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Abstract

In this paper we study the local wellposedness of the solution to a non-linear parabolic-dispersive
coupled system which models a Micro-Electro-Mechanical System (MEMS). A simple electrostati-
cally actuated MEMS capacitor device has two parallel plates separated by a gas-filled thin gap. The
nonlinear parabolic-dispersive coupled system modelling the device consists of a quasilinear parabolic
equation for the gas pressure and a semilinear plate equation for gap width. We show the local-in-
time existence of strict solutions for the system, by combining a local-in-time existence result for the
dispersive equation, Hélder continuous dependence of its solution on that of the parabolic equation,
and then local-in-time existence for a resulting abstract parabolic problem. Semigroup approaches
are vital for both main parts of the problem.

Key words: parabolic-dispersive coupled system; local wellposedness; MEMS; semigroup theory;
solid-plate thin-film-flow interactions.
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1 Introduction

In this article, we study finite-time existence, uniqueness and regularity of the solution to the following
nonlinear parabolic-dispersive coupled system, which models an idealized electrostatically actuated
MEMS device, accounting for elasticity of the plate:

3(51;10 =V (v*uVu) z€Q, t>0; (1.1a)

0w
W:Aw—AQw—%—i—ﬂp(u—l)7 zeQ, t>0; (1.1b)
u(z,0) = up(x), w(z,0) =wo(x), 83—1:(%0) =uv(zr), z€ (1.1c)
u(x,t) = 61, w(z,t) =0, Aw(z,t) =0, x€9IQ, t>0. (1.1d)

The unknown functions u(x,t) and w(x,t) correspond, respectively, to gas pressure and gap width,
2 C R" is a bounded and open region with smooth boundary 092, n =1, 2; 8, Bp, 01, 62 > 0 are
given constants; ug = uo(z), vo = vo(x) and wy = we(x) are given functions. We shall prove the
following wellposedness result which applies for short time:

Theorem 1.1. Let o € (0,3), ug € H*™(Q), vo € H*(Q) and wy € H* (), compatible with the
boundary conditions and such that ug, we > 0. The initial-boundary value problem (1.1) admits a
unique strict solution (u,w) on a time interval [0,T) and

uwe C*([0,T); L*(Q)) nC* ([0,T); H*(Q)) ,
we C*([0,T); L*(Q)) NnC'([0,T); H*(2)) N C ([0, T); H*()) .
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Figure 1: Idealized electrostatically actuated MEMS capacitor.

Remark 1.2. a) Global-in-time solutions are not expected for general initial data, because quenching
singularities with ingw(x,t) — 0 may develop as t — T, for a finite time T < oo (see [10]).
faS

b) Even for smooth data the Sobolev reqularity of w is limited because the right hand side in (1.1b)
does not vanish at the boundary 02: Indeed, using Fourier series one can explicitly solve the linear

dispersive equation
Pw  *w
rr + e f(z,t), (2,t) €(0,1) x [0,00); (1.2)

with homogeneous initial conditions w(x,0) = %%‘f(m,O) =0 (x € (0,1)) and homogenous boundary

conditions w(x,t) = 0, ‘?T%(x,t) =0 (z € {0,1}, t € (0,00)). For f =1 one finds that the solution
w(t) € H2=<(0,1) for every e > 0 and t € [0,00), but w(t) ¢ H2(0,1). We therefore do not expect
higher integer-order Sobolev regularity for w in Theorem 1.1.

Our proof of Theorem 1.1 relies on the techniques for quasilinear parabolic equations developed,
for example, by Amann, Arendt, Lunardi and Sinestrari [1, 2, 18, 19, 21, 22, 27]. Semigroup methods
of this kind have become a powerful tool for MEMS-related models defined by a single equation or
by an elliptic-parabolic coupled system, see the recent survey [16]. We here combine such parabolic
techniques for the quasilinear Reynolds’ equation (1.1a) with semigroup techniques for the semilinear
fourth-order equation (1.1b).

In the recent work [11] the authors showed the wellposedness of a related, simpler model in which
(1.1a) is replaced by a linear, elliptic equation for the gas pressure u. Physically, the simpler model
in [11] replaces the dynamics of u by a quasi-static approximation which can apply in limiting cases;
here we consider the more accurate, fuller model to give a good representation of the physical system
outlined in Figure 1. Technically, the analysis of both coupled systems relies on a delicate combina-
tion of the techniques available for the constituent equations. In the recent work [11] the well-known
analysis of linear, elliptic equations allowed us to reduce the simpler model to a perturbed semilinear
dispersive equation for the gap width w, which is studied using strongly continuous semigroup tech-
niques for such equations. For the realistic model (1.1a)-(1.1d) considered here, similarly complete
information is not available for the quasilinear, degenerately parabolic equation (1.1a). Nevertheless,
by refining the analysis of (1.1b), we here reduce the coupled system to an abstract quasilinear,
degenerately parabolic equation for the gas pressure u, for which we are able to show wellposedness.
Analytic semigroup techniques allow us to study this quasilinear, degenerately parabolic equation.

The model (1.1) gives the behaviour of a basic electrically actuated MEMS (Micro-Electro-
Mechanical Systems) capacitor (see, e.g., [26]). This device contains two conducting plates which
are close and parallel to each other when the device is uncharged and at equilibrium. We take, more
generally, a fixed potential difference to be applied; this potential difference acts across the plates
and the MEMS device forms a capacitor. The two plates lie inside a sealed box also containing a
gas, with pressure substantially below atmospheric but not a perfect vacuum. The gas gives a small
resistance to the motion of the upper, plate, which is taken to be flexible but pinned around its
edges. The other, lower, plate is assumed perfectly rigid and flat. See Figure 1. Breakdown of the
device can occur through a pull-in instability, when the two plates touch, the physical phenomenon
described by quenching.



Eqn. (1.1a) is a compressible form of the standard Reynolds’ equation for the pressure, w, in
the gap between the plates, where the local gap width is w (see, for example, [23]), and the gas is
assumed to behave ideally and isothermally, so that its density can be taken to be proportional to
pressure; this contrasts with the incompressible, liquid-like representation in [11].

The upper electrode of the capacitor moves as a thin elastic plate, so that it behaves according
to a dynamic plate equation balancing the inertial term on the left-hand side of (1.1b) with:

e tension terms applied across the plate leading to the usual Laplacian (the first term on the
right);
e a biharmonic term modelling linear elasticity (the second term on the right) [14];

e an electrostatic force attracting the upper plate towards the lower (the third term on the right)
— strength of this force per unit area is given by the local electric field strength times the surface
charge density, the latter itself being proportional to the former, while this, the field strength,
is inversely proportional to the gap width w;

e net upward gas pressure acting on the plate — pressure in the gap acting up and constant
ambient pressure acting down (the final term on the right).

For more details see [25], [26].

The terms in the equations have been scaled to obtain unit coefficients in (1.1a). Without loss of
generality, we have taken, for simplicity, various coefficients of terms in (1.1b) also to be one. This
does not affect our analysis of the problem.

In another, forthcoming paper, we study the limiting case where the movement of the upper plate
is dominated by its tension, so that elastic effects are negligible. This approximation leads to a wave
equation for the gap width w, instead of the dispersive equation (1.1b).

We review various previous models for electrostatic MEMS devices, some taking the form of a
single equation others a coupled system. We also review literature which studies these models, both
numerically and analytically, to obtain qualitative behaviour.

As the elastic plate in a MEMS device is fabricated at a micro-scale, the electrostatic force
becomes relatively large so that it is the key force causing the bending of the plate when the device
operates. The electrostatic force is inversely proportional to the square of the gap width between the
two plates(see [8], [25], Sec. 3.4 of [26]), so that the distributed transverse load is the electrostatic
force per area is Fy,

Br

Fa=—ye

where S is an electrostatic coefficient. (1.3)
Hence, the static deflection of charged elastic plates in electrostatic actuators can be represented by
a nonlinear elliptic equation

—Aw + B A = fﬂ—i. (1.4)
w

Lin et al. [17] study the existence, construction, approximation, and behaviour of classical and
singular solutions to equation (1.4). Other such problems can be found in references [7], [31].

From Chapter 12 in book [8], there is a value 5* € (0,00) such that for 0 < Sp < 8* there exists
at least one weak solution to (1.4), while no solution exists for Sp > £*.

To more fully model the behaviour of the plate, we consider the momentum of the plate as it is
deformed, the elastic nature of plate, damping forces, and the electrostatic force between two plates
and get an equation of motion

€+ —— — Aw + B A%w = -5 (1.5)

Here the gap width w = w(z,t) depends on time ¢ and point = on the surface of movable plate, %;

is a damping term,
5  inertial coefficient

~ damping coefficient’
Be accounts for the relative importance of tension and flexural rigidity in the elastic plate, Sp is
proportional to the square of the applied voltage.
Considering the equation defined on a bounded domain of R”, 1 < n < 3, Guo, [13], finds
that when a voltage — represented here mathematically by Sr — is applied, the elastic plate deflects



towards the ground plate, and quenching may occur when Sr exceeds the critical value 5* for the
time-independent problem (1.4). Guo [13] shows that there exists a Sp, € (0, §*] such that for
0 < Br < Br,, the solution of an initial boundary value problem for (1.5) globally exists. Under
some further technical hypotheses, in this case the solution exponentially converges to a regular
steady state. For Sp > (%, the solution quenches at finite time.

Recent publications only study the compressible version (1.1b) of the standard Reynolds’ equation
numerically, and this can be seen in the works [3, 5, 28, 29]. In particular, Bao et al. [4] study the
squeeze film damping with small amplitude deflections and linearize the nonlinear Reynolds’ equation
(i.e. (1.1b)) around the equilibrium position. The resulting equation is regarded as a form of the
heat equation and it is possible to find analytical solutions for this.

See the survey article [16] for a discussion of a wider class of models arising in the description of
MEMS. We are not aware of any rigorous results for MEMS models which take into account both
the dynamics of the gas and the elastodynamics of the plate.

The plan of the paper is as follows: In Section 2, we introduce notation, the relevant function
spaces and some of their basic properties. We also introduce the mild solution and strict solution
for the general evolution equation and their existence results, and show some Lipschitz continuity
estimates. In Section 3, we use a solution strategy for the system (1.1a), (1.1b) based on decoupling
the equations for the gap-width w and the pressure u. We first consider the semilinear fourth-
order equation (1.1b) for the deflection w with an arbitrarily given pressure w and use semigroup
techniques for (1.1b) to show that the local wellposedness of (1.1b). While the regularity theory
of dispersive equations has been of much recent interest, we here require detailed properties of the
solution operator u +—— w(u) in order to analyse the nonlinear Reynolds’ equation (1.1a) with
abstract coefficients involving w(u). For example, we prove appropriate Holder continuity of the
solution operator u — w(u) in Section 4. In Section 5, we investigate the local wellposedness of
(1.1a) for u with abstract coefficients involving w(u) by using techniques for quasilinear parabolic
equations.

1.1 Outline

Note that system (1.1) can be written, as long as w > 0 (no quenching occurs), as a coupled system
in the form

% = év. (wPuVu) — %u, x€eQ, t>0; (1.6a)
@:Aw—AQw—ﬁ—F—I—ﬁ(u—l) r €N, t>0; (1.6b)
ot w2 7P ’ T

ow
o =V zeQ, t>0; (1.6¢)

with the initial values u(z,0) = uo(z), v(x,0) = vo(z), w(z,0) = we(x), = €  and boundary values
u(z,t) = 601, w(z,t) = b, Aw(z,t) =0, z € I, t > 0, where the initial values are compatible
with the boundary conditions, i.e. wug(z) = 61, wo(x) = O and Awg(x) = 0 for all z € 99,
moreover, ug € H*(Q) with o € (0,1), vo € H?(Q) N H}(Q) and wg € H*(?), then look for a
unique strict solution (u,v,w) of the coupled system (1.6) for short time. Section 3 shows that there
exists a unique solution (v, w) of the sub-system (1.6b), (1.6¢) for arbitrarily given but appropriately
regular u, initial values v(z,0) = vo(z), w(z,0) = wo(z), z € Q and boundary values w(z,t) = 65,
Aw(z,t) = 0, x € 99, t > 0, then Section 4 establishes relevant properties of solution operators
ur— v =v(u), u— w = w(u) for short time 7" such as:

Theorem 1.3. The solution operator
W C([0,T], Buz(uo,r)) — C([0,T], Br2(vo,7) % Byz(wo,))
ur— Wiu) = (v,w) = (v(u), w(u))
is Lipschitz continuous with respect to u, i.e.

W (1) = W(u2)ll oo, ry;02 ) xm2(0)) < Lwllur — wzlleo,ry;2@), (1.7)



where r > 0 is sufficiently small, Ly > 0 is a Lipschitz constant,
Bp2(U,r) = {f € H*(Q) : floa = Ulaa, |If —Ullg2) <1},

BLQ(V, T) = {f S L2(Q) : Hf - V||L2(Q) < ’I“} .
Corollary 1.4. Foru € C ([0,T); Bg2(uo,r)) and a small radius r > 0, the Fréchet derivative W’ (u)
of W(u), given by
W'(u) : C ([0, T); H*(Q) N Hy(Q)) — C ([0, T); L*(Q) x {H*(Q) N Hy(N)}) ,
q— W'(u)g = (v'(u)g, w' (u)q)

is Lipschitz continuous with respect to u, i.e. for ||qllc o, m2(0)) < 1

W' (u1)g = W' (u2)qllc o, 13,L20) x 2 (00) < L lur = w2l o,y () - (1.8)
Here Lg is a Lipschitz constant.
Corollary 1.5. If r > 0 is small and u € C* ([0, T); By2(uo, 7)), setting 4o = ug — 01, then there

exists a Lipschitz constant Ly; > 0, such that

sup W (w)g)(t + h) — W ()al(0)l] 2 cay 22y <h° L lllego.zpmr=ceny
0<t<t+h<T

+h*T L [all ca o, 12 (02))
holds for all ¢ € C* ([0, T]; By=(tog,r)).

Section 5 shows an existence result for the coupled system (1.1). The strategy of proof is to
reformulate the system (1.1) as the quasilinear parabolic equation with abstract coefficients involving
v(u) and w(u)

@:L . wusuu_v(u)u . .
5t = iy ¥ (W@PuVe) = s (@) € 2 x (0.7), (1.90)
u(z,0) =ug(z), x€Q, wulwt)="0, (z,t)€dx][0,T], (1.9b)

and then show the solution of (1.9) exists as long as (v(u), w(u)) € C ([0, T]; Br2(vo,r) X Bgz(wo,T))
for small » > 0 and T > 0 by using a contraction mapping argument.
We set @ = u — 01, where a(t) : @ — R, z — [a(t)](z) = u(z,t), V ¢ € [0,T],

1

PO = ara

V- ([w(a+ 61)]*(@+ 6,)Va) —

(
and start the argument with the definition of linearization P* of F(a) around o,
(

P*: D(P*) C H*(Q)NHYN) — LA(Q),
Py = iV Awiuo VY + (wiVue) ¥} — @w,
wWo wo

then we show that the operator P* generates an analytic semigroup { etP ot > O} and rewrite (1.9)
in the form of
@' (t) = P*a(t) + [F(a)](t) — P*a(t), te (0,T), ua(0)= . (1.10)

In order to prove the existence result for the nonlinear problem (1.10), we shall need the following
Holder result which is deduced from Theorem 1.3, Corollary 1.4 and Corollary 1.5.

Lemma 1.6. If 4, ¢ € C*([0,T); By= (tg,r)), then there exist postive constants La and Lg, such
that for all0 <t <t+h<T,

IF (@) (t+ h) = [F(@)] (1) g2y < {[@+O]caqorimz) + Lut Lah®, (1.11)

I[F"(@)q] (¢t + h) — [F'(@)q] (t) — P~ [q(t + 1) — a(O)l| 12 (e
<h*T*Lg ||all oo, m20)) T T L 1t + 01l co (0,71, m20)) 19l o (0,772 ()
+h*Lp |l oo, m2)) T LB 1@+ 01l co o, 120 14l o, 77:5200)) - (1.12)



We are going to show that the existence of a unique strict solution of (1.10) by proving there
exists Tax > 0, such that the nonlinear map I' defined by

D(a(t) = P ag + /0 e=IP LR (@)(s) — P a(s)}ds, te0,T], (1.13)

is a contractive map and has a unique fixed point in C* ([0, T]; H*(Q) N H(2)) for T € [0, Tinax)
and « € (0,1). To prove the assertion, we define

Y = {u e C* ([0, T); H* () N Hg () = @(0) = do, [|a(-) = o]l ga(po.rp:m2(62)) < r} )

with small » > 0, by using the Holder results in Lemma 1.6, we deduce that, there is Tiax > 0, such
that, for T' € (0, Tax), small » > 0 and « € (0,1), T' is a contractive map which maps Y to itself,
ie @, us €Y,

N _ 1, . .
ITar = Pasllca o,y m2 () < 5 I8 = G2llcaqoryme@), TH)EY.

By the Banach fixed point theorem, we conclude the existence of a unique fixed point in Y which is
a unique strict solution of (1.10) belonging to

C® ([0, T); HX(@) N HA(9)) 0 CoF (0, T]: L2(@)

by the regularity results of the evolution equation of parabolic type from [1, 21, 27].
Combining the existence and regularity results from Section 3 with the existence of a unique strict
solution of (1.10), we conclude the proof of Theorem 1.1.

2 Preliminaries

In this section, we first formulate some auxiliary results which will be useful in the proof of the main
theorem, with the proofs of Lemma 2.2, Lemma 2.3 and Lemma 2.4 being found in Appendix A. We
then state a general existence result for evolution equations and the regularity in time without proof.

2.1 Notations

Recall that Sr, 3,, 61 and 63 given positive constants. Let {2 be an open and bounded subset of R"
with smooth boundary 9, n =1, 2. Denote by C' = C(Q) a positive constant which may vary from
line to line below but only depends on §2.

Definition 2.1. Denote by X a Banach space, with norm ||-||x, k € Nand T € (0,00). B(X) denotes
the space of bounded linear operators on X. In the following, we shall be particularly interested in
X = L%(Q), L>=(Q), H*(Q), etc. The space B([0,T]; X) consists of all measurable, almost everywhere
bounded functions u : [0,T] — X, t — u(t), with norm |[ul|(0,1);x) = Supsejo,7 [lu(t)llx. If X is
a function space as above, we write u(t) : @ — R with x — [u(t)](z) = u(x,t). The closed subspace
of continuous functions is denoted by C([0,T]; X), and

diu(t)
dats

k
CH(0, 71 X) = {us 0,7 — X : %2 € C([0.7): X), € [0.k]}  Jullow o,z =sup Y| .
te[0.7] 555 X

The definition extends to non-integer order k + a, o € (0,1), by setting

Ca([OvT]vX) = {UI [OvT} — X [U]CO‘([O,T];X) = sup W < 00}7
0<t<t-+h<T

lellceqo.ryix) = llulloqoryx) + [Wowom:x)-
CoHH (0,7 X) = {u e CH(0, T X) % € C([0,T]: X) },

dtk

_ d*u
lullcastro,m;x) = llullox o, 17:x) + [W}Ca([O,T};X) .



Note that C ([0,T]; Bz (V,r)) = {v € C([0,T);L*(Q)) = sup |lv(t) — Vigz) < 7‘}, Ve L?(Q),
t€[0,T)

C([0.7): Bz (U,r)) = {u € C(0,THH? (@) : ulon = Ulaa, sup [u(t) = Ullgegoy < r},

tel0,T
C ((0,T); By (U,r)) = {u € €= (10, T); H2(9)) : ulon = Uloa, supult) = Ul < r}
te[0,T
with U € H2(9).

If P: D(P) C X — X is an unbounded linear operator which generates an analytic semigroup

ePt, we define intermediate space Dp (o, o0) as follows:

Dp(a,00) = {v € X : ||v]la =sup|[t' P x < oo} .
>0

It is a Banach space with respect to the norm |[v|py(a,00) = [[Vlx + [[Vlla. Its closed subspace
Dp(a) ={ve X : lim_ot'~*Pe”'v =0} inherits the norm of Dp(a,o0).

Our main results on the wellposedness of the semilinear dispersive equation (1.1b) will be shown
by constructing a Picard iteration in the complete metric space Z(T), given by

Z(T): = {(@,w) € C ([0,T]; L*(Q) x H*(Q)) : (5(0),@(0)) = (%o, @0), W|oa = wolon,

s[up] H(’Z}(t) — 170,’(2)(0 — UN)())”Lz(Q)XHQ(Q) < T’}, where ’LN)O = 9, UN/O = Wo — 92. (21)
tel0,T

2.2 Useful Estimates
The estimates in this subsection are proven in Appendix A.

Lemma 2.2. There exists a constant C = C(2) > 0, such that for all

K
re (0, %) (2.2)

w € C([0,T]; Byz (wo,r)) has the lower bound such as
w(t) > g v telo,T]. (2.3)

Moreover, for all wy, wy € C ([0,T); Byz2(wp,r)), there exist positive constants Cy, k = 1, 2, 3,
depending on Q, k and |[wol| g2 (o), such that

1
sup ||———- <CF, k=12 3, (2.4)
te[0,7] [wl(t)]ka(Q) !
1 1
sup — < Cy sup |lwi(t) _w2(t)|| 2y k=2, 3. (2.5)
ﬂw]mww[wmﬂm@ re0.1] e

Lemma 2.3. The nonlinear operator G, defined by

G: C([0,T); Byz (wo,r)) — C([0,T]; H*(Q)), @ — G()

N — G = — Br _
(GUEN(E) = G1)) = ~ s + Byl = 1),
has the following properties:
sup  [[[G@)](t+h) = [G@)](D) g2y < La  sup @t +h) —d(t)l gzq),  (2.6)
0<t<t+h<T 0<t<t+h<T
s NG ~ (G0 oy < L st [81(8) ~ Ea(0)nca (2.7)
sup [|[[G(uwn)](t) — G(wo) jy2(q) < Lar (2.8)

t€[0,T)



Here Lg = Lg (Q, K, [lwoll 720, ﬁp) s a constant.
Furthermore, the Fréchet derivative G'(0) of G(w) on w € C([0,T]; Bz (o,7)), defined by

G (w): C([0,T; H*(Q) NH(Q)) — C ([0,T); H*(Q) NH(Q), q+— G (d)q,

20F

[G" (@) q] (t) = [G" (w(t))] q(t) = mq(t),

satisfies
sup |[[G" (@) q] ()]l y2() < L sup lla(®)ll g2y » (2.9)
te[0,T] te[0,T]

and G'(w(t)) : {H*(Q) N HF(Q)} — {HA*(Q) N HF(Q)} satisfies

lim sup G (@) + 7 [0 +h) — BO) = & @) gy =0 (210)
=0 0<t<t+h<T
0<r<1

Lemma 2.4. Assume the operators u — v(u) and u — w(u), respectively given by
ur—ov(u):  C([0,T]; Bgz (up,r)) — C([0,T]; Brz2 (vo,7)),
ur— w(u): C([0,T]; Byz (ug,r)) — C ([0, T); Bg= (vo, 1)),
satisfy, for all uy, us € C([0,T); Byz (ug, 1)),

sup |[[v(u1)](t) = [v(u2)](t)llL2) < Lw sup Jlua(t) — ua(t)[m2(),
te[0,T] te[0,T]

sup |[|[[w(w)](t) — [w(u2)]()lm2(0) < Lw sup [[ui(t) — uz(t) | #2(0)-
t€[0,T) t€[0,T]

Then f(u), defined by

W £(0) € (0.7 B ) — COTHLAR).  fa) = ¥ - (fww)uva) = 2%
is Lipschitz continuous in u,
sup ||[[f (u)](t) = [f (u2)l(®)ll2(@) < Le sup ui(t) — ua (@) r2(0)- (2.11)
te[0,T] te[0,T]

Here Ly and L. are Lipschitz constants, and L. depends on Ly, Q, k, ||u0||H2(Q), ||1]0HL2(Q),

lwoll g2 (q)-

2.3 Properties of Evolution Equations
We recall standard notions and results for abstract evolution equations.

Definition 2.5. Let X be a Banach space, A: D(A) C X — X a linear, unbounded operator which
generates a strongly continuous semigroup (Co-semigroup) {T(t) : t > 0}. Further, let T € (0, 00),
G e C([0,T); %) and @y € X. A function ® is called a mild solution of the inhomogeneous evolution
equation

D'(t) = AD(t) + G(t), t€][0,T], ®(0)= Do, (2.12)

if ® € C([0,T]; X) is given by the integral formulation

B(t) = T(H)Dy + /0 tT(t—s)g(s)ds, t [0, 7). (2.13)

A function ® is said to be a strict solution of (2.12), if ® € C([0,T]; D(A)) N C([0,T]; X) is given
by the integral formulation (2.13) and satisfies (2.12).



Lemma 2.6. Let the linear operator A defined on a Banach space X generate the Cy-semigroup
{T() : t >0}, T € (0,00), and ®9 € D(A). If G € C([0,T);X) and ® is a solution of the
inhomogeneous evolution equation (2.12), then ® is given by the integral formulation (2.13).
Assume either that G € C([0,T); D(A)) or that G € CY([0,T];X). Then the mild solution ®
defined by (2.13) uniquely solves the inhomogeneous evolution equation (2.12) on [0,T], and

® € C([0,T]; D(A)) N C*([0,T); X).

The proof of Lemma 2.6 is given in [15], Theorem 6.9.

Lemma 2.7. Let X be a Banach space and ® € C([0,T]; X) be differentiable from the right with right
derivative ¥ € C ([0,T]; X). Then ® € C*([0,T];X) and &' = .

The proof of Lemma 2.7 is given in [15], Lemma 8.9.

3 Wellposedness of the Dispersive Equation

Refined Analysis of the Dispersive Equation

Denote by H2(Q) := H*(Q)NH{(Q), HA(Q) := {x € H*(Q) : x|ao = Ax|aq = 0}. Take T € (0, c0)
to be specified below. We first introduce a state a = (a1, a2) and a state space

X =L%Q) x HX(Q) (3.1)
with its norm || - [lx = |[*[| p2(0) x sr2 () @nd its scalar product
(a, b>x = / a1 - by + Vag - Vb + Aas - Aby dr, a= (al,aQ) €eX, b= (bl,bg) € X.
Q

We then define a linear operator A by

D(A) := {d)er(Q):ElfeLQ(Q), Vp € HX(Q), s.t. /v¢-v¢+A¢~A¢dx—/f-wdx},
Q Q

A¢:=— f, where f is given by D(A), H¢||D(A) = ||¢||L2(Q) + ||A¢||L2(Q) : (3:2)
It is easy to see that A¢|sq = 0 for all ¢ € D(A), and from elliptic regularity theory, it follows that
D(A) = {X € H4(Q) : Xloa = Axloa = 0} = Hf(Q), ||XHD(A) ~ [|x|lma(a)- (3.3)

We further define the linear operator A with its domain D(A) and its graph norm || - || p(4) by

A:((f ‘§)7 D(A) = H2() x HY(Q), (3.4a)
lall oy = llalls + [ Aallx = lar 20 + lazll sy, a= (ar,02) € D(A).  (3.4D)

We now consider the initial-boundary problem of semilinear fourth-order equation (1.1b) on the
unknown function w with an arbitrarily given but fixed v € C ([0, T]; Bg= (uo,7)), initial values

w(z,0) = wo(x), 88—1:(36,0) =uvy(z), €, (3.5)
and pinned boundary conditions
w(x,t) =0y, Aw(z,t) =0, (z,t)€ I x][0,T]. (3.6)

We set w(z,t) = w(x,t)—0s, where w(t) : @ — R, z — [w(t)](x) = @(z,t). Note that the operator
A, defined in (3.2), is a realisation of the differential expression A — A? from equation (1.1b) for the
pinned boundary conditions w(z,t) = 0, Aw(z,t) =0, x € 9Q, t € [0,T]. Using the definition of A,
we rewrite (1.1b) with (3.5) and (3.6) as the equation (3.7) for the unknown function :

@ (t) = Aw(t) — (’J)(t)ﬁiaz)Q + Bp(a(t) + 6, — 1), t € [0,T), w(0) = g, @' (0) =7,  (3.7)



where @' and @~ respectively denote the first and second derivative of the unknown function w
with respect to t € [0,T], @ = u — 61 is given in C ([0, T]; By= (to,r)) with @9 = ug — 61, U9 = vo,
Wo = wo — 01 and g(z) = We(x) = 0 for all z € I We further introduce a new time-dependent
state ®(t) = (¢1(t), @2(t)), t € [0,T], and set

[G(p2)](t) = S — 5 +8p(0h = 1), G=[G(2)] () = ([G(p2)] (1) + Bpu(t),0),  (3.8)
(p2(t) + 02) o
g = (2o, wo) € D(A). (3.9)

We are going to prove that the semilinear fourth-order equation (3.7) has a unique strict solution
by showing Lemma 3.1, Lemma 3.2, Theorem 3.3, Corollary 3.4, Corollary 3.5 and Theorem 3.6 in
Appendix B. This would conclude the wellposedness of the dispersive equation (1.1b).

Lemma 3.1. Let given @ € C ([0, T]; Byz2 (o, 7)) N C* ([0,T]; L*(Q)), A and G be defined by (3.4)
and (3.8) respectively. The semilinear fourth-order equation (3.7) has a unique solution
i € 0 ([0.7): L(©)) 1 C* (0.7): H2()) 1 € (0.7} HA(€)

if and only if the semilinear evolution equation

P'(t) = AD(t) + (G (2)] (t), t € [0,T], ®(0) = Do, (3.10)
has a unique solution

® € C([0,T]; D(A)) N C ([0, T); X).

If this is the case, we have ® = (W', ).

Lemma 3.2. Let Q be an open and bounded subset of R™ with smooth boundary 0, n =1, 2. Then
the linear operator A, defined by (3.4), generates a strongly continuous semigroup (Cy-semigroup)

{T(t)eB(X):t€[0,00)}.

Theorem 3.3. Forr € (0, 2C) there exist Ty > 0, such that for T 6 (0,Ty) and given function
€ C([0,T); Byz (tg, 7)), the semilinear evolution equation (3.11) on (9,W),

(w%) A(w(d) ([ (@ )](t)0+ﬂpﬂ(t),>’t ( ) ( ) (3.11)
(o

#,@) € C ([0, T); L*(Q) x H2(Q)) defined by

()2 oo

Corollary 3.4. Let T € (0,Tp) and @ € C ([0,T); By2 (o, 7)) N C* ([0, T]; L*(Q)). Then the mild
solution of the semilinear evolution equation (3.11), (0,w) : [0,T] — LQ( ) x H2(QQ), defined by the
integral form (3.12), is locally Lipschitz continuous with respect to t € [0,T], i.e. ¥ h € (0,T],

(ateh) )

Here Ly is a Lipschitz constant depending on Br, By, To, £, Q, ||to| 20 1o || 2 (0 »

has a unique mild solution

sup
0<t<t+h<T

< Lyh. (3.13)

L2(Q) x H2(£)

||(?70771)0)HD(A): My = . Sup HT(t)HB(LQ(Q)XHz(Q))’ Hﬂ'”CI([O,To);Lz(Q))'

€[0,00)

Corollary 3.5. Ifa € (0,1), T € (0,Tp) and given & € C* ([0, T]; Bg2(to, 7)), then the mild solution
of the semilinear evolution equation (3.11), (,w) : [0,T] — L?(2) x H2(RY), defined by the integral
formulation (3.12), is locally Holder continuous with exponent o with respect to t € [0,T1], i.e

o(t+ h) —o(t)
w(t + h) —w(t)
Here Ly is a Lipschitz constant depending on o, Ty, K, , Bp, Br, ”ﬁOHH?(Q)’ ||1DO||H2(Q),

||(1~1077~D0)HD(A) and My = . S[(L)lp ) HT(t)HB(L2(Q)XH2(Q))-
€10,00

sup
0<t<t+h<T

< Lyh®, ¥ he (0,7). (3.14)

L2(Q)x H2(Q)

Theorem 3.6. For given @ € C ([0,T]; Byz (o, 7)) N C* ([0, T]; L*()) and T € (0,Tp), the mild
solution (0,w) of the semilinear evolution equation (3.11), defined by the integral form (3.12), is the
strict solution of equation (3.11) and

(0,w) € C* ([0,T]; L*(Q) x HZ(Q)) N C ([0, T]; HZ(Q) x H,()) .
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4 Solution Operators

Theorem 4.1. Let Ty be given by Theorem 3.3 and T € (0,Ty). Then a solution operator, given by

Wy : C([0,T]; Bz (0, 7)) — Z(T), i Wi(d) = (3,0) = (5(d), 0(a), e (o, %)

WA (@)]() = T(#) (fio> + /O t {T(t ) GG(@)](S)O* /3,,@(3)) } ds, tel0,T].

has Lipschitz continuity, i.e.

with

sup [|[[W1(a1)](t) = (Wi (@2)](@)l L2y x 2 ) < Lw sup |61 (t) — @2(t) | r2(0)- (4.1)
te[0,T te[0,T]
Here Ly is a Lipschitz constant depending on Ty, My = sup ||T( N2y m2): £ llwollr29),

te[0,00
Q, and the coefficients B, and Br. Furthermore, let

v

Wa : C ([0, T]; By (g, 7)) — C([0,T); L*(R)), @+ R

Then Wy (1) also depends Lipschitz-continuously on 4 € C ([0, T]; By (to, 7)),

sup |[[Wa(t1)](t) — [Wa(t2)] ()|l L2y < Lw, sup ||t (t) — t2(t)|n2(0), (4.2)
te[0,T] te[0,T)

where Ly, is a Lipschitz constant depending on above Lw and ||To|| 2o -

PTOOf. For T € (O,To), Uy, U € C([O,T];BHz (ﬂo,?")), Wl(ﬂl) = (’[)1,’&}1), Wl(ﬂg) = (’DQ,’IJ)Q) belong
to Z(T), then it folows that

[G(@1)](t) = [G(@2)](t) + Bptia (t) — Bytia(t) € H*(Q), Yt € [0,T],

and one can have the following estimates

(a2
/Ot Tt — s ([G(al, uvl)}(s> - [G(W@?”(s)) ds

L2(Q)x H2()

<My | I[G(@1)(s) = [G(@2)](s) + Bp [t (s) — tda(s)][] 2 ds

<Mp | IG(@1))(s) = [G(@2)](s) + Bp [t (s) — ta(8)]l] g2 D, (4.3)

where My is a operator norm of {T'(t) € B (L*(Q) x HZ(2)) : t € [0,00)}. We notice that,

) . 01(t) — D2(t)
i (£) — ()l 2y < H (M) - wz(t)) B
= [[[Wa(an)](t) — Wi(a2)] ()l 2 )< a2(), Yt €[0,T]. (4.4)

Hence combining (4.4) with the Lipschitz continuity estimate (2.7) of G from Lemma 2.3 gives

G (w1)](s) = [G(w2)l(s) + Bp [t1(s) — ta ()]l 2
<Lal[[Wi(@)](s) = [Wi(@)l(s)llL2@)xm2(2) + Bp [t (s) — ta(s)l g2y, VO < s <t <T.

Hence
(W3 (@)](#) — [Wa(a2)](t)]| L2 (@)x #2(2)

t
<T0Moﬁpt€b[1(l)p [ (8) = @2 (t) | g2 +MoLG/O W (@)](s) = [Wa(a2)l(s)ll 2 @) x a2 (0 ds-
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Gronwall’s inequality implies

sup ||[Wy (@) () — [W1 (@i2)](t) | L2 ) x 2y < ToMoBpe™ o™ sup iy (t) — d2(t) | 52 ().
te[0,T] te[0,T]

Consequently we conclude (4.1) by setting
LW = TQM()B:DGMOLGTO.

Since L is the Lipschitz constant depending on &, [|wo || g2 (q), €2, the coefficient S, thus Ly depends
on Ty, Mo, &, [|wollg2(q), 2, and the coefficients 3, and S, that is

K, ||w0||H2(Q)7 Qa ﬁpa BF) .

From the conclusion (2.3) from Lemma 2.2, we conclude that there exists a constant C' = C(£2), such
that for all r € (

Lw = Lw (To, Mo,

36
_ ko K
Wy (t) + 62 > 5 wz(t)+922§

holds for all ¢ € [0,7]. Then for above constant C' = C(Q) and all ¢ € [0,T], we obtain

IORCI0] I / at) —nm, |°
W1(t) + 02 |12 ol Wi(t)+ 02
2. -
< —on(®) = o2l 2 gy »
and therefore
H Ba(t) () | [t D]t 1 de
{[)1 (t) + 02 2(t) + 02 LQ(Q) ( ) + 02 (t) +
:/ 152 [y (t) — ia(t)]
|w1 + 0o [1ba () + 02
<Z / 5a(t)? [0 (1) — a(t)” de
< B0 = Bl o [ (0 o
2102 _ -
< 25 i (t) = w20y | 120 o
This shows
12 (@))(8) — Wa(@)) (6] o)
< ||7®) = %(D) H va(t)  D2(t)
@) 02 ey [ D1() 02 Wa(t) + 02| 2
2 4C -
<—[[01(t) = 02l L2y + —5 01 (E) = D2(O) | g2y [182(B)l 2 )
2 . 40 - N -
<251 0) ~ 8Ol oy + g N (D) — 20y (ol oy + 7)
2. 4C - K
s 191() = D2(D) || 20 T3 5 @01 (1) = @2(8) || g2 (||U0HL2(Q) + %) : (4.5)
We set 2 4c
Lw, = Lw - maX{f6 (H toll g2y + C)}’
and Ly, depends on above Ly, and |[Ugl|2(q), that is
Lw, = Lw, (LW17 H’DOHL2(Q)) :
Using estimates (4.1) and (4.5), we conclude (4.2). O
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Fréchet derivative

For T € (0,Tp). Recall that u =446, v = ¥ and w = W+ 03. According to the integral form (3.12),
the solution operator given by

W : C([0,T]; Bg2(ug,r)) — C ([0, T]; Brz(vo,r) x Bgz(wo,T)),

w— W) = (0,0) = (u(u), w(w) (16
with
W ()] (£) = (;2 ) +T() <w0“° 92) + /0 t {T(t _s) <[G(w = 01(5) + Ayu(s) - 91)) } ds, (4.6b)
similarly satisfies the following Lipschitz continuity
sup IV ())0) = W )0l < Low 530 r(6) = wal®)lier. (41

t€[0,T) t€[0,T]

where Ly is a Lipschitz constant depending on Ty, Mo, &, ||wolm2(q), ©, B, and Bp.
Let A € R be small such that, for any ¢ € C ([0, T]; H2(Q)), u+ Aq € C ([0, T]; By2(uo, 1)), then
according to the definition of the Fréchet derivative W'(u) of W (u) on u,

1
W' (u)g = lim — [W(u+ Ag) — W(u)], (4.8)
A=0 A
W'(u) is a map defined by
W) : C ([0, T () — C (0,7} 1() x HA(9) (4.90)
with
g — W (w)q = (o' (w)g, v/ (u)g) . (4.9b)
(4.7) implies that the Fréchet derivative W’ (u) of W (u) with respect to u exists and
sup || [W'(w)a] ()l 2 () x 20y < Lw sup la(®)ll (e » (4.10a)
te[0,7) t€[0.7]
sup 0Vl < Low, ¥4 C (0T B0, 1), (4.10b)
telo,

Corollary 4.2. For any given q¢ € C([0,T]; Bg2(0,1)) and u1, ug € C([0,T]; Bg2(ug,r)) with
T € (0,Ty), the Fréchet derivative W'(u) of W(u) satisfies

sup ||[W”(u1)q](t) — [W'(u2)al ()l 2y x m2) < Lr sup [Jur(t) — uz(t)l| gz (o) - (4.11)
t€[0,7] t€[0,T]

Here L is a Lipschitz constant depending on Ty, 2, B,, Br, Mo, &, ||wollg2() and |lvol|z2(q)-
Proof. From Lemma 3.2, the linear operator A generates a Cy-semigroup

{T(t) - @18 %zgg) € B(LX(Q) x HAQ)): te [O,oo)}.

Because [G(w — 02)](s) + By(u(s) — 01) = —Brw(s)] 72 + B, (u(s) — 1), the integral form (4.6b) then
implies the second component w of W(u) = (v,w) = (v(u), w(w)) is given by

=0y + Ty (t)vo + Too(t) (wo — 65) +/0 To1(t — s) (6p(u(5) -1)— [10(552(5)) ds.

Following this definition and the definitions (4.8) and (4.9) of the Fréchet derivative W'(u) =
(v'(uw),w’(u)), the Fréchet derivative w’(u) of w(u) on u, which is also the second component of
the Fréchet derivative W'(u), is written as follows:

w'(w) : € ([0.T); HA(®)) — C (10, T); H2(9), (4.122)
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where

[ (u)a(t) = / Tor(t — ) {ﬁpq<s> ; ZBFW} ds. (4.12b)

We next show that there exists a Lipschitz constant Ly, depending on Ty, Mo, &, ||wo| a2y, 2, Bp
and Bg, such that

sup ||[w'(u1)q](t) — [w'(u2)a](t) | r2() < Lr, sup [Jua(t) — u2(t) || m2(o)- (4.13)
te[0,T] t€[0,T

Letting uy, uz € C ([0,T]; Byz(uo,)), the definiton (4.6) of the solution operator W implies that
(v1,wy) = (v(ur), w(ur)), (va,wa) = (v(uz), w(uz)) € C([0,T); Brz(vo,r) x Byz(wp,T)), then one
obtains w1 (t), wa(t) € H*(Q). Because of the definitions (4.8) and (4.9) of Fréchet derivative W (u),

W' (ur)g = (v'(u1)g, w'(u1)q), W' (uz)g = (v'(ug)g,w'(uz)q) € C ([0, T]; L*(Q) x HZ(Q)) .
Hence with
wi(t) = [w'(u1)g)(t) € H(Q), wy(t) = [w'(u2)q)(t) € HZ(Q), Vtel0,T],

we find

w)a(t) _[w'(u)al®) _ wi®)  wslt) gy e,

[w(w)]P(t)  [w(u)P(t)  [wi@®)F w2 ()]

According to inequality (4.10),

sup [lwr ()|l g2y = sup [[w'(u1)g) ()]l g2q) < Lw-
t€[0,T] t€[0,T]

The Lipschitz continuity estimate (4.7) implies that
w1 (t) = w2 ()| g2y = Iw(ua)] () = [w(u2)|(O) g2 () < Lw lua(t) = u2(t)l] g2 (g - (4.14)

The algebraic properties of H?({2), i.e. Lemma A.1l, estimates (2.4) and (2.5) of Lemma 2.2, and
above (4.14) imply

’w[(t) _ wJ(t) w ) . 1
H i OF ~ [0 OF || oy <1720 H[wl(t)]?’ [w2(t)]3’H2(Q)
1
+ lwr(t) = ws )l g2 - H [w2(OF || 20
<Lw Cs [[wi(t) — w2 (t)l] g2 () + CF wr(t) — wi(t)l] 2
<L3,Cy lun (t) = ua (D) 2 + C3 i () = ws (Ol oy - (4.15)

Combining (4.15) with the form (4.12) of the Fréchet derivative w’(u)q of w(u) on u gives

0t [T (- )

H?(Q)
t
wr(s) wy(s)

<2 3 To1(t — — d
< 5F/0 ObélilétH 91 ( 8)||B(L2(Q),H2(Q)) H[wl(s)]?, [wa(s)]? . S

t
§25FM0/ wi (s) (8)3 ds

0 ] H2(Q)

|

[wi(s)]®  [wa(s)
<28pMoL3y, C5Tp||ui (t) — ua(t)

t
2B My / lewr(s) = w5 ()] o ds.
0

|H2(0)

Consequently, according to Gronwall’s inequality,

3
lwr (2) = w5 (8) 120 < 285 Mo Ly CoToe M0y (8) — w3 (1) 1120
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Thus the estimate (4.13) holds by setting
LF2 = QﬂFMoL%/[/OgTQ€2ﬂFMchTO.

Similarly, there exists a Lipschitz constant Lp, = Lp, (Lg,, |[vollz2()) > 0, such that the Frechét
derivative v’(u) of the first component v(u) of W(u) on u, given by

@il = [ Tt =) {sae) + 260D g (116)

is & map ¢ — [/(w)](t) from [0,T] to C([0, T]; B (H2(%), L2(%)) and satisfics
s 0~ el Ol < Lo, s a0l (417
Let Ly = max {Lp,, Lp,}, and the assertion (4.11) follows from (4.13) and (4.17). 0

Corollary 4.3. Take T € (0,Tp), r € (O,%), ug € H?(Q) compatible with boundary condition,
up o= 61, and g = ug — 01 € HX(Q). If u € C*([0,T]; By2(uo,r)), then there exists a Lipschitz
constant Lys depending on o, Mo, Ty, 2, Br, Bp, &, ||lvollL2() and ||wol|g2(q), such that

sup (W (wal(t + h) — W ()l 2oy <h“Lar sup_[1a(t) g2
0<t<t+h<T te[0,T]

TR T Lt |l qll o o,71: 12 (2)) (4.18)
holds for all ¢ € C*([0,T); Byz(to,T)).

Proof. Let T € (0,Tp) and r € (0, 55 ). If the given function u belongs to C* ([0, T]; Byz(uo, 7)), also
u € C([0,T]; By2(ug,r)), according to Theorem 3.3 and Corollary 3.5, it follows that the semilinear
fourth-order equation (1.1b) has a unique mild solution w(u) € C* ([0, T]; By2(wo, r)) and w(u) can

be written by

The definitions (4.8) and (4.9) of the Fréchet derivative W’'(u) imply that the Fréchet derivative
w'(u) satisfies

[w(u)] (t) = Oz + To1(t)vo + To2(t) (wo — O2) + /O To(t - s) (5p(u -1) -

[w'(u)q](t) = /0 To1(t — s) {ﬁpq(s) + QBFW} ds. (4.19)

We are going to show that there is a constant L, > 0, such that

Ifw' (w)gl(t + 1) = [w' (W) ()l g2y < Lar, b {ts[%pﬂ la@ 20y + T |Q|Ca([O,T];H2(Q))} (4.20)
€lo,

holds for V0 <t < ¢+ h < T, h € (0,T]. Because

h w'(u)q](s
-+ 0~ ) = [ Taule+ =) {Ba(e) + 20, O g

+/O Tor(t = 5)Bpla(s + h) — g(s)]ds

¢ . [w'(u)gl(s +h)  [w'(u)g](s) B
_|_/0 T21(t )25F{ [w(u)]3(5+h) [w(u)]?’(s) }d s (4.21)

q(t) € H2(Q), the definition (4.6) of W (u) and the definition (4.8) of W’ (u) give

[w' (u)q](?)

wp( © 16

Bpa(t) + 2Br
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Because (2.4) of Lemma 2.2 and (4.10), we have

v (w)al(t) i e
o | Tl [y = o8 | TGP |y oSty 1 (L lir2(0
<CiLw sup ||Q(t)||H2(Q)' (4.22)
te[0,7)
Therefore
' o st 45 @A
[ e = (st 2 i o @
[ (w)g)(1
<hMj {ﬂp i la(®)ll 22 + S0 | Tt P HQ(Q)}

<hMo (85 + C¥Lw) sup [a(0) a0 (4.23)
te[0,T]
As q € C([0,T]; Byz (o, 7)),

/0 Tor(t — 5)Byla(s + h) — q(s))ds

<TMofB, sup |lq(t+h) = q(®)ll g0
H2(Q) 0<t<t+h<T

<h*TMoByllallca o, 77;12(22)). (4.24)
and w(u) € C* ([0, T); By2(wp, 7)) is a mild solution of the semilinear fourth-order equation (1.1b),
Ifw(@)](t) = woll g2y < 7 Nw(W)](t+h) —woll g2y <7 V', t+h €0, T],

then estimate (2.5) of Lemma 2.2 and the estimate (3.14) of Corollary 3.5 imply

H 1 3 1
[w@)P(t+h)  [w(u)]? ()

Therefore, estimate (2.4) of Lemma 2.2, inequalities (4.10) and (4.25) imply

< Cs [|[w@)](t + h) = [w)]() || gr2(q) < C3Luh®.  (4.25)
H2(Q)

H2(9)
H [w'(u)g](t +h)  [w'(u)g](t)
H2(Q) [w(w)]3(t) [w(w)]3(t)

[w(w)]?(t + h) [w(w)]?(t) H2(Q)
1 1
sl atDlwo |fapen ~ WP |y,
! — [ (u !
+ [[[w’ (w)g](t + 1) — [w'( )q](t)||H2(Q) [ W)]3 () H29)
<Lw sup la()]l 722y CaLuh® + || [w' (w)g)(t + ) = [w' (u)g)(t)[| g2 52) CF s

tel0,T

and hence

[w(w)?(s +h)  [w(uo)l?(s)

<28p MoToLw S[UP lg(®)ll 112 CaLuh®
tel0

#2308 [ @l + 1) 03] sy (4.26)

/ Tua(t — 5)26r { Wil ) } -

H2(Q)

16



Consequently, (4.21), (4.23), (4.24) and (4.26) imply,

I[w (w)a)(t + ) = [w' (w)q) () 20y <h*To ™" Mo [Bp + CF L] S gt 12202

+hT MoBpllallceo,11;12 ()

+h*2B8p MoToLwC3Ly sup |q(t) ||H2(Q)
t€[0,T]

+26FMon/O I[w'(w)ql(s + h) = [w' (w)a](s)l| g2 ds-

Set
Ry = MyT, “ [Bp+ CiLw], Ra=2BrMoToLwCsLy, Rs= MyB,, Ri=2BpMyC5.
Gronwall’s inequality implies V0 <t <t+h < T,
' (w)a)(t + h) — [0 (w)g](£)l 2 () <h €™ (Ry + Ro) S a1l g2
+h*Te™ ™ Ry||q|| o (0,77 12(52)) -
Equation (4.20) holds by setting
Ly, = (Ry + Ry + Rg)ef™

and Ly, depends on o, My, To, Q, ||wol|lp20), &, Br, Bp-
Similarly, there exists a Lipschitz constant

LM2 = LM2 (LMU HU0||L2(Q)) > 07

such that the Frechét derivative v'(u) of the first component v(u) of W (u), defined by
/ ' "(u)q)(s)
00 = [ Tt {ate) + 250 A s

satisfies

I (w)a)(t + h) = [v" (gl ()| L2() < Lo, 2 [ sup |q(t) | 20y + T llg| C“([O,T};H%Q))] (427

te[0,T)

Let Ly = max{Ly,, L}, and the assertion (4.18) follows from (4.20) and (4.27). O

5 Wellposedness of the Coupled System

Abstract Formulation of the Coupled System

Let T' € (0,Tp) be taken to be specified below. We are going to study the unique existence of the
strict solution for the initial-boundary value problem for the coupled system which is written by the
quasilinear parabolic equation with abstract coeflicients involving v(u) and w(u):

%_ ! ) UJUSUU—U(U)U x a
ot w(u)v ([w(w)]uVu) w(u) " (x,t) € 2 x(0,T), (5.1a)
u(z,0) =up(x), ze€, ulx,t)=01, (z,t)ecdNx]|0,T]. (5.1b)

Here v = u(z,t) is an unknown function, v(u) = [v(u)](z,t) and w(u) = [w(w)](z,t) are implicitly
given as functions of u by the integral formulation

(5)((1;))) _ (902) L T() (wovo 92> N /Ot {T(t s (—5F[w(3)}2 8— Bp (u(s) — 1)) } ds,
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Here, {T'(t) : t > 0} is the strongly continuous semigroup (Cp-semigroup) from Lemma 3.2. Note
that 49 = uwp — 601 and @ = u —6,. If @ € C([0,T); By2(to,r)), then from the existence of the
mild solution of the semilinear evolution equation (3.11), i.e. Theorem 3.3, the functions v and w
depending on u can be regarded as the solution operators satisfying the definition (4.6) of solution

operator W and
v: C([0,T]; Byz(ug,r)) — C ([0, T]; Brz2(vo, 7)), @+— v(d+ 6y),

w: C([0,T]; Bg2(@o,r)) — C ([0, T]; Bg2(wo,7)), @+— w(t+ 07).
Hence F(4) is given by

@ F(@): C([0,T); By2(io, 7)) — C ([0, T); L*()) , (5.2a)
N 1 - - - U(1~L+01) ~
The linearization of F'(@) is defined by
qg— F'(ig)g: C([0,T}; HZ(Q)) — C ([0,T); L*(2)) . (5.3)
Here, F'(1g)q is the Fréchet derivative of F(@) on @ at @, F'(@g)q at t is given as:
[P i0)a] (1) =¥ - { o) (0o Va(0) + [1aso) P(0)a(t) T}
[w(uo)](?)
1 ,
+mv - {B[w(u)]? (t) [w' (uo)q] (t)uo Vuo }
) [ PO 079 [
wlugp(p) © ol O T) = 16 iy
_ [w(uo)](O)[v"(u0)g](t) — [v(uo)](8)[w'(uo)d](t) (5.4)
[ o) (1) ” '
where the functions v(ug) and w(ug) satisfy the definition (4.6) of the solution operator W with
u = wg. Equivalently, (0,w) = (v(ug),w(ug) — 02) is a unique mild solution of the semilinear

evolution equation (3.11) with @ = ug — 61, and ([v(up)](0), [w(u)](0)) = (v, wo). Define

P*q(t) :wiov AwiuoVa(t) + wig(t)Vue } + wiov 3w [w (uo)q](0)ugVuo }

_WV- (wiuoVug) — %Q(t) - wO[vl(UO)Q](O)JSUOW(“OM(O) ug. (5.5)

Note that the Fréchet derivative w’(u) at u = ug and ¢ = 0 is given by
1
[w' (u0)q](0) = lim - {[w(uo + hq)](0) — [w(u0)](0)} .
h—0 h

Here h € R is small such that, for any ¢ € C ([0,T]; H2(Q)), uo + hq € C([0,T]; By2(uo,r)).
Because (Up, W) := (v(ug+hq), w(ug+ hq) —62) is a unique mild solution of the semilinear evolution
equation (3.11) with @ = wg + hq — 601, then ([v(ug + hq)](0), [w(ug + hq)](0)) = (vo,wp). Since
([v(10)](0), [w(up)](0)) = (vo, wo), then [w'(ug)g](0) = 0 and [v'(ug)q](0) = 0, hereby (5.5) becomes

* 1 (¥
Prq(t) = wiov AwiuoVa(t) + wig(t)Vue } — w—f}q(t)-

P* is a linear operator defined by

P*: D(P*)C H2(Q) — L*(Q), P = wiov Awiuo Vo + (wiVue) ¥} — %w (5.6)

We remind the reader that P* is the Dirichlet realization of the differential expression in (5.1a).
Using the definition of P*, we rewrite (5.1) as the equation (5.7) on unknown function :

@(t) = Pra(t) + [F(D)](t) — P*a(t), te[0,T], a(0)=do> e > 0. (5.7)

Here €; is a given positive constant. We are going to show that the linearization operator P* satisfies
the elliptic estimate:
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Lemma 5.1. There exist positive constants K and K, depending on ug, wg, such thatV q(t) € D(P*)
and t € [0,T], P* satisfies the elliptic estimate

/ @v- [wiuoVq(t)] dx
Q

Wo

25 2
> K /Q V) do — K, /Q lg(t)Pde, (5.8)
Proof. For ¢(t) € D(P*) and t € [0,T],
Pat) = oV - {ufu e} Vi .1]

denotes the highest order derivative term of P*q(t), then by the divergence theorem, we obtain

/Qq(t)v A{wiuoVa(t)} de :/m {wiuoa()Va(t)} 'ﬁdS*/

wWo Q

\Y {q(t)} . {wg’roq(t)} dx. (5.9)
wo
Since q(t) € D(P*), D(P*) C H2(Q) and H2(Q) = H?(Q) N H (), then ¢(t) € HL(), hence
/ {wiuoq(t)Vq(t)} - idS = 0.
o0

Because ug(x) > €1 > 0, €1 is a given constant, and x = inf wg(x), (5.9) becomes
TEQ

- /Qv {qu(}ﬂ AwiueVa(t)} dx

0

/ @v AwiueVa(t)} da
Q

Wo

N /QwOUO {woVq(t) = q(t)Vwo} - Va(t)dx

> /Quowg\Vq(t)Fdx - /QuowOVw0~[q(t)Vq(t)]da?

>e1 k2 /Q IVq(t)| dz — ’ /Q uowoVwg - [q(t)Vq(t)|dz (5.10)
Notice that wy € H*(Q2) and uy € H?(Q2) and write C = C(Q) > 0 a constant, hence
/Quou)OVwO la@®)Vat)]dz| < [uowoVwo| o< g /Qq(t)Vq(t)dx
<C |lutwo Vol s /Q o(O)Va(t)da
<C ol ey [0l oy IVl | | at)Vitt)da
<C lunll ey lolyecay | | a®)¥atrto
With Ky = C [|uol| g2(q) ”on?{e’(Q) and Young’s inequality,
/ (0L {wiugVq(t)} dz| >(e1k* — ¢ Kz)/ Va(t)|* da — / la(t)]*da. (5.11)
Q Wo Q
The assertion (5.8) follows for e sufficiently small. O

Corollary 5.2. P*, defined by (5.6), is a sectorial operator and generates an analytic semigroup
{etP" 1 t>0} on H2(Q).

Proof. Using the Corollary 12.19 and Corollary 12.21 in [12], we obtain that the operator P* in
Lemma 5.1 satisfies the elliptic estimate (5.8), as well as the following estimate for the resolvent set:

p(P*) > So. = {A cC:N#w |arg\—w) <O,weR,O € (gw>} (5.12)

19



Proposition 1.22, Proposition 1.51 and Theorem 1.52 in [24] then imply the following estimates of its
resolvent (A — P*)~1

M
A — Pyl < 5.13
10 =P lstaanmon < =g (513

forw e R, M > 0and A € Sg ., and P* is a sectorial operator which generates an analytic semigroup
{eP” 1t >0} on H2(Q). O
Graph Norm of P*

If the domain D(P*) of P* is endowed with the graph norm of P*, ||g||p(p+) = |lgllz2() +IP*9llL2(0),
then there exists a constant g > 1, such that

70" (I9llz2 @) + 1P g2 (@) < l9llmz@) < 0 (l9llL2@) + IP*9llL2(0)) - (5.14)
In fact, because H2(Q2) — L3(Q), P* € B (Hf(Q),LQ(Q)), there exists a constant cg > 0 such that
l9llL2@) + 1P glle2) < collgllazy, Vg€ HZ(Q), ie. HZ(Q) < D(P*).

Equations (5.12) and (5.13) im ply that P* is a closed operator, so that D(P*) is a complete Banach
space. We conclude D (P*) = H2(2), which is assertion (5.14).

Because H2( )= H?(Q)n HO( ) is dense in L2(f2), we obtain P* is densely defined in L?(£2)
and D (P*) = L?(9).

If t >0 and ¢ € L?(Q) then P ¢y € D ((P*)k) for each k € IN. Moreover, there exist Mg, M1,

M3 > 0 (depending on © in (5.12) and M in (5.13)), such that

Htk ) et <M, s>0, k=0,1,2, tel0,Tp). (5.15)

B(L2(£))

Theorem 5.3. Let P* : D(P*) — L?(Q) be a sectorial operator and generate an analytic semigroup
e, D(P*) = H2(Q) and D (P*) = L*(Q). If T € (0,Tp), a € (0,1) and

i € D(P*), F(0)+P*ug € D(P*), FeC*(0,T];L*(Q)),
then .
o(t) = P G + /0 =P F(s)ds, (5.16)
is the unique function belonging to C1([0,T]; L2(Q)) N C([0,T); D(P*)) which solves the problem
©'(t) =P pt)+ F(t), tel0,T], »(0)=ao. (5.17)
Moreover, the following maximal reqularity property holds:
F € C[0,T]; L*(Q)), P*ig+ F(0) € Dp-(a,00) =>

¢ € COTH((0,T]; LX(Q)) N C*([0, T} HZ (), ¢'(t) € Dp-(a,00), Vt€[0,T],

and there exists a continuous and increasing function I : Ry — Ry (depending on Mo, My, M+ and
a) such that

lellcxo.rippey) < I(T) [Ilﬁolle(sz) + 1Fllee o,m1:L20)) + 1P o +f(0)||DP*(a,oo>} . (5.18)

Remark 5.4. Theorem 5.3, corresponding to Theorem 1.2 of Lunardi [21], is a mazimal regularity
result for linear autonomous evolution equations of parabolic type. Its proof follows the proof of
Theorem 4.5 in Sinestrari [27]. We are going to use this result to prove the existence of a strict
solution to the coupled system, which is Theorem 5.6. Before our proof, we need Lemma 5.5. The
detailed proof of Lemma 5.5 can be found in Appendix C.
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Lemma 5.5. Let F(@) and P* be defined by (5.2) and (5.6) respectively, T € (0,Tp). Setug = tg+6;.
If 4, ¢ € C*(]0,T]; By= (G, 7)), then there exist postive constants La = L4 (ug,vo,wp,€2) and
L = Lp (uo,vo,wo, 2, a, To, Ly, Ly, Lar), such thatV 0 <t <t+h<T,

I[E(@)] (¢t + h) — [F@)] ()]l 120y < @+ 01]oa(o,r:m20)) + Lu } Lah®, (5.19)
and

I[F'(@)q] (¢t + h) — [F'(@)q] (t) — P~ [q(t + 1) — a(O)l| 12 (e
<h*T*Lg ||allca (o, m20)) T T Le @+ 01l co (o, 520)) 19l co (0,772 (02))

0Ly sup [lg(0)ll gy + h*Le i+ 01| co oz 5w 1a(0) 2o - (5.20)
te[0,T) t€[0,T]

Here the constants Ly, Ly and Ly are given by Corollary 3.5, Theorem 4.1 and Corollary 4.3
respectively.

Theorem 5.6. Assume the initial value ug € {1y € H**7(Q) : ¢(x) =01, x € 0} is given for
s (0, %) such that the compatibility condition

1
w—V - (wiuoVug) € H?(Q) € Dp+(av, 00)
0
holds for a € (0, ) and @p = ug — 61 € H*™(Q) N H(Q).
Then there exists Ty > 0, such that the nonlinear problem (5.7) has a unique strict solution
ae C™([0,T1); H2(Q)) N C*T ([0, T1); L*(R2)) and @/ (t) € Dp«(av,00), V t € [0,T1).

Proof. We set o € (O, %), a € (O, %) and divide the proof into three parts.

Holder Continuity. Let us first state some refinements of the results in Section 4. They concern
the Holder continuity of the solution operators @ — v(@ + 61) and @ — w(u + 01) needed later.
Take T € (0,7p) to be specified below. According to estimate (3.14) of Corollary 3.5, v and w are
the solution operators satisfying

v: C“([0,T); Bg2(tg,r)) — C*([0,T]; Br2(vo, 7)), @+ v(a+0),
w: CY([0,T); Byz(to,r)) — C*([0,T]; Bgz(wo, 1)), @+— w(t+ 0).
Thus, following the inequality (5.19) in Lemma 5.5, F(@), defined by (5.2) satisfies
F(a) € C* ([0, T); L*()) .

Theorem 4.1 with its following discussion about Fréchet derivative and the estimate (4.11) of Corollary
4.2 imply that the Fréchet derivative (v'(@ + 61)q, w’(@ + 61)q) of the function (v(@ + 61), w(a + 61))
on @ € C ([0,T]; H2(Q)) exists in C ([0, T]; L*(2) x H2(Q)) and depends Lipschitz continuously on
ae C([0,T); H2(Q)) for g € C ([0, T); H2(Q)). Ifa € C* ([0,T]; H2(Q2))NC ([0, T]; Byz (1o, 7)), then
by using inequality (4.18) in Corollary 4.3, (v/(@ + 61)q,w' (@ + 61)q) € C* ([0,T]; L*(Q) x HZ(2)),
Vg€ C*([0,T]; H2()). Thus, following (5.20) in Lemma 5.5, the Fréchet derivative F’(@)q of F ()
and P*q, defined by (5.4) and (5.6) respectively, satisfy
F'(a)g =P q € C* ([0,T;: L*(Q)), Vg€ ((0,T); H()).

vo € H2(Q), wo € H*(Q) with wo(x) = 61, Awe(z) =0, V x € 9Q and the compatibility assumption
of Theorem 5.6 imply

[F()](0) = wiov. [whuoVus] — ~up € HO(©) € Dp-(a,06), o € D(P).

By the definition (5.6) of P* and (5.14), we know
D(P*) = H}(), D(P*) = L*(), C* ([0,T); HX(Q)) = C* ([0, T); D(P*)), V T € (0, Tv).
Equivalence. We now study the nonlinear problem

a'(t) = P*a(t) + [F(a)|(t) — P*u(t), te[0,T], u(0)=ug (5.21)
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whose integrated form is given by

a(t) = e g + /0 P LR (@) (s) — P*a(s)}ds, te[0,T). (5.22)

We will prove that if @ € C* ([0,T]; H2(Q)) satisfies (5.22) and a(t) € Byz(do,7), V t € [0,7],

r e (0,45), & = inf wo(z) > 0 and C = C(Q) > 0 is a constant, then & € C*™ ([0,T]; L*(Q)),
zeQ
@' (t) € Dp+(a,00), V t € [0,T], and @ satisfies the equation (5.21). To prove this assertion, for each

u € C*([0,T]; Byz(tug,r)), we set
[F(@)](t) = [F(a)](t) — P*u(t), Vtel0,T], (5.23)

and prove that
F(a) e C* ([0,T]; L*()) . (5.24)

In fact, for 0 <t < t+ h <T, by using (5.19) in Lemma 5.5, we have
[F @I+ 1) = F@I0) | 2y < NE@IE +B) = F@IO 2y
+[P*a(t + h) — P a(t)|| 2o
< (La + 1P Nsqars o zacan ) 1l + ) = @)l 20

because @ € C* ([0, T]; H()), we get (5.24).
In addition, if @(0) = 1y € H2(Q) = D(P*) and [F(@)](0) € Dp=(a, 00), then we obtain

Prio + [F(@)](0) = [F(@)](0) € Dp-(a, ).

Hence, by Theorem 1.2 of [21] and Theorem 5.3 we conclude that if @ € C* ([0, T|; By2 (o, 7)) is a
solution of (5.22), then there exist @' € C* ([0,T]; L*(Q)), @ (t) € Dp+(a,00), ¥V t € [0,T], and @
satisfies (5.21).

Conversely, let & € C* ([0, T]; By (i, r)) N C*F1 ([0,T]; L3(2)) satisfy (5.21), i.e

() = Pra(t) + [F@)#), te0,7), a0)= o

As we have proved that F(u) € C¢ ([O, T); L? (Q))7 we can apply again Theorem 5.3 and deduce that
@ is a solution of the integrated form (5.22).

In conclusion, it is sufficient to solve (5.22) in the space C ([0, T|; By2(to,r)). To this end, we
take T' € (0,Tp) to be fixed later and find a fixed point for the mapping I' defined by

L:Y —Y, [t =P+ /O t eIP LF(@))(s) — P*a(s)}ds, tel0,T), (5.25)

' {u € (0. TR H(®) : 4(0) = o, [13() = Tollce oryr2(ey < T}’ vre (0’ %) '

Contraction Mapping. If Y is endowed with the metric induced by the norm of the space
ce ([O, T); H? (Q)) we will show that I' is a contractive mapping of Y into itself provided T is suffi-
ciently small.

From the preceding results and following the proof of Theorem 4.3.1 in [20], we know that ['u €
C ([0, T); H2(Q)) if @ € Y, because Y C C° ([0, T]; By (i, r)). Now we will show that when T is
sufficiently small we have

- - 1
IPar =Tzl ga o,y 12 () < 5 181 = G2llcaqo,rymz@y V1, G2 €Y. (5.26)

From (5.23) and (5.25), we get

[Ffbl](t)—[lﬂﬂz](t)=/0 TIPHF(@)](s) - [Fa2)l(s)} ds, te[0,T],
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hence, by using (5.14) and applying (5.18) of Theorem 5.3, we obtain

||F111 - Fa2||Ca([07T];H2(Q)) S’YOI(T) ||F(ﬂ1) - f(a2)||ca([0,T];L2(Q))
<Y0d (To) |F (@) — F(2)ll o (o,1);12 () - (5.27)

Here I(-) is a continuous and increasing function given by Theorem 5.3 when applied to P* which is
defined by (5.6) and satisfies Lemma 5.1 and Corollary 5.2. As @, (¢) and a5 (t) belong to By (i, )
for t € [0,T], we can use inequality (2.11) in Lemma 2.4 to estimate the right hand side, obtaining
for all t € [0, 7],

I1F(@)])() — [Fa2)l (0]l gy < NF@IE) — [F@))@)] g + 1P () = P aa(t)]l 2o
< (L + 1P a2 ) 171 (8) = 28]l 12 - (5.28)
As @1(0) = 62(0) = Gp € H2(Q2) = D(P*), then we have

ts[l(l)lzﬂ @1 (t) = G2 ()l 2y < T 11 — G2l cajo,7);12(02)) - (5.29)
€lo,

and so
1F (1) = Fa2)lloqo,ri2) < |Le + P lsm2@), L2 | T 11 — G2l gaorym2 @)y - (5-30)

On the other hand for 0 <t <t+ h < T, by using (5.20) in Lemma 5.5 and (5.29), we get

:

—P* [ar(t + h) — aa(t + h) — 4y (t) + u2(t)] dy

IIF(@)](t + h) = [F(az)](t + h) = [F(a)]t) + [F(a)l ()]l L2 )

/O [F" (it + (1 = )tip) (G — t2)](t + h) — [F" (vt + (1 = y)ti2) (i1 — @i2)]()

L2(Q)
<2h*T L ||tn — 2| a0, 17, 12 (02))

+2h*T* L |yt + (1 = y)t2 + 01l co (o, 19,1202y 182 — U2l o 0,772 ()
<2h°T L [l = G2l o o, ya02sy + (l0llzr200) + £(2C) ™) 1 = izllc o 22 > (5:31)

as well as

[F (1) — F(t2)]ca(jo,11:22(2)

= sup hia {IF @)t + h) = [F(az)](t + k) — [F(@)](t) + [F(a)] ()l 20 §
0<t<t+h<T
<2T* L [1+ (|luoll z2() + £(2C) 1)) lla1 — @2l ca o rp:m2(q)) - (5.32)

Hence we can deduce from (5.27), (5.30) and (5.32):
[Py — Tl oo, 12(0)
<Yl (To) | F (@) = F(a2)ll cao,77;22(02))
<v0I(To) {H]:(ﬁl) - f(a2)||c([O,T];L2(Q)) + [Fla) - ]:(ﬂ2)]0“([0,T];L2(ﬂ))}
<01 (To) {Le 1P g2, L20)) + 2L8 [1+ (llwollm2@) + /‘6(20)71)]} ™
a1 = G2l ga 0,79, 12(02)) - (5.33)

Set

Q=

If 0 < T < min{Ty, T}, then I satisfies the contraction property (5.26) by using (5.33).
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To prove that T'(Y) C Y, it remains to check that

Let us observe that if 0 < T' < min{Tp, T}, then from contraction property (5.26), we get

IT% = ol e o,71; 12 (52)) < WTE = Lol e 0,77, 2 (52)) + T80 = ol e 0,77, 12 (92))

<5 1@ =tollge qo.rysrr2() + IPd0 = toll g (o152 ()
r ~ ~
<5 + a0 = Gollca jo,r; r2(c2)) -

Now Ity — g € C* ([0,T]; H2(2)) and it vanishes at ¢ = 0, so there exists a §* = 6*(r) > 0 such

that, if 0 < T < §*, then
r

TG0 — ol e (o, 79,2(0)) < 3
and consequently (5.35) is true by choosing 0 < T' < min{Ty, T, 6*}. Because r is controlled by
C = C(Q2) and &, we also note 0* = §*(k, Q).
Summing up, set
Ty :=min {71y, Ty, 6*}, (5.36)

T, defined by (5.25), is a contractive mapping of Y into itself provided
0<T<T.

Hereby, I has a unique fixed point @ in Y, @ € C¢ ([O, Ty); HE(Q)) is a unique solution of the integral
form (5.22), and @ € C* ([0,T1); HZ(2)) N C*T1 ([0, T1); L3()) is a unique strict solution of the
nonlinear problem (5.21), by preceding results in Equivalence, Theorem 5.3, Theorem 1.2 of [21] and
Theorem 4.5 of [27].

Recall that [F(@)](0) € Dp«(a,00), @9 € HZ(Q) = D(P*), F(a) € C*([0,T1); L*(Q)) with
L?(Q) = D(P*), as P*tg + [F(@)](0) = [F(@)](0) = @’(0), Theorem 1.2 of [21] and Theorem 5.3 state
in particular if @'(t) € Dp=(a,00) for ¢ = 0, then the same is true for t > 0, i.e. @/(t) € Dp«(«, 00),
vVt €[0,T1), provided

F(a) = F(a) —P*ae C*([0,T1); L*(Q)).

Meanwhile, [F(@)](t) € Dp«(a,00) as @/ (t) = [F(a)](t) and @' (t) € Dp«(c, 00) for all t € [0,T}).
Because of Theorem 3.6 and u = @ + 6y, the initial-boundary value problem (1.1) has a unique
strict solution (u,w),
we C*([0,Ty); H*(Q)) nCT ([0,T1); L*())

we C([0,Ty); H(Q)) nC* ([0,T1); H*(Q)) N C? ([0, T1); L*(2)) .
This concludes the proof of Theorem 5.6. O

Theorem 5.6 directly implies Theorem 1.1.

Maximal Time of Existence

Corollary 5.7. Assume that there are positive constants Coo and oo such that the solution (u,w)
from Theorem 5.6 satisfies

u'(t) € Dp-(a, o0), |[u(t)|| g2+a(a) < Coos igfw(t) > b0, (5.37)

for allt € [0,T1]. Then there exists To > Ty such that (u,w) uniquely extends to a solution of (1.1)
on the time interval [0, Ts).

Proof. As (5.37), u/(T1) € Dp-(a, o0), |[u(T1)||g2te0) < Coo, igfw(Tl) > doo and Theorem 5.6

implies there exists Tll7 such that the nonlinear coupled system (1.1), with the admissible initial
values u(z, T), w(z,T), 22 (z,T), has a solution (us,w;) on [0,7}),

u € C° ([O,TI’);HQ(Q)) N Cot! ([o,T{);L?(Q)) ,
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w € C (0.7 @) n ¢ (10, 7); H2(©)) €2 (0,77 I3(@))
Define the functions by

’U,(t), OStSTh U)(t), OStSTl,
ug(t) = / wa(t) = /
Ul(t—Tl), T1§t<T1 +T1, ’LU1(t—T1)7 T1§t<T1 +T1,

(ug,ws) is continuous and it is a strict solution of (1.1) for ¢ € [0,T1]. For t € (T1,Ty + T} ), set

o 6w2

- V2

U2 = U — 01, ~ = ot .
W wg — 02

Based on Lemma 8.5 from [15], we use the integral formulation (5.22) for @(7}) and calculate (5.38).
Then we similarly get (5.39) from the calculation for (5.38) and the integral form (3.12):

* t=T1 *
Gg(t) =y (t — Ty) = TP 4 (Ty) +/O TP LR (iy)](s) — P g (s)} ds

T
— (=TOP" 1P g 4 o(t=T1)P / eM=P" {[F()](s) — P*a(s)} ds
0

[ B @) - ) - Pri(s - T} ds

T
=P ag + /0 t =P {[F(i1y)](s) — P¥iia(s)} ds, (5.38)

(;’)22((?)) — @) (Z)‘; ) + /0 t {T(t _s) ([G(@)](S)O* Wm(s)) } ds. (5.39)

Setting T, =T + Tll, we conclude Corollary 5.7. O

Define the maximal existence time of the coupled system (1.1) by
Tiax = sup {7 > 0: (1.1) has a solution (u,w) on [0,T]}.
Theorem 5.6, Corollary 5.7 and Theorem 8.6 from [15] (page 80) imply that if T,.x < 00,

either lim inf w(z,t) =0 or limsup [[u(t)| ;) = .
t—Tinax T2 t—Trmax

A Proofs of Lemmas in Section 2

Before the proofs, we recall some well-known properties of the Sobolev spaces H*(€2), where k > 0.

A.1 Sobolev Spaces and Algebraic Properties
The algebra property of Sobolev spaces will be crucial in this work, see [30] for a proof.

Lemma A.1. H*(Q) is an algebra whence k > %. In particular, H*(2) is an algebra if Q@ C R and
H?(Q) is an algebra if Q C R™, n =1, 2.

We deduce some immediate consequences.

Corollary A.2. If f; € H*(Q) and fy € L?(2), then
1f1f2ll 20y < Cllfill20) 2]l L2q) - (A1)
Ifgl7 92, 93 € HQ(Q)7 then

191V - (92Vg3)ll 12y < 2C (|91l 20 11921l 112 () 193] 202y - (A.2)
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Proof. The Sobolev embedding theorem implies

[f1f2ll L2y < il ooy 12l 220y < C I Al 20 [1f2ll 2 (o) -

91V - (gQVgS)HLZ(Q) < ||91HL°°(Q) (||V92 ) v93HL2(Q) + ”92A93”L2(Q))

1
2 2
< Cllgill 2o (’/ﬂ Vg2 - Vgs|"dz| + |lg2ll (0 ”Ag3|L2(Q)>

< Cllgrll ey (1992 s ey 19850 gy + 192220 1895 2 |

< Cllgrll ey [IV g2 sy 1995 3y + 192 02 e 198 112
<20 H91||H2(Q) ||92||H2(Q) ||g3||H2(Q) :

A.2 Proof of Lemma 2.2

Proof. We first prove assertion (2.3) of Lemma 2.2.

Since w € C ([0, T]; By= (wo, 7)), then ||w(t) — wol| g2(n) < r holds for all ¢ € [0,T7].

According to the triangle inequality and the Sobolev embedding theorem, there exists a constant
C = C(Q), such that for all r € (O, %), it follows that

w(t) =wo +w(t) —wo =k — [[w(t) —woll () = £ — Cllwt) —woll g2y =2 £ = Cr = 5, (A.3a)

| =

w20y < C, (A.3b)
hold for all ¢ € [0,T)]. Here, C' = 36 + llwoll g2 (q)- Hereby, we prove assertion (2.3).

According to (A.3) and r € (0, %), we have
2 2 2
1
sup —| dzr| < —S sup \Y [} de| = sup |Vw( )i dx
tefo,r] | Ja |w(t) K te[0,T) w(t) [o 1) |Ja |w(t)]

| /\

— sup {/ [Vw(t)] dx}
T t€[0,T

6
S 7 sup ||w(t)||§{2(n)
t€[0,T]
16 -,
< HC .
2 2 ?
1 Aw(t 2 t
sup /A{] dx p < sup H w()2 + (Vw(z)
tefo,1] | Jo w(t) tefo,7) [ I fw®]? |l 2 [w(t)] L2(@)
[ 4 16 2
< sup |— |[Aw(t + — Hth ‘ }
o e P (LR
[ 4 16 > 17
< — t — ||Vw(t
< s |5 o0l + 15 1900 o |
[ 4 16C ) 2
< sup |— ||lw + — [|[Vw }
R e w20 5 IVw(®) 510
[ 4 160 2
< sup [+ ¢ |w<>Hz<m] (0 o0
te[0,7] L

[ 1 %16(7(7} c2.
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2

1112
sup ||—= = sup / +‘V[ } +‘ { ] dx
te[0,T) w(t H2(Q) t€0,T] | Ja w(t) w(t)
O togs [4 90l e "
K2

~ ~712 .
We set C? = ‘;—E + %CQ + {% + 12?0} C?, C, is a positive constant depending on 2, x, and
l|woll fr2(q)- Because H?(Q) is an algebra, i.e. Lemma A.1, the assertion (2.4) of Lemma 2.2 holds
for t € [0, T]. With these facts, we continue on to show the assertions (2.5) of Lemma 2.2. For all w;

and wy € C ([0, T); Byz(wo,)), the algebraic property of H?(Q) from Lemma A.1 and the triangle
inequality imply

[w1 (t) + wa(t)

t))? t))? thws(t
SUP || T——r1or T As }2 <2C}, sup by (OF + [w2(3)] +w;( Jwal )‘ <3Ct.
tefo,7] || [w1 ()2 [w2 (0)]? [ 20 te[0,T] [wy (t)]3[wa(t)] H2(Q)
Setting Cy = 2C5 and C3 = 3C7, hence we deduce (2.5) of Lemma 2.2.
This concludes the proof of Lemma 2.2. O

A.3 Proof of Lemma 2.3
Proof. Recall that r € (0, 5%), wo = o + 02, k = 1nfw0 >0, w=w+0y, we C([0,T]; Byz(wo,T)).

For small h € (0,T) such that t + h € (0,77, ||w(t +h) = Wo| 20y < 7, (2.4) and (2.5) of Lemma
2.2 imply (2.6) and (2.7) of Lemma 2.3 are valid with Lg = 8pCs.

In particular, for w, € C ([0, T]; Bg2 (o, 1)), setting ws(t) = wo, V t € [0,T], then one can obtain
[G(w2)](t) = G(wyg). Hence (2.8) of Lemma 2.3 is valid since the assertion (2.7) of Lemma 2.3.

Set wy = w € C(|0,T]; Byz (o, 1)), for g € C ([O,T];HE(Q)), choose small A € R, such that

Wy =W+ Ag € C([0,T]; B2 (wo,7)) -

Then the Fréchet derivative G’ (w) ¢ of G with respect to w € C ([0, T); By= (o, 7)) exists as a linear
operator G/'(w) : C ([0,T]; H2(Q)) — C ([0, T); H2(Q)) given by

G @0 = Jim 5 G (0 +0) ~ G (@) = =205
€ (@)a) (1) = (6 @ alt) = —2F—q(r).

(@) +62)°
According to the assertion (2.7), the inequality (2.9) holds by the following computation:

, G0+ 2\)() — [G (@)](1)
2 G (@) Ol 0 = sup | lny : ‘H%Q
h%i$%M@M@W@MWW@

<>l\1g%) )\Lctes[up . [[@1() = @2(t) | g2

=La sup |lq(t)|lg2(q) -
te[0,T]
For all ¢ € [0,T)], choose small h € (0,T) and 7 € [0,1] such that ¢t + h € (0,77,
[@(¢) + 7[w(t + h) = @(t)] — Dol 20y <,

then for ¢ € H2(Q) with ¢ g2y < 1, G'(i(t)) : ¥ € HX(Q) —> [G'(d(t))] ¢ € H2(Q). By the

27



algebraic properties of H2(2), i.e. (2.4) and (2.5) from Lemma 2.2, we have
1G" (@ (t) + 7[@(t + h) — w(@)]) = G'(@(0) 512 (@)
=& (@(t) + 7@t + h) — @O)D] Y = [G'(@(0))] Y]l g2

1 1
<208Fp sup _ , Dl
o<ecrtner || (wt) + 7lw(t + h) —w(@)® WO, 112
0<r<1
<2BpCs  sup  |[o(t+ h) —(t)||g20)-
0<t<t+h<T

Since w € C ([0,T]; H?(£2)), W are uniformly continuous with respect to ¢ € [0, 77, hence the assertion
(2.10) is proved by

lim su W(t + 7h) — w(t)|| g2(q) = 0.
e O§t<tfh§T [|( ) 211 ()

This concludes the proof of Lemma 2.3.

A.4 Proof of Lemma 2.4

Proof. Let uy, ug € C([0,T); By2(uo, 7)), according to the definitions of the operators u — v(u)
and u —— w(u), it follows that (vi,w1) = (v(u1),w(u1)) and (v2,w2) = (v(uz),w(uz)) belong
to C([0,T]; Byz(vo, 1) x Byz(wo,r)). Setting that C' = [lwol|gz(q) + 36, C1 = llwollgz0) + 36
Gs = ol oy + 25 Thus, ¥ 1 € (0,7, Jur (0l agey < Cu. fua®)ll ey < G, [0a(0)] 200 < Co
o282y < Cov s () g2y < € T2l 2y < C-

Because the estimate [[w1(t) — w2(t)|| g2(q) < Lw [[u1(t) — u2(t)]| g2 (q) for all ¢ € [0,T] and H?(Q)
is an algebra for Q@ C R", n =1, 2, ie. (2.4) and (2.5) in Lemma 2.2, we obtain similar bounds for
[wy ()7 = [wa2()] " and [wy ()] — [wa(t)]:

w1 = fwa (O] ey < C2Lw s (8) = (Ol gy (A5)
w1 () = [w2 (01| 2y < 3C*Lw llua (1) = ua ()] 2y - (A.6)

Similarly, the algebraic property of H?(2) from Lemma A.1 implies
(12 = a2 O oy < 26 lua(6) = s (D)l 3 ey - (A7)

The algebraic properties of H2(2), i.e. Lemma A.1 and (A.2) of Corollary A.2, imply

{1~ ]} 9 - (e OF Vs (0} e
<Clfwn (17 = w2 () s ey 1101 O | gy N0 OF |y
<COFCPCRLw |lur () — ua(t) | 2 - (A.8)
Similarly, set 6’1 = 3CClLWC'QC~’12 and 52 = QC’C'1C~’3C~'17 then

1 -1 3 3 2 O
3 w2 ()] 7'V - {([wr (O] = [w2(0)]*) VIur (O }H] 12 < C llua(t) = u2 (@)l oy

5 a1V {2 P (1 () ~ f2() ] gy < Co la () — w0l g

Because of the estimates (A.5) and [[v1(t) — v2(t)[| 2 () < Lw [[u1(t) — u2(t)[| 2(q), and H?%(Q) is an
algebra, i.e. (A.1) in Corollary A.2, we obtain

Ul(t) UQ(t)
’LUl(t) Uy (t) - ’Ll)g(t) UQ(t)

<C o (Bl ey 001 ()7 | g2 g 121 (8) = 12 (8) 12
L2()

+C [lua ()l 2 [[Twr (DT | o 101(E) = v2(8)l] 120
+C [[uz ()| g2y o2l L2y |[wr @] = [w2 )] 7] o g
<Cy [|ua (t) — u2(t) || g2 - (A.9)
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Here 63 =C (6’201 + C’lClLW + éléQC%LW)
Consequently, (2.11) holds by setting L, = CC%C’SC?LW +Cy+Cy+ 63 and computing

£ @I — [F)]0l < [ { @]~ 2] V- {fwa PV Hl e o

45 [0V { ([ OF ~ [w2)F) Vi OF ]

45 2] - { PV (a0 ~ (0201} o
vy (t) " B va(t) "
* w1 (t) 1(t) w2 (t) Q(t) L2(Q)
SLe Hul(t) - u2(t)||H2(Q) . (AlO)
This concludes the proof of Lemma 2.4. O

B Proofs of Results in Section 3

B.1 Proof of Lemma 3.1

Proof. Let w € C? ([0, T]; L*(Q2)) NC* ([0, T]; HX()) [
order equation (3.7). Then ® := (@', w) € C*([0,T]; X), (¢
® € C([0,T]; D(A)) and

vy (@O _ (M) — iy + Byalt) + 61 — 1)) _

olve the semilinear fourth-
(w'(t),w(t)) € D(A) for all ¢t € [0,T],

holds for all ¢ € [0,T]. Moreover, ®(0) = (@'(0),w(0)) = (%o, Wo) = Po.

Therefore, ® € C([0,T]; D(A )) N CY([0,T]; X) solves the equation (3.10).

Conversely, let ® = (p1,92) € Cl([O T] X) N C([0,T); D(A)) solves the semilinear evolution
equation (3.10). We set @ := 2, obtaining w € C* ([0, T]; H2(2)), w(t) € HX(Q), V t € [0,T], and
w € C ([0, T]; HX(R)). It further follows, V ¢ € [0, 7],

1) _ 4 (D) _ (AD() — Gy + Bel@(t) + 01— 1)
<~/(t)) —.A ﬂ)(t)>+[g(q))](t)_ ( ( ()+9 zp1<t) >

Thus, @' = ¢, € C* ([0,T]; L*(2)) and @ = (@, )7 so that w € C? ([0, T]; L*(Q)), (@'(0),w(0)) =
(Do, Wo). So w € C?([0,T); L*(R2)) n C* ([0, T); HZ(2)) N C ([0, ],Hf(ﬂ)) solves the semilinear
fourth-order equation (3. 7)

This equivalence also yields that the solutions to the semilinear evolution equation (3.10) are
unique if and only if the solutions to the semilinear fourth-order equation (3.7) are unique. O

B.2 Proof of Lemma 3.2

Proof. We aim to show that A, defined by (3.4), is skew adjoint on the Hilbert space X defined by
(3.1), and thus generates a strongly continuous semigroup (Cp-semigroup) on X by using Stone’s
Lemma (see 3.24 Theorem, Section 3, Chapter II, [6]).

From the definition (3.4) of A, A is densely defined in X, i.e. D(A) = X, then A is skew
symmetric (i.e. iA4 is symmetric) for any two (¢1, p2) € D(A) and (11,12) € D(A) by the following
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computations:
() () =) ()
®2) \W¥2) [ &) \¥2) /&
:/A@-EJFV@-V%JFA@-A%M
/ Vs V1 — Ay A + Vb1 - Vs + Ady - Athyda
Qv¢2 V% —|—A¢)2 A¢1 V¢1 V%—Aqﬁl Awgd.r]

-
[QV¢2 Vb1 + A¢y - Atpy + ¢ - A’(/Jgdl’:|
()6,
(&)

Furthermore, Re <.A (Z) , (Zj)> = 0 for all (¢p,¢) € D(A), so A is dissipative. By using the
x

Lax-Milgram Theorem (Theorem 1, Section 6.2, [9]), we have the inverse A~! of A exists, thus we

define an operator
0 1

RX C D(A), AR =1, RA (;f) _ (;f) LV (1, 8) € D(A).

Therefore, iA is invertible and the resolvent set p(iA) of iA4 satisfies p(iA) NR # 0, so the spectrum
o(iAd) C R, consequently, iA4 is selfadjoint, as a result, A is skew adjoint. According to Stone’s
Lemma, we have the linear operator A generates a Cy-semigroup

{T(t) e B(X): te€[0,00)}.

Then

B.3 Proof of Theorem 3.3

Proof. We let T € (0,00) be taken to be specified below. Because A, defined by (3.4), gener-
ates a strongly continuous semigroup (Cop-semigroup) {T'(t) € B (L*(Q) x H2(Q)) : t € [0,00)}, and
(G (0)](t) = —Brw(t) + 62] 2 + B, (61 — 1), we introduce a nonlinear operator ® on Z(7T') by

(5, @)] () == T(1) (fi@> + /0 t {T(t _s) ([G(@)](S{)* ﬁpf‘(s)> } ds, Vtel0,T]

Wo

‘We notice that

According to Lemma 1.3 of Chapter II in [6],

T(t) (”0> € D(A), Vte[o,T).

Wo

Since (9, w) € Z(T), @ € C([0,T]; By (to, 7)) such that G(w) + B,u € C([0,T]; H*(12)), hence

([G(zb)](t)o + ﬂ,,a@)) ’ /Ot {T( b8 ([G(@)](s)o + ﬁpa(s)> } ds € L2(Q) x H2(Q).
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Therefore, @ is a nonlinear operator which maps Z(T) into C ([0, T]; L*(Q) x H2(Q)).
We next show that there exists a unique mild solution (7, w) € Z(T) of the semilinear evolution
equation (3.11) which is a fixed point of ® on Z(T).

We denote by Mo = sup ||T(t)|5(L2(0)xH2(0)) an operator norm of {T'(t)},, ., on the space
te[0,00) -

L2(2) x H2(Q). For given @ € C ([0,T); B2 (g, 1)), if (01,101), (¥2,2) € Z(T), then
[G(01)](t) — [G(2)](t) € H3(), V t € [0,T). By using the estimate (2.7) of Lemma 2.2, we obtain

tes[up [[® (01, 01)](t) — [(D2, W2)] (D) | L2y x 112 (02)
~w P o) ([G@DI(s) + Bpuls) — [G(w2))(s) = Bpals) ;o
_tGS[O,%’] /o Tt =) ( 0 > a L2(Q) x H2(Q)

<TMy sup |[[[G(w1)](t) = [G(@2)](t)]] 12
te[0,T]

<T'My sup [[[G(w01)](t) — [G(@2))() | p2(r)
te[0,T]

<TMoL¢ sup ||w1(t) — W2(t)] g2 (q)

te[0,7]
01(t) — 02(1)
1 () — (1)
Because {T'(t) € B (L*(Q) x H2(Q)) : ¢ > 0} is a strongly continuous semigroup, according to the

definition of strong continuity, for (9g,wo) € D(A) and given constant r € (0, 20) there exists
0o = 0o(1) > 0, such that if 0 < t < 4,, then

<T'MyL¢ sup (B.1)

te[0,T)

L2(Q)x H2(Q) '

0] 0] T
0< HT(t) (?0) - (710) << (B.2)
wo Wo /|l L2y xmzi) ~ 2
Since 7 € (0, 55) and C = C(1) is a constant, §, depends on £ and ©, i.e. §, = do(k, Q).
As @ € C([0,T); By (tig,r)) and (vl,wl) € Z(T), then 0(t) € LQ(Q) b1 (t), a(t) € H2(Q),
Vtel[0,T], and sup |[a(t) — dol f2(qy < 7 thus [G(@1)](t) + Bpu(t) € Hz(Q), YVt €[0,T]. Because
t€[0,T]
Go = G(wp) + Bplio € H*(2), the inequality (2.8) of Lemma 2.2 implies
sup (e, a0] ) - (1)
te[0,7] Wo/ (| L2 () x H2(02)
~ ~ t ~ ~
[0 () () [ oo (906 TN
te[0,T] Wo Wo 0 L2(Q)x H2(Q)
%o %o
< s [z ()~ () Ty |Gl
t€[0,T] Wo Wo/ |l L2(Q)x H2(9) LA@)
+TMy sup |[[G(w1)](t) — G(@o)l2(q) + TMo sup a(t) — ol 2 ()
t€[0,T] t€(0,7]
< sup ||T(t) (11()) — 110) + TMy ||Gol| 72
te[0,T] Wo Wo/ |l 2(@)x H2(9) 1ollr2(a
+TMy sup |[[G(w1)](t) — G(@o)ll g2y + TMo sup |[|u(t) — toll g2 (q)
te[0,T] te[0,T]
< sup ||T(¢) (110> - (110> + T M, (||Goll +(Lg+1)r). (B.3)
te[0,T) Wo Wo /| L2 ()= H2 () ( D )
For fixed small r € (0 %) then there exists a number Ty > 0,
f ! o
Tp = in {50, TN 2M0 [(LGH)HHCHGOHHQ Q)} } (B.4)

such that for every T € (0,Ty), it follows that

(o]0 ()

Wo

<r

i )

L2(Q)x H2()

sup
te[0,T]
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o o 1
sup [|[®(1, w1)](t) — [@(D2, Wa)](t)|| L2 () x 2 (0) < 5 sup
t€[0,7) t€[0,77]

( 1(t) — V2(t) )
w1 (t) — wa(t)
Hereby ®(01,w1) € Z(T) for (01,w1) € Z(T), ®(v,w) is Lipschitz continuous on the bounded set
Z(T) with Lipschitz constant smaller than or equal to %, and ®(0,w) is a contractive mapping of
Z(T) into itself.

According to the Banach fixed point theorem, for each T € (0,Tp), there exists a unique fixed
point (o1, wr) € Z(T), such that (o1, wr) = ®(dr,wr) for given @ € C ([0, T); By (G, 1)).

Hence, (07, wr) € Z(T') is the unique mild solution of the semilinear evolution equation (3.11)
on [0,7], and (0, wr) satisfies the integral formulation (3.12). Due to the uniqueness of the fixed
point, we set (0,w) = (U7, wr) and note that (Or,wr) is the restriction (9|j, 1), W|j,r7) € Z(T) of
(0,w). As a result, the assertion is proved. O

L2(Q)x H2() '

B.4 Proof of Corollary 3.4
Proof. Take 0 <t <t+h <T. Equation (3.12) leads to

(55 ; 1;(( ))) =T(t) {T(h) (5;; ) - (:J% )] + /O hT(t+ h—s) ([G(ﬁ))](s)o + ﬂpa(s)) ds

) /OhT(t "y <w0> s Oh T+ h—s) ([G(wn(s) + Bpﬂ(S)) ds

0 0
L o) ([G@)](s +h) = [G(@)](s) + Bpla(s +h) —a(s)]
+/OT(t )( ) )d (B.5)
Notice that
Mo = sup |T(t)lpr20)xm2(0)) HA <§0> < [I(@o, wo) | p(ay - (B.6)
te[0,00) Wo /| L2 ()= H2 ()

For T € (0,Tp) and @ € C ([0, T); By= (4, r)), the semilinear evolution equation (3.11) has a unique
mild solution (0, w) € Z(T'), by using the estimate (2.8) in Lemma 2.3, we have

<[G(w)](t) + Bpﬂ(t)>

sup

< sup [[[G(@)](t) + Bpti(t)]] 2
te[0,T]

L2(Q)xH2(Q)  t€[0,T)
< sup [[[G(w)](t) — G(@o)| fr2(q)

t€[0,T

0

+ Bp sup [[a(t) — ol g2(q) + [|Goll 2 (q)
te[0,T)

< (Le + 1)1+ [|Goll gz
K (LG + 1)
< T + ||G0||H2(Q) . (B.7)
Here Lg is given by Lemma 2.3 and Gy = G (o) + Bpiio € H(Q).
Moreover, u(s + h), a(s), w(s + h), w(s) € Hf( ), VO <s < s+h <t <T, therefore,
(G@)](s + h) + Byals + h) — [GD)|(s) — Byals) € HA(Q).
Since @ € C1 ([0, Tp); L*(2)), then, V T € (0,Ty),

t 1
sup [ s ) = 66 |y ds <To - sup [ (s o) a0 do
te(0,7]J0 0<s<T, 0

0<s+ch<T

<Tph ||ﬂ||Cl([07To);L2(Q)) )

32



According to inequality (2.6) of Lemma 2.3, we have

T(t — ) ([G(@)](S +h) - [G(U?)]E)S) + Bplu(s + h) — ﬁ(S)]) ds

L2(Q)x H2(£2)

4@/n (s +h) — [G@)](5) + Bylia(s + h) — als)] | (g ds

<M0/ Bp lla(s + ) = a(s)ll 2oy + NG (@)](s + h) = [G(w0)](3)]| g2y ds

(s +h) - 17(8))

t ~
~ v
<
<hMofBpTo l[all o1 o, 10 );22(0)) T MOLG/O w(s + h) — w(s)

ds. (B.8)
L2(Q) x H2(Q)

Combing (B.5), (B.6), (B.7) and (B.8) gives

|G =0l (o +1)

< hMo || (%o, Wo)l| pay + hMo (20 T ||G0||H2(Q)>

2(Q)x H2(Q)
+ hMoBpTo ||| o1 0,712 ()

et [ (a6 TH )

~ o~ w(L 1 ~
Set Vo = 1@, @0) | pay + (255 + 1Goll wa(ay ) + BoTo liilon o, 702
Gronwall’s inequality then implies that

(23 =50)

Therefore, (3.13) holds for all h € (0,T] by setting Ly = MV, (eMolcTo) O

ds.
L2(Q)x H2(Q)

< MoV, (eMotaTo) p,
L2(Q)x H2(Q)

B.5 Proof of Corollary 3.5
Proof. Note that

t
sup / [a(s +h) = a(s)ll 2 ds <To  sup  [la(s +h) —u(s) 12(q)
te[0,T]J0 0<s<s+h<T

<To sup [a(s+h) —a(s)ll gz(q)
0<s<s+h<T

<Toh® [t o (jo,1);12(02)) - (B.9)
According to (B.5), (B.6), (B.7), (B.8) and (B.9), and for 0 <t <t+h <T, h € (0,T],

(t + h) — o(t) - . i
H (w(t ) — a) < hMo [|(%0, @o)ll pay + h*MoBpTo [t e 0,74 1120

L2(Q) x H2(£2)

k(Lg+1 - -
+ hMy <(2GC) + [|G(wo) + BPUOHH?(Q))

t ~
(s + h) —0(s)
MyL
Mo G/O < B(s + h) — a@(s)
Set Py = % + |G (o) + Bpiiol| g2 (g, and Gronwall’s inequality then implies that

[Eaesty

ds.
L2(Q)x H2(Q)

< (eMotaToy Mg {ll(@Oa@O)HD(A) + PO} h

L2(Q)x H2(Q)
+ (MBI Moy To [l e 0,72 (52))
::Ilh + I2ha'
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Note that
Ik < (M0ET0) Mo { (5o, @0) | pay + Po } To R,
and

IQ eMOLGTO

IN

MoBpTo |[all e 0,1 )12 (0

MoLgTy

IN

e MoBpTo (||ﬂ = Uoll g (jo,1);m2(02)) T ||ﬂ0HH2(Q))

( )
( )
(M2 Moy Ty (v + ol oy
( )

IN

K

MoLaTo) \fo B T, (20 - ||110||H2(9))

IN

Set LU = (eMoLcTo) MO {"(50’w0)||D(A) + Po} Tol_o‘ + (eMoLcTO) MoﬁpTo (% + H’&’OHH2(Q)) and
Ly is a Lipschitz constant depending on «, To, &, €, By, Br, [[Goll g2(q): [[@oll r2(q), (G0, o)l p(ay

and Mo = sup [|T(t)llg(r2(0)x r2(9))-
te[0,00)

Therefore, (3.14) holds for all h € (0,7T]. O

B.6 Proof of Theorem 3.6

Proof. Let T € (0,Tp), Go = G (W) + Bplip and (T, w) be the mild solution of the semilinear evolution
equation (3.11) defined by (3.12). Take @ € C ([0, T]; Bz (tio, 7)) NCL([0,T]; L?(Q)) to be given such
that @'(t) € L?*() is uniformly continuous for all ¢ € [0, 7.

We first prove the linear non-autonomous problem

() - (§) 4 @) oo (M)
can be solved for ¢ € [0,7). Here
(H(@)](s) = m = [G'(@(s))]a(s) = [G'(w)q](s), s €[0,1]. (B.11)

We define a nonlinear operator ¥ by

U C([0,T);L*() x H2(Q)) — C ([0, T]; L*(Q) x HZ(Q)),

wial e =10 () +a(R))+ [ 1e-s (O FHTE) 4

For any (p1,q1), (P2,G2) € C ([0,T); L*(Q) x H2(Q)), w € C ([0,T]; H2(2)) , then

Hi) — Hld) = hfff;} G — @] = G (@) (1 — a2) € C ([0, T): H2(Q)) .

Hence, according to the estimate (2.9) of Fréchet derivative G’ (w) ¢ from Lemma 2.3 and the defini-
tion of T in Theorem 3.3, ¥ is a contractive mapping on C ([0, T]; L*(Q2) x H2(Q)) because

sup |[[W (p1, )] (£) = [¥ (P2, 32)] ()| L2 (@) 112 ()

te[0,T]
/t T(t—s) ([H((II)](S) - [H(Qz)](s)) s
0

= sup 0

t€[0,T)

<T sup IIT(t—S)HmLz(Q)tz(m)ts[lépT]II[H(dl)](t)—[H(dz)](t)llmm)
€lo,

0<s<t<T
(151(75) - 252(75))
Q1 (t) — ga(t)
According to the Banach fixed point theorem, for any @ € C ([0, T]; By (i, r)) NC* ([0, T]; L2(Q2))

, T
there exists a unique fixed point (5, §) € C ([0, T]; L*(Q2) x H2(Q)), such that (p, §) = ¥(p,§). Hereby,
the R-linear non-autonomous problem (B.10) can be solved for ¢ € [0, T].

L2(Q)x H2(£)

- - 1
<TMoLa sup [|41(t) = @(t)ll 20 < 5 sup
te[0,T) te[0,T]

L2(Q)x H2(£)
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We next prove that (p, ) is the time derivative of the mild solution (0, w).
Let 0 <t <t+h <T for some h € (0, 7], equations (3.12) and (B.10) imply that

p = (ot m - ) - (i)

_ T(t)% (T(h) —I) (g)%) -T(t)A (g()))

[y (FUCCON 1)~ (C@NEI) = @) o
Y A e S P

Let

We initially notice that

lim HE(l) t)
h—0t

< lim M,
L2(Q)xH?(Q) h—0t

rr0-0(5) -4 (z)

= lim Aq(h) =0,
h—0t

1t . (Go er
3 oo (5] ()
Because G(w) € C([0,T]; H*(2)), u € C ([0, T]; H2(£2)), then
lim  sup [[[G(@)](s) = [G(w)}(0) + Bp(a(s) = @(0))] 2(q) = O,

and

h—0+ 0<s<h
hence

hhj& B (k1) L2(Q)x H2(Q)
~hm 1L o (16G@N(s) +Byas\ gy ) (Co
" h/ { e )< 0 >}d T(t)(o) L2(Q)x H2(Q)
— im w)](s) — G(wo) + Bp((s) — o) 5

hLo+ h/ { ( 0 )}d L@y (@)

- e _ o ([G@)](s) = G(wo) + Bp(a(s) — to) s
<h1ﬁ0+ My h/o {T(h )< 0 >}d S
< lim Mo B, [[G(@)](s) = G(wo) + Bp(u(s) — o)l 20

= lim, Mg sup [[[G(@))(s) — [G(@)](0) + By(a(s) — @(0))|l g2 (0

0<s<h
= lim As(h) =0.
h—07+
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Define

Gp(t,h) = [G(@)] (t + h) — [G(@)] (t) — [G"(D)] (¢) - [@(t + h) — D(D)],
B (h,t) = OtT(t —s) flLGDO(S’h)> ds,
@t e [ Tt —s () {pA@(s +h) —@(s)} = ()}
El (h,t).—/OT(t )( plots )d,
Emew:AzUt®<@&im@+hn)M@} W“”)d&

We then write
E® (h,t) = E® (h,t) + ES (h,t) + E ().

Hence
| 00 _ ‘ /tT(t 8 (5p {Flats +h) —a(s)] - ﬂ’(s>}> ds
ol @xar@ || Jo 0 L2(Q)x H(2)
w(t+ h) — u(t
<ToMoB,  sup a(t+h) —at) @ (t)
0<t<t+h<T h L2(Q)

::76A4bﬁp sup
0<t<t+oh<T
0<0<1

=ToMoBy  sup @' (t+oh) =@ ()]l 20
0<t<t+oh<T
0<0o<1

:=A3(h) =0, as h — 0T,

1
%/O % [a(t + oh)]do — @' (t)

L2(9)

since @ € C ([0, T]; By (tio, 7))NC* ([0, T]; L2(2)) is given such that the time derivative @'(t) € L?(2)
is uniformly continuous for all ¢ € [0, T]. Using the bound estimate (2.9) of Fréchet derivative G’ ()
from Lemma 2.3 again gives

|87 )]

L2(52)><H2(Q) OLG/ 1 E (R $)ll £z (0) x 2 () d5-

Because Gp(t,h) € H?(2). The estimate (3.13) of Corollary 3.4 implies the function w is Lipschitz
continuous with respect to t € [0,7]. Employing this fact and the limit (2.10) of Lemma 2.3 gives

| 1)
L2(Q)x H2(Q)
_oMo / [G'(@(t) + Tl (t + h) —@(t)]) — G'(@(1)] [@(t + h) —@(t)] dr
te[0,T) 0 H2(Q)
t+hefo,T]
< Hotolvh / @)+ 7+ by — (0] - O () dr
0<t<t+h<T ||Jo B(H2())
=ToMoLy sup |G"(@(t) + T[@(t + h) — @(t)]) — G(D() | 5(ar2(a))
OSEIET

:=A4(h) = 0, as h — 0.

Summing up, we have shown

t
IEh )l 1200y xm2(0) < A1(h) + Az(h) + As(h) + As(h) + MOLG/O IE (R )l L2 ) x 12 (02) d5-

Gronwall’s inequality thus implies the inequality

1E(h, )l p2(0)x m2(0) < (A1(h) + A2(h) + As(h) + Au(R)) etMole
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which holds for ¢ € [0,T]. Letting h — 07, we then deduce that the (©,w) is differentiable from the
right and the right derivative of (0, W) C01nc1des with (p, §). Because (p, ¢) is continuous on [0, T, by
using Lemma 2.7, we conclude (3, @) € C* ([0,T]; L*(2) x H2()). As @ € C([0,T]; By (i, 7)) N
C! ([0, T); L3()), then (G (@) + Bpu,0) € C* ([0,T]; L*(2) x H2(?)). By Lemma 2.6, the mild
solution (¥, w) , defined by (3.12), uniquely solves the semilinear evolution equation (3.11) on [0, 7],
(0,) is a unique strict solution of semilinear evolution equation (3.11), and

(5.) € C ([0, T): HA(Q) x HAQ)) 1 C* ([0, T): L3(Q) x HX(®) ¥ T € (0,Tp).

C Proof of Lemma 5.5

Proof. Let T € (0,Tp). Recall that C = C(f) is a constant which may vary from line to line
but depends on 2 only. From the discussion of the graph norm of the linear operator P* and
€ C*([0,T); By=(tg,r)), then @ € C ([0, T]; By2 (o, 7)), 4(0) = g € D(P*).

According to Theorem 3.3, (0,w) € Z(T') is a unique mild solution of the semilinear evolution
equation (3.11) for all 7 € (0,45). Here k = ;r&_lg Wo(x) + O2. Thus from Corollary 3.5, if & €

2C
Ca ([O,T};BH2(’EL(),7“)).
(0,w) = (v(a),w(a)) € Z(T)NC* ([O,T] (L) x HE(Q)) .

Recall ug = g + 61, vog = Vg, wg = Wo + 02, u =u+ 61, v =0, w = W + O, and note that

v(u) =v(a+60;) =0(a), wu)=w(@+0)=wa)+ 0.

Thus
it we CY0,T); Bgz(ug, 7)), (C.1a)
then (v,w) € C* ([0,T]; L*(Q) x H3(Q2)) N {C ([0,T]; Brz(vo,r) x Byz(wo, 7))}, i.e.  (C.1b)
o004+ 1) — o)y < Lok, e+ ) — w0l sy < Loh (C19

Hence

F (i) = %v (W@ +00)Va) - —(a+6:) € C° (0,71 ().

Following these facts, we are going to show that the assertion (5.19) of Lemma 5.5 holds. ~
Let h € (0, 7] be such that 0 <t < t+h < T. Recall that |[u(t)||f2(q) < C1, [[u(t + 1)l 20y < Ch,

lo(®)ll 2y < Coy lo(t + B) L2y < Co, IIw(t+ h)||Hz @ <C.

||w(t)||H2(Q) S C. Here C = ||w0||H2(Q) + 2C’ ||U0HH2 () + 20, 2 = HU()HLQ(Q) + %
Because H?() is an algebra, that is estimate (2 4) of Lemma 2.2, and estimates (3.14) of Corollary
3.5 and estimate (C.1lc) are satisfied, we obtain

[Tw(t + W)™ = [w(®] || 2 gq) < CELUR®, [[lw(t + )P = @) 12y < 3C?Lyh®.  (C.2)
Similarly, for u from Corollary 3.5 and (C.1a), we get
[t + )2 = ]| o ) < 201 [l e (0,17), 2 (02)) 1™ (C.3)
The arguments of the proof of Lemma 2.4 give that (5.19) of Lemma 5.5 holds:

IE(@)] (& +h) = [F@)] ()l p2(q) < LaLoh® + Laluloe (o,ry:m2 )b (C.4)

Here L4 is a constant depending on C', C, C, Cy and Cb.
We next prove the assertion (5.20) of Lemma 5.5.
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For g € C*([0,T); B2 (to,7)), t € [0,T], we note w(t) = [w(w)](t), v(t) = [v(w)](t). From the
definition (5.4) of the Frechét derivative of F'(@) on @ at ¢t and the definition (5.6) of P*q(t), we have,
for h € (0,T] such that ¢t + h € (0,77,

[F'(@)q] (t + h) — [F'(@)q] (t) = P" (q(t + ) — q(t))
1

“wim {lw(t + h)Put + W)Vq(t + h) + [w(t + )] [Vu(t + k)] q(t + h) }

oV L OP Va0 + [P [Vuo)] at)

tgmargy ¥ (Tl W) [+ P e+ )}

g ¥ {(TOP) Pl el

LAY (e + PV ) - S gt )

Y (wOPVOP) + Dt

et B )l D)

OO -0l ),

ooV {ufuVa(t + )+ w (Vo) gt + 1)}~ g+ h)

oV {udugValt) + wf (Vo) ()} + 22 a(0) (©5)

Because
ot + R)Pu(t + 1) — [P u(t)]| o < Nt + R = @] o Tt + )l sy
0P| gy It + 1) = u(t) 1120
<h*3LyC?Cy + h*C® [l g 0. 1y:2(02)) (C.6)

the algebraic properties of H2(f2), i.e. Lemma A.1, inequality (A.2) of Corollary A.2 and the assertion
(2.4) of Lemma 2.2 imply

[([wt+ )]~ = [w®)] ™) V- {Tw(t + W)Pult + 1) Va(t + )} 2
<2C [[fw(t + W)™ = [w®] 7| o g [t + B)Pult + 1) HHQ(Q la(t + Rl g2 (q)
<h*20C}LyC*Cy s gl 1220y » (C.7)

telo,T

and

()71 - { (fw(t + B)Put + h) — [w()]u (t))Vth}Hm)
<20 [|[w ()] | oy 0t + B)Pult + B) = [w(@)Pu(®)] ;o gy lalt + 1)l 20

<pe [6001LUO2(31 +200,C? ||u|\ca([OyT];H2(Q))} s 1a(t) | g2 - (C.8)
€10,

Hence, we deduce the estimate:

‘ ﬁv A{[w(t + h)Pult + h)Va(t + h)} — ﬁt)v A{Tw®)Pu(t)Va(t +h)} .
<[(lw(t + )" = [w(@)] ) V- {[wlt + b)Pult + BVt + 0| 2 g
+ | [w@) 7 - { (ot + W)Pu(t + h) = [w(t)*u(t) Va(t + )} 2,
<h*C [201 LyC3Cy + 6C, Ly C*Cy +2C,CP HU”(J@([O,T];H"‘(Q))] tes[léPT] @)l 2y - (C.9)
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According to the Holder inequality and algebraic property of H?(), i.e. Lemma A.1 and estimate
(C.6), we obtain

IV (o(®FPu®)} - {Va(t + h) = Va@®)}| 12
<1V (@ Pu®)) || gy IV el + 1) = Va®) | Lgq)
<C ||V ([P u®) | 110 1Vt + 1) = Va©) 11 o
<C|[w@)Pu()]| 72 0 gt + ) = a(O)]] 120
<Clw(®)lIzr2 (0 ()l g2 0y gt + 1) = 4|2
<h*CC3Cy lall e o, 1712 () - (C.10)

and

{V ([w®Pu(®) =V (wiuo) } - {Va(t +h) = Va®)}] 2
< ||V ([w®)Pu(t) — V (wduo) | yu gy IValt + 1) = Va®)l| s
<C|V ([w®)Pu(t) — ¥ (w§uo) || ;11 g IValt + ) = Va(t) | 71
<C || u(t) = wuo| g2 gy 9t + 1) = a(8) 11200
<T°C [38LyCCy + C* lull ooz | 9t + 1) = a(8) 2y
<h*TC [3LUC251 +C° HUHC"([O,T];HQ(Q))} g/l ga (o, 1y:12 (2)) - (C.11)

Combining (C.10), (C.11) with (C.2) gives the estimate:

H{ (Pu() - v (wou0>} [Va(t + h) — V(1)
wo L2(@)
<Clw®)] ™ = wg | oo IV ([P ult)) - {Valt + k) = Va®)}]] 12

+CHwO_1HH2(Q) H{v ([w(t)}gu(t)) \ (wouo)} {Vq(t+h) Vq(t)}HL2(Q)
<hT*C (C3LuC®Cy + 3Ly CCr [[wo™ | o gy ) Il o, 1120

RO TCC? [Jwo ™| o ) Il oo, 77:720520) Nl o o,7: 112062y (C-12)
Hence
[ ([w(®)]u(t) — wiuo) (Ag(t + h) — Aq(t) HLQ(Q)
<C|[fw(®)Pu(t) — wiuo|| ;o ) 124t + ) — Aq(t)|] 12 (e

<C ([l = W] sy 1O 2y + 18) = woll s ey 165 oy ) N0t + ) = a2
<C [w(t) = woll 2y (Iwoll =y + C) Cr llat +h) = a(t) 2y

+C[lu(t) = woll 20y Ilwoll3zz ey gt + 1) = a(B)l]g2(cr

<h*T*LyC <||w0||H2(Q) + é) Ci lall o 0,712 (02))

+hTClwollFr2 0y l1ullca 0,03, m2(0) Ndll oo 0,77, 2 (52)) - (C.13)

Denote by V; a constant which is a combination of C, Cy, C, Cy, Ly and ||w(f1 . Therefore,

1220
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the triangle inequality, (C.9), (C.12) and (C.13) imply the estimate
LG {jut + BPult + )Vt +h)} — ——
w(t + h) w(t)

1 1
— —V  {wiueVq(t+h)} + —V - {wiuoVa(t)}
Wo Wo

V- A{lw®)Pu(t)Va(t)}

L2(Q)

1
oV W @P a0 Va(+ 1)}

L w 3u _i w3u0 ) B
+'< (t)v{[ () u(t)} V( 0 )) (Vq(t+h) — Vq(t))

1

S’w(tm)

V- {[w(t + B)Pult + h)Vg(t + h)} —

L2(Q)

+ | (fw®Put) - wouo)(Aq(t+h) Aq(t)] L2 g

<h®Vi sup. ||Q()||H2(Q)+haV1 HUHCQ([O,T];H"’(Q)) sup_|q(t) [l 20
telo,T te[0,T

L2(©)

+h TV, ”uHCﬂ([O,T];HZ(Q)) lall ca o,y m2(0)) + R T Va lldll oo, 735 12(02)) - (C.14)
Similarly,

e 0

1 1
— —V - {wiq(t+h)Vue} + —V - {wiq(t)Vuo }
wWo Wo

V- {[w(t +Rh)2q(t + h)Vu(t + h)} — V. {[w(t)]gq(t)Vu(t)}

L2(Q)

<h"Vy sup a1 g2y +h*Va [Jul
telo,

+ROTV, |

ca([0,T);H2(Q)) teSEéI)T] gl zr2(2)

dll oo, 20 T T VAl oo,y 52 (0)) 19l co (0, 77: 772002 - (C.15)

Set C3 = C [ClLU + éQC%LU}, Cy = CC, [LU + ||U0||L2(Q) HwalHHz(Q)}. The triangle inequality,
algebraic properties of Sobolev spaces, i.e. (A.1l) of Corollary A.2, (2.4) of Lemma 2.2, and the
assertion (3.14) of Corollary 3.5 imply the estimate

qa+m+3—mw——ﬂa+m+—ﬂm

|-
w(t) Wo

w(t+ h)

<hoCj4 sup gl 2
L2(Q) t€l0,T

+hoTCy ||Q||c([0,T];H"‘(Q)) '

Denote by V5 a constant which is a combination of Cy Cy, C, C, Cy, Cs, Ly, Lw, Ly and Tol_o‘.
We combine (4.10), (4.18) in Corollary 4.3, (3.14) in Corollary 3.5 with above arguments for estimate
(C.14) and similarly deduce
3 #V At + h)]P[w (u)g](t + h)Vu(t + h)]*}
2||w(t+ h)
1

_ MV . {[w(t)]2[w’(u)q](t)V[u(t)]Z}

L3(Q)

<hAT*Va llall g o, 712 (02)) + P V2 [1 + Hu||ca([o,:r];H2(Q))] tes[léPT] @ 2 () »

[w' (u)g](#)
2lw®))?

<h*Va [1+ [Jullco (0,112 (02))) S gl rr20) + h*T*Vallall co o, 7772 () -

V{ (t+Rh)PV[ut+h)*} —

H el V- {lw®PVu®)]}

t+h

L2(Q)
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and

H _w(t+ W@+ R) — vt £ /@R

[w(t + n)J?

v(®)[w’ (u)g)(t)

w(t)[v' (u)g](t) i u(t)

* o

L2(©)

<h®V, [1 + Hu||0a([O,T];H2(Q))] tes[%pT] gl 20y + TR Va lldll co o, 1712 () -

Consequently, by setting Lg =V, + Vo + Cs + C~'4, we obtain

IIF"(@)q) (¢ + h) = [F'(@)q) (t) = P* [q(t + h) = a(®)]]| 2 (0

<h®Lp sup |q(t)|g2eq) +h*La [ull oo r;m200)) SUP_ a0l 12 (0)
t€[0,T) t€[0,T]

+h*T*Lp |4l ca (o, 17:12(0)) T MT LB |l ca 0,77, 120 19l co 0,17 12 ) -

Hereby, (5.20) is proved and this concludes the proof of Lemma 5.5. O
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