

(
ṽ0
w̃0

)
− T (t)A

(
ṽ0
w̃0

)
,

E(2)(h, t) :=
1

h

∫ h

0

{
T (t+ h− s)

(
[G(w̃)](s) + βpũ(s)

0

)}
ds− T (t)

(
G0

0

)
,

E(3)(h, t) :=

∫ t

0

T (t− s)

(
1
h {[G(w̃)](s+ h)− [G(w̃)](s)} − [H(q̃)](s)

0

)
ds

+

∫ t

0

T (t− s)

(
βp
[
1
h {ũ(s+ h)− ũ(s)} − ũ′(s)

]
0

)
ds.

We initially notice that

lim
h→0+

∥∥∥E(1)(h, t)
∥∥∥
L2(Ω)×H2(Ω)

≤ lim
h→0+

M0

∥∥∥∥ 1h (T (h)− I)

(
ṽ0
w̃0

)
−A

(
ṽ0
w̃0

)∥∥∥∥
L2(Ω)×H2(Ω)

:= lim
h→0+

Λ1(h) = 0,

and

lim
h→0+

1

h

∫ h

0

{
T (h− s)

(
G0

0

)}
ds =

(
G0

0

)
.

Because G(w̃) ∈ C([0, T ];H2(Ω)), ũ ∈ C
(
[0, T ];H2

∗ (Ω)
)
, then

lim
h→0+

sup
0≤s≤h

∥[G(w̃)](s)− [G(w̃)](0) + βp(ũ(s)− ũ(0))∥H2(Ω) = 0,

hence

lim
h→0+

∥∥∥E(2)(h, t)
∥∥∥
L2(Ω)×H2(Ω)

= lim
h→0+

∥∥∥∥∥ 1h
∫ h

0

{
T (t+ h− s)

(
[G(w̃)](s) + βpũ(s)

0

)}
ds− T (t)

(
G0

0

)∥∥∥∥∥
L2(Ω)×H2(Ω)

= lim
h→0+

∥∥∥∥∥T (t) 1h
∫ h

0

{
T (h− s)

(
[G(w̃)](s)−G(w̃0) + βp(ũ(s)− ũ0)

0

)}
ds

∥∥∥∥∥
L2(Ω)×H2(Ω)

≤ lim
h→0+

M0

∥∥∥∥∥ 1h
∫ h

0

{
T (h− s)

(
[G(w̃)](s)−G(w̃0) + βp(ũ(s)− ũ0)

0

)}
ds

∥∥∥∥∥
L2(Ω)×H2(Ω)

≤ lim
h→0+

M2
0

h

h
sup

0≤s≤h
∥[G(w̃)](s)−G(w̃0) + βp(ũ(s)− ũ0)∥L2(Ω)

= lim
h→0+

M2
0 sup

0≤s≤h
∥[G(w̃)](s)− [G(w̃)](0) + βp(ũ(s)− ũ(0))∥H2(Ω)

:= lim
h→0+

Λ2(h) = 0.
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Define
GD(t, h) := [G(w̃)] (t+ h)− [G(w̃)] (t)− [G′(w̃)] (t) · [w̃(t+ h)− w̃(t)] ,

E
(3)
1 (h, t) :=

∫ t

0

T (t− s)

(
1
hGD(s, h)

0

)
ds,

E
(3)
2 (h, t) :=

∫ t

0

T (t− s)

(
[G′(w̃)](s)

{
1
h{w̃(s+ h)− w̃(s)} − q̃(s)

}
0

)
ds,

E
(3)
3 (h, t) :=

∫ t

0

T (t− s)

(
βp
{

1
h [ũ(s+ h)− ũ(s)]− ũ′(s)

}
0

)
ds.

We then write
E(3)(h, t) = E

(3)
1 (h, t) + E

(3)
2 (h, t) + E

(3)
3 (h, t).

Hence∥∥∥E(3)
3 (h, t)

∥∥∥
L2(Ω)×H2(Ω)

=

∥∥∥∥∫ t

0

T (t− s)

(
βp
{

1
h [ũ(s+ h)− ũ(s)]− ũ′(s)

}
0

)
ds

∥∥∥∥
L2(Ω)×H2(Ω)

≤T0M0βp sup
0≤t<t+h≤T

∥∥∥∥ ũ(t+ h)− ũ(t)

h
− ũ′(t)

∥∥∥∥
L2(Ω)

=T0M0βp sup
0≤t≤t+σh≤T

0≤σ≤1

∥∥∥∥ 1h
∫ 1

0

d

dσ
[ũ(t+ σh)] dσ − ũ′(t)

∥∥∥∥
L2(Ω)

=T0M0βp sup
0≤t≤t+σh≤T

0≤σ≤1

∥ũ′(t+ σh)− ũ′(t)∥L2(Ω)

:=Λ3(h) → 0, as h→ 0+,

since ũ ∈ C ([0, T ];BH2 (ũ0, r))∩C1
(
[0, T ];L2(Ω)

)
is given such that the time derivative ũ′(t) ∈ L2(Ω)

is uniformly continuous for all t ∈ [0, T ]. Using the bound estimate (2.9) of Fréchet derivative G′ (w̃)
from Lemma 2.3 again gives∥∥∥E(3)

2 (h, t)
∥∥∥
L2(Ω)×H2(Ω)

≤M0LG

∫ t

0

∥E(h, s)∥L2(Ω)×H2(Ω) ds.

Because GD(t, h) ∈ H2(Ω). The estimate (3.13) of Corollary 3.4 implies the function w̃ is Lipschitz
continuous with respect to t ∈ [0, T ]. Employing this fact and the limit (2.10) of Lemma 2.3 gives∥∥∥E(3)

1 (h, t)
∥∥∥
L2(Ω)×H2(Ω)

=
T0M0

h
sup

t∈[0,T ]
t+h∈[0,T ]

∥∥∥∥∫ 1

0

[G′(w̃(t) + τ [w̃(t+ h)− w̃(t)])−G′(w̃(t))] [w̃(t+ h)− w̃(t)] dτ

∥∥∥∥
H2(Ω)

≤T0M0LV h

h
sup

0≤t<t+h≤T

∥∥∥∥∫ 1

0

G′(w̃(t) + τ [w̃(t+ h)− w̃(t)])−G′(w̃(t))dτ

∥∥∥∥
B(H2(Ω))

=T0M0LV sup
0≤t≤t+τh≤T

0≤τ≤1

∥G′(w̃(t) + τ [w̃(t+ h)− w̃(t)])−G′(w̃(t))∥B(H2(Ω))

:=Λ4(h) → 0, as h→ 0+.

Summing up, we have shown

∥E(h, t)∥L2(Ω)×H2(Ω) ≤ Λ1(h) + Λ2(h) + Λ3(h) + Λ4(h) +M0LG

∫ t

0

∥E(h, s)∥L2(Ω)×H2(Ω) ds.

Gronwall’s inequality thus implies the inequality

∥E(h, t)∥L2(Ω)×H2(Ω) ≤ (Λ1(h) + Λ2(h) + Λ3(h) + Λ4(h)) e
tM0LG ,
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which holds for t ∈ [0, T ]. Letting h → 0+, we then deduce that the (ṽ, w̃) is differentiable from the
right and the right derivative of (ṽ, w̃) coincides with (p̃, q̃). Because (p̃, q̃) is continuous on [0, T ], by
using Lemma 2.7, we conclude (ṽ, w̃) ∈ C1

(
[0, T ];L2(Ω)×H2

∗ (Ω)
)
. As ũ ∈ C ([0, T ];BH2 (ũ0, r)) ∩

C1
(
[0, T ];L2(Ω)

)
, then (G (w̃) + βpũ, 0) ∈ C1

(
[0, T ];L2(Ω)×H2

∗ (Ω)
)
. By Lemma 2.6, the mild

solution (ṽ, w̃) , defined by (3.12), uniquely solves the semilinear evolution equation (3.11) on [0, T ],
(ṽ, w̃) is a unique strict solution of semilinear evolution equation (3.11), and

(ṽ, w̃) ∈ C
(
[0, T ];H2

∗ (Ω)×H4
∗ (Ω)

)
∩ C1

(
[0, T ];L2(Ω)×H2

∗ (Ω)
)
,∀ T ∈ (0, T0).

C Proof of Lemma 5.5

Proof. Let T ∈ (0, T0). Recall that C = C(Ω) is a constant which may vary from line to line
but depends on Ω only. From the discussion of the graph norm of the linear operator P∗ and
ũ ∈ Cα([0, T ];BH2(ũ0, r)), then ũ ∈ C ([0, T ];BH2 (ũ0, r)) , ũ(0) = ũ0 ∈ D(P∗).

According to Theorem 3.3, (ṽ, w̃) ∈ Z(T ) is a unique mild solution of the semilinear evolution
equation (3.11) for all r ∈

(
0, κ

2C

)
. Here κ = inf

x∈Ω
w̃0(x) + θ2. Thus from Corollary 3.5, if ũ ∈

Cα ([0, T ];BH2(ũ0, r)).

(ṽ, w̃) = (ṽ(ũ), w̃(ũ)) ∈ Z(T ) ∩ Cα
(
[0, T ] ;L2(Ω)×H2

∗ (Ω)
)
.

Recall u0 = ũ0 + θ1, v0 = ṽ0, w0 = w̃0 + θ2, u = ũ+ θ1, v = ṽ, w = w̃ + θ2, and note that

v(u) = v(ũ+ θ1) = ṽ(ũ), w(u) = w(ũ+ θ1) = w̃(ũ) + θ2.

Thus
if u ∈ Cα([0, T ];BH2(u0, r)), (C.1a)

then (v, w) ∈ Cα
(
[0, T ] ;L2(Ω)×H2

2 (Ω)
)
∩ {C ([0, T ];BL2(v0, r)×BH2(w0, r))} , i.e. (C.1b)

∥v(t+ h)− v(t)∥L2(Ω) ≤ LUh
α, ∥w(t+ h)− w(t)∥H2(Ω) ≤ LUh

α. (C.1c)

Hence

F (ũ) =
1

w
∇ ·
(
w3(ũ+ θ1)∇ũ

)
− v

w
(ũ+ θ1) ∈ Cα

(
[0, T ];L2(Ω)

)
.

Following these facts, we are going to show that the assertion (5.19) of Lemma 5.5 holds.
Let h ∈ (0, T ] be such that 0 ≤ t < t+h ≤ T . Recall that ∥u(t)∥H2(Ω) ≤ C̃1, ∥u(t+ h)∥H2(Ω) ≤ C̃1,

∥v(t)∥L2(Ω) ≤ C̃2, ∥v(t+ h)∥L2(Ω) ≤ C̃2, ∥w(t+ h)∥H2(Ω) ≤ C̃,

∥w(t)∥H2(Ω) ≤ C̃. Here C̃ = ∥w0∥H2(Ω) +
κ
2C , C̃1 = ∥u0∥H2(Ω) +

κ
2C , C̃2 = ∥v0∥L2(Ω) +

κ
2C .

BecauseH2(Ω) is an algebra, that is estimate (2.4) of Lemma 2.2, and estimates (3.14) of Corollary
3.5 and estimate (C.1c) are satisfied, we obtain∥∥[w(t+ h)]−1 − [w(t)]−1

∥∥
H2(Ω)

≤ C2
1LUh

α,
∥∥[w(t+ h)]3 − [w(t)]3

∥∥
H2(Ω)

≤ 3C̃2LUh
α. (C.2)

Similarly, for u from Corollary 3.5 and (C.1a), we get∥∥[u(t+ h)]2 − [u(t)]2
∥∥
H2(Ω)

≤ 2C̃1 [u]Cα([0,T ];H2(Ω)) h
α. (C.3)

The arguments of the proof of Lemma 2.4 give that (5.19) of Lemma 5.5 holds:

∥[F (ũ)] (t+ h)− [F (ũ)] (t)∥L2(Ω) ≤ LALUh
α + LA[u]Cα([0,T ];H2(Ω))h

α. (C.4)

Here LA is a constant depending on C, C1, C̃, C̃1 and C̃2.
We next prove the assertion (5.20) of Lemma 5.5.
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For q ∈ Cα([0, T ];BH2(ũ0, r)), t ∈ [0, T ], we note w(t) = [w(u)](t), v(t) = [v(u)](t). From the
definition (5.4) of the Frechét derivative of F (ũ) on ũ at t and the definition (5.6) of P∗q(t), we have,
for h ∈ (0, T ] such that t+ h ∈ (0, T ],

[F ′(ũ)q] (t+ h)− [F ′(ũ)q] (t)− P∗ (q(t+ h)− q(t))

=
1

w(t+ h)
∇ ·
{
[w(t+ h)]3u(t+ h)∇q(t+ h) + [w(t+ h)]3 [∇u(t+ h)] q(t+ h)

}
− 1

w(t)
∇ ·
{
[w(t)]3u(t)∇q(t) + [w(t)]3 [∇u(t)] q(t)

}
+

3

2w(t+ h)
∇ ·
{(

∇[u(t+ h)]2
)
[w(t+ h)]2[w′(u)q](t+ h)

}
− 3

2w(t)
∇ ·
{(

∇[u(t)]2
)
[w(t)]2[w′(u)q](t)

}
− [w′(u)q](t+ h)

2[w(t+ h)]2
∇ ·
(
[w(t+ h)]3∇[u(t+ h)]2

)
− v(t+ h)

w(t+ h)
q(t+ h)

+
[w′(u)q](t)

2[w(t)]2
∇ ·
(
[w(t)]3∇[u(t)]2

)
+
v(t)

w(t)
q(t)

−w(t+ h)[v′(u)q](t+ h)− v(t+ h)[w′(u)q](t+ h)

[w(t+ h)]2
u(t+ h)

+
w(t)[v′(u)q](t)− v(t)[w′(u)q](t)

[w(t)]2
u(t)

− 1

w0
∇ ·
{
w3

0u0∇q(t+ h) + w3
0 (∇u0) q(t+ h)

}
− v0
w0
q(t+ h)

+
1

w0
∇ ·
{
w3

0u0∇q(t) + w3
0 (∇u0) q(t)

}
+
v0
w0
q(t). (C.5)

Because∥∥[w(t+ h)]3u(t+ h)− [w(t)]3u(t)
∥∥
H2(Ω)

≤
∥∥[w(t+ h)]3 − [w(t)]3

∥∥
H2(Ω)

∥u(t+ h)∥H2(Ω)

+
∥∥[w(t)]3∥∥

H2(Ω)
∥u(t+ h)− u(t)∥H2(Ω)

≤hα3LU C̃
2C̃1 + hαC̃3 ∥u∥Cα([0,T ];H2(Ω)) , (C.6)

the algebraic properties ofH2(Ω), i.e. Lemma A.1, inequality (A.2) of Corollary A.2 and the assertion
(2.4) of Lemma 2.2 imply∥∥([w(t+ h)]−1 − [w(t)]−1

)
∇ ·
{
[w(t+ h)]3u(t+ h)∇q(t+ h)

}∥∥
L2(Ω)

≤2C
∥∥[w(t+ h)]−1 − [w(t)]−1

∥∥
H2(Ω)

∥∥[w(t+ h)]3u(t+ h)
∥∥
H2(Ω)

∥q(t+ h)∥H2(Ω)

≤hα2CC2
1LU C̃

3C̃1 sup
t∈[0,T ]

∥q(t)∥H2(Ω) , (C.7)

and ∥∥[w(t)]−1∇ ·
{(

[w(t+ h)]3u(t+ h)− [w(t)]3u(t)
)
∇q(t+ h)

}∥∥
L2(Ω)

≤2C
∥∥[w(t)]−1

∥∥
H2(Ω)

∥∥[w(t+ h)]3u(t+ h)− [w(t)]3u(t)
∥∥
H2(Ω)

∥q(t+ h)∥H2(Ω)

≤hα
[
6CC1LU C̃

2C̃1 + 2CC1C̃
3 ∥u∥Cα([0,T ];H2(Ω))

]
sup

t∈[0,T ]

∥q(t)∥H2(Ω) . (C.8)

Hence, we deduce the estimate:∥∥∥∥ 1

w(t+ h)
∇ ·
{
[w(t+ h)]3u(t+ h)∇q(t+ h)

}
− 1

w(t)
∇ ·
{
[w(t)]3u(t)∇q(t+ h)

}∥∥∥∥
L2(Ω)

≤
∥∥([w(t+ h)]−1 − [w(t)]−1

)
∇ ·
{
[w(t+ h)]3u(t+ h)∇q(t+ h)

}∥∥
L2(Ω)

+
∥∥[w(t)]−1∇ ·

{(
[w(t+ h)]3u(t+ h)− [w(t)]3u(t)

)
∇q(t+ h)

}∥∥
L2(Ω)

≤hαC
[
2C2

1LU C̃
3C̃1 + 6C1LU C̃

2C̃1 + 2C1C̃
3 ∥u∥Cα([0,T ];H2(Ω))

]
sup

t∈[0,T ]

∥q(t)∥H2(Ω) . (C.9)
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According to the Hölder inequality and algebraic property of H2(Ω), i.e. Lemma A.1 and estimate
(C.6), we obtain ∥∥{∇ ([w(t)]3u(t))} · {∇q(t+ h)−∇q(t)}

∥∥
L2(Ω)

≤
∥∥∇ ([w(t)]3u(t))∥∥

L4(Ω)
∥∇q(t+ h)−∇q(t)∥L4(Ω)

≤C
∥∥∇ ([w(t)]3u(t))∥∥

H1(Ω)
∥∇q(t+ h)−∇q(t)∥H1(Ω)

≤C
∥∥[w(t)]3u(t)∥∥

H2(Ω)
∥q(t+ h)− q(t)∥H2(Ω)

≤C ∥w(t)∥3H2(Ω) ∥u(t)∥H2(Ω) ∥q(t+ h)− q(t)∥H2(Ω)

≤hαCC̃3C̃1 ∥q∥Cα([0,T ];H2(Ω)) , (C.10)

and ∥∥{∇ ([w(t)]3u(t))−∇
(
w3

0u0
)}

· {∇q(t+ h)−∇q(t)}
∥∥
L2(Ω)

≤
∥∥∇ ([w(t)]3u(t))−∇

(
w3

0u0
)∥∥

L4(Ω)
∥∇q(t+ h)−∇q(t)∥L4(Ω)

≤C
∥∥∇ ([w(t)]3u(t))−∇

(
w3

0u0
)∥∥

H1(Ω)
∥∇q(t+ h)−∇q(t)∥H1(Ω)

≤C
∥∥[w(t)]3u(t)− w3

0u0
∥∥
H2(Ω)

∥q(t+ h)− q(t)∥H2(Ω)

≤TαC
[
3LU C̃

2C̃1 + C̃3 ∥u∥Cα([0,T ];H2(Ω))

]
∥q(t+ h)− q(t)∥H2(Ω)

≤hαTαC
[
3LU C̃

2C̃1 + C̃3 ∥u∥Cα([0,T ];H2(Ω))

]
∥q∥Cα([0,T ];H2(Ω)) . (C.11)

Combining (C.10), (C.11) with (C.2) gives the estimate:∥∥∥∥{ 1

w(t)
∇
(
[w(t)]3u(t)

)
− 1

w0
∇
(
w3

0u0
)}

· [∇q(t+ h)−∇q(t)]
∥∥∥∥
L2(Ω)

≤C
∥∥[w(t)]−1 − w−1

0

∥∥
H2(Ω)

∥∥∇ ([w(t)]3u(t)) · {∇q(t+ h)−∇q(t)}
∥∥
L2(Ω)

+C
∥∥w0

−1
∥∥
H2(Ω)

∥∥{∇ ([w(t)]3u(t))−∇
(
w3

0u0
)}

· {∇q(t+ h)−∇q(t)}
∥∥
L2(Ω)

≤hαTαC
(
C2

1LU C̃
3C̃1 + 3LU C̃

2C̃1

∥∥w0
−1
∥∥
H2(Ω)

)
∥q∥Cα([0,T ];H2(Ω))

+hαTαCC̃3
∥∥w0

−1
∥∥
H2(Ω)

∥u∥Cα([0,T ];H2(Ω)) ∥q∥Cα([0,T ];H2(Ω)) . (C.12)

Hence∥∥([w(t)]2u(t)− w2
0u0
)
(∆q(t+ h)−∆q(t))

∥∥
L2(Ω)

≤C
∥∥[w(t)]2u(t)− w2

0u0
∥∥
H2(Ω)

∥∆q(t+ h)−∆q(t)∥L2(Ω)

≤C
(∥∥[w(t)]2 − w2

0

∥∥
H2(Ω)

∥u(t)∥H2(Ω) + ∥u(t)− u0∥H2(Ω)

∥∥w2
0

∥∥
H2(Ω)

)
∥q(t+ h)− q(t)∥H2(Ω)

≤C ∥w(t)− w0∥H2(Ω)

(
∥w0∥H2(Ω) + C̃

)
C̃1 ∥q(t+ h)− q(t)∥H2(Ω)

+C ∥u(t)− u0∥H2(Ω) ∥w0∥2H2(Ω) ∥q(t+ h)− q(t)∥H2(Ω)

≤hαTαLUC
(
∥w0∥H2(Ω) + C̃

)
C̃1 ∥q∥Cα([0,T ];H2(Ω))

+hαTαC∥w0∥2H2(Ω) ∥u∥Cα([0,T ];H2(Ω)) ∥q∥Cα([0,T ];H2(Ω)) . (C.13)

Denote by V1 a constant which is a combination of C, C1, C̃, C̃1, LU and
∥∥w0

−1
∥∥
H2(Ω)

. Therefore,
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the triangle inequality, (C.9), (C.12) and (C.13) imply the estimate∥∥∥∥ 1

w(t+ h)
∇ ·
{
[w(t+ h)]3u(t+ h)∇q(t+ h)

}
− 1

w(t)
∇ ·
{
[w(t)]3u(t)∇q(t)

}
− 1

w0
∇ ·
{
w3

0u0∇q(t+ h)
}
+

1

w0
∇ ·
{
w3

0u0∇q(t)
}∥∥∥∥

L2(Ω)

≤
∥∥∥∥ 1

w(t+ h)
∇ ·
{
[w(t+ h)]3u(t+ h)∇q(t+ h)

}
− 1

w(t)
∇ ·
{
[w(t)]3u(t)∇q(t+ h)

}∥∥∥∥
L2(Ω)

+

∥∥∥∥( 1

w(t)
∇
{
[w(t)]3u(t)

}
− 1

w0
∇
(
w3

0u0
))

· (∇q(t+ h)−∇q(t))
∥∥∥∥
L2(Ω)

+
∥∥([w(t)]2u(t)− w2

0u0
)
(∆q(t+ h)−∆q(t))

∥∥
L2(Ω)

≤hαV1 sup
t∈[0,T ]

∥q(t)∥H2(Ω) + hαV1 ∥u∥Cα([0,T ];H2(Ω)) sup
t∈[0,T ]

∥q(t)∥H2(Ω)

+hαTαV1 ∥u∥Cα([0,T ];H2(Ω)) ∥q∥Cα([0,T ];H2(Ω)) + hαTαV1 ∥q∥Cα([0,T ];H2(Ω)) . (C.14)

Similarly, ∥∥∥∥ 1

w(t+ h)
∇ ·
{
[w(t+ h)]3q(t+ h)∇u(t+ h)

}
− 1

w(t)
∇ ·
{
[w(t)]3q(t)∇u(t)

}
− 1

w0
∇ ·
{
w3

0q(t+ h)∇u0
}
+

1

w0
∇ ·
{
w3

0q(t)∇u0
}∥∥∥∥

L2(Ω)

≤hαV1 sup
t∈[0,T ]

∥q(t)∥H2(Ω) + hαV1 ∥u∥Cα([0,T ];H2(Ω)) sup
t∈[0,T ]

∥q(t)∥H2(Ω)

+hαTαV1 ∥q∥Cα([0,T ];H2(Ω)) + hαTαV1 ∥u∥Cα([0,T ];H2(Ω)) ∥q∥Cα([0,T ];H2(Ω)) . (C.15)

Set C̃3 = C
[
C1LU + C̃2C

2
1LU

]
, C̃4 = CC1

[
LU + ∥v0∥L2(Ω)

∥∥w−1
0

∥∥
H2(Ω)

]
. The triangle inequality,

algebraic properties of Sobolev spaces, i.e. (A.1) of Corollary A.2, (2.4) of Lemma 2.2, and the
assertion (3.14) of Corollary 3.5 imply the estimate∥∥∥∥− v(t+ h)

w(t+ h)
q(t+ h) +

v(t)

w(t)
q(t)− v0

w0
q(t+ h) +

v0
w0
q(t)

∥∥∥∥
L2(Ω)

≤hαC̃3 sup
t∈[0,T ]

∥q(t)∥H2(Ω)

+hαTαC̃4 ∥q∥C([0,T ];H2(Ω)) .

Denote by V2 a constant which is a combination of C2 C1, C, C̃, C̃1, C̃2, LU , LW , LM and T 1−α
0 .

We combine (4.10), (4.18) in Corollary 4.3, (3.14) in Corollary 3.5 with above arguments for estimate
(C.14) and similarly deduce

3

2

∥∥∥∥ 1

w(t+ h)
∇ ·
{
[w(t+ h)]2[w′(u)q](t+ h)∇[u(t+ h)]2

}
− 1

w(t)
∇ ·
{
[w(t)]2[w′(u)q](t)∇[u(t)]2

}∥∥∥∥
L2(Ω)

≤hαTαV2 ∥q∥Cα([0,T ];H2(Ω)) + hαV2

[
1 + ∥u∥Cα([0,T ];H2(Ω))

]
sup

t∈[0,T ]

∥q(t)∥H2(Ω) ,

∥∥∥∥ [w′(u)q](t+ h)

2[w(t+ h)]2
∇ ·
{
[w(t+ h)]3∇[u(t+ h)]2

}
− [w′(u)q](t)

2[w(t)]2
∇ ·
{
[w(t)]3∇[u(t)]2

}∥∥∥∥
L2(Ω)

≤hαV2
[
1 + ∥u∥Cα([0,T ];H2(Ω))

]
sup

t∈[0,T ]

∥q(t)∥H2(Ω) + hαTαV2 ∥q∥Cα([0,T ];H2(Ω)) ,
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and ∥∥∥∥− w(t+ h)[v′(u)q](t+ h)− v(t+ h)[w′(u)q](t+ h)

[w(t+ h)]2
u(t+ h)

+
w(t)[v′(u)q](t)− v(t)[w′(u)q](t)

[w(t)]2
u(t)

∥∥∥∥
L2(Ω)

≤hαV2
[
1 + ∥u∥Cα([0,T ];H2(Ω))

]
sup

t∈[0,T ]

∥q(t)∥H2(Ω) + TαhαV2 ∥q∥Cα([0,T ];H2(Ω)) .

Consequently, by setting LB = V1 + V2 + C̃3 + C̃4, we obtain

∥[F ′(ũ)q] (t+ h)− [F ′(ũ)q] (t)− P∗ [q(t+ h)− q(t)]∥L2(Ω)

≤hαLB sup
t∈[0,T ]

∥q(t)∥H2(Ω) + hαLB ∥u∥Cα([0,T ];H2(Ω)) sup
t∈[0,T ]

∥q(t)∥H2(Ω)

+hαTαLB ∥q∥Cα([0,T ];H2(Ω)) + hαTαLB ∥u∥Cα([0,T ];H2(Ω)) ∥q∥Cα([0,T ];H2(Ω)) .

Hereby, (5.20) is proved and this concludes the proof of Lemma 5.5.
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