# The magnitude function: <br> Spectral geometry and <br> fractional-order boundary problems 

Heiko Gimperlein
Heriot-Watt University, Edinburgh
(joint with Magnus Goffeng and Nikoletta Louca)

Oldenburg Analysis Seminar, 3 June 2021

## Examples of "size"

A good notion of size satisfies:

$$
\begin{gathered}
\operatorname{Size}(A \cup B)=\operatorname{Size}(A)+\operatorname{Size}(B)-\operatorname{Size}(A \cap B) \\
\operatorname{Size}(A \times B)=\operatorname{Size}(A) \operatorname{Size}(B)
\end{gathered}
$$

We shall interpret these conditions very loosely...

## Examples of "size"

A good notion of size satisfies:

$$
\begin{gathered}
\operatorname{Size}(A \cup B)=\operatorname{Size}(A)+\operatorname{Size}(B)-\operatorname{Size}(A \cap B) \\
\operatorname{Size}(A \times B)=\operatorname{Size}(A) \operatorname{Size}(B)
\end{gathered}
$$

We shall interpret these conditions very loosely...

## Examples of size-like notions

- Cardinality of set
- Dimension of vector space
- Measure of a measurable set
- Euler characteristic of topological space
- Intrinsic volumes of convex set (volume, surface area, total mean curvature, ...)
- Capacity in potential theory / diversity of biological system
- Magnitude


## Examples of "size"

A good notion of size satisfies:

$$
\begin{gathered}
\operatorname{Size}(A \cup B)=\operatorname{Size}(A)+\operatorname{Size}(B)-\operatorname{Size}(A \cap B) \\
\operatorname{Size}(A \times B)=\operatorname{Size}(A) \operatorname{Size}(B)
\end{gathered}
$$

We shall interpret these conditions very loosely...

## Examples of size-like notions

- Cardinality of set
- Dimension of vector space
- Measure of a measurable set
- Euler characteristic of topological space
- Intrinsic volumes of convex set (volume, surface area, total mean curvature, ...)
- Capacity in potential theory / diversity of biological system
- Magnitude (Leinster '08)


Triangulated manifolds:
Euler characteristic
Homology theory

## Magnitude

Notion of size: How big is X ?
Leinster, Doc. Math. (2008)
Euler characteristic for enriched categories

## Elliptic PDEs

Semiclassical Analysis Geom. Measure Theory
$\rightarrow$ Geometry
Dim, volume, surface area, curvatures Barceló, Carbery, Amer J. Math. (2017) Gimperlein, Goffeng, Amer J. Math. (2021), + Louca (2021) Leinster, Meckes, survey article (2017)

## Outline of talk

What is the magnitude of the unit disk?


- What is magnitude?
- Magnitude of compact domains $X$ in $\mathbb{R}^{n}$ and manifolds
- Leinster-Willerton conjecture: geometry of $\mathcal{M}_{X}(R):=\operatorname{mag}(R \cdot X)$
- Technically: semiclassical analysis of a pseudodifferential boundary problem for $\left(R^{2}-\Delta\right)^{ \pm(n+1) / 2}+$ l.o.t.


## Magnitude of a matrix

Let $\mathcal{Z} \in \mathbb{R}^{n \times n}$. w weighting on $\mathcal{Z}$ if

$$
\mathcal{Z} w=\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right]=: \mathbf{1} .
$$

## Magnitude of a matrix

Let $\mathcal{Z} \in \mathbb{R}^{n \times n}$. w weighting on $\mathcal{Z}$ if

$$
\mathcal{Z} w=\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right]=: \mathbf{1} .
$$

## Definition (Magnitude of a matrix)

If $\mathcal{Z}$ admits a weighting $w$ and $\mathcal{Z}^{T}$ admits a weighting $w^{\prime}$,

$$
\operatorname{mag}(\mathcal{Z}):=\sum_{i=1}^{n} w_{i}=\sum_{i=1}^{n} w_{i}^{\prime} .
$$

Set $\operatorname{mag}(\mathcal{Z}):=+\infty$ otherwise.

## Magnitude of a matrix

Let $\mathcal{Z} \in \mathbb{R}^{n \times n}$. w weighting on $\mathcal{Z}$ if

$$
\mathcal{Z} w=\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right]=: \mathbf{1} .
$$

## Definition (Magnitude of a matrix)

If $\mathcal{Z}$ admits a weighting $w$ and $\mathcal{Z}^{T}$ admits a weighting $w^{\prime}$,

$$
\operatorname{mag}(\mathcal{Z}):=\sum_{i=1}^{n} w_{i}=\sum_{i=1}^{n} w_{i}^{\prime}
$$

Set $\operatorname{mag}(\mathcal{Z}):=+\infty$ otherwise.
Check: $\operatorname{mag}(\mathcal{Z})$ is independent of choice of weighting $w, \tilde{w}$ :
$\operatorname{mag}(\mathcal{Z})=\langle w, \mathbf{1}\rangle=\left\langle w, \mathcal{Z}^{T} w^{\prime}\right\rangle=\left\langle\mathcal{Z} w, w^{\prime}\right\rangle=\left\langle\mathcal{Z} \tilde{w}, w^{\prime}\right\rangle=\left\langle\tilde{w}, \mathcal{Z}^{T} w^{\prime}\right\rangle=\langle\tilde{w}, \mathbf{1}\rangle$

## Magnitude of a matrix

Let $\mathcal{Z} \in \mathbb{R}^{n \times n}$. w weighting on $\mathcal{Z}$ if

$$
\mathcal{Z} w=\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right]=: \mathbf{1} .
$$

## Definition (Magnitude of a matrix)

If $\mathcal{Z}$ admits a weighting $w$ and $\mathcal{Z}^{T}$ admits a weighting $w^{\prime}$,

$$
\operatorname{mag}(\mathcal{Z}):=\sum_{i=1}^{n} w_{i}=\sum_{i=1}^{n} w_{i}^{\prime} .
$$

Set $\operatorname{mag}(\mathcal{Z}):=+\infty$ otherwise.
Check: $\operatorname{mag}(\mathcal{Z})$ is independent of choice of weighting. If $\mathcal{Z}$ invertible, $\operatorname{mag}(\mathcal{Z})=\langle w, \mathbf{1}\rangle=\left\langle\mathcal{Z}^{-1} \mathbf{1}, \mathbf{1}\right\rangle=\sum_{i, j}\left(\mathcal{Z}^{-1}\right)_{i j}$.

## Magnitude of (finite) categories and metric spaces

If $\mathcal{C}$ is a finite category, we set

$$
\mathcal{Z}_{\mathcal{C}}:=\left(\# \operatorname{Mor}_{\mathcal{C}}(i, j)\right)_{i, j \in \operatorname{Obj}(\mathcal{C})} \quad \text { and } \quad \operatorname{mag}(\mathcal{C}):=\operatorname{mag}\left(\mathcal{Z}_{\mathcal{C}}\right)
$$


(Figure by T.-D. Bradley, arxiv:1809.05923)

## Magnitude of (finite) categories and metric spaces

If $\mathcal{C}$ is a finite category, we set

$$
\mathcal{Z}_{\mathcal{C}}:=\left(\# \operatorname{Mor}_{\mathcal{C}}(i, j)\right)_{i, j \in \operatorname{Obj}(\mathcal{C})} \quad \text { and } \quad \operatorname{mag}(\mathcal{C}):=\operatorname{mag}\left(\mathcal{Z}_{\mathcal{C}}\right)
$$

## Theorem (Leinster, original motivation for magnitude)

Let $\mathcal{C}$ denote a finite category and $B C$ its classifying space, then

$$
\chi(B C)=\operatorname{mag}(\mathcal{C}) .
$$

Similarly, mag recovers Euler characteristic of a triangulated manifold.

(Figure by T.-D. Bradley, arxiv:1809.05923)

## Magnitude of (finite) categories and metric spaces

If $\mathcal{C}$ is a finite category, we set

$$
\mathcal{Z}_{\mathcal{C}}:=\left(\# \operatorname{Mor}_{\mathcal{C}}(i, j)\right)_{i, j \in \operatorname{Obj}(\mathcal{C})} \quad \text { and } \quad \operatorname{mag}(\mathcal{C}):=\operatorname{mag}\left(\mathcal{Z}_{\mathcal{C}}\right)
$$

## Theorem (Leinster, original motivation for magnitude)

Let $\mathcal{C}$ denote a finite category and $B C$ its classifying space, then

$$
\chi(B C)=\operatorname{mag}(\mathcal{C}) .
$$

If $(X, d)$ is a finite metric space, category theory tells us to set

$$
\mathcal{Z}_{X}:=\left(\mathrm{e}^{-d(a, b)}\right)_{a, b \in X} \quad \text { and } \quad \operatorname{mag}(X):=\operatorname{mag}\left(\mathcal{Z}_{X}\right) .
$$

## Magnitude of (finite) categories and metric spaces

If $\mathcal{C}$ is a finite category, we set

$$
\mathcal{Z}_{\mathcal{C}}:=\left(\# \operatorname{Mor}_{\mathcal{C}}(i, j)\right)_{i, j \in \operatorname{Obj}(\mathcal{C})} \quad \text { and } \quad \operatorname{mag}(\mathcal{C}):=\operatorname{mag}\left(\mathcal{Z}_{\mathcal{C}}\right)
$$

## Theorem (Leinster, original motivation for magnitude)

Let $\mathcal{C}$ denote a finite category and $B C$ its classifying space, then

$$
\chi(B C)=\operatorname{mag}(\mathcal{C}) .
$$

If $(X, d)$ is a finite metric space, category theory tells us to set

$$
\mathcal{Z}_{X}:=\left(\mathrm{e}^{-d(a, b)}\right)_{a, b \in X} \quad \text { and } \quad \operatorname{mag}(X):=\operatorname{mag}\left(\mathcal{Z}_{X}\right)
$$

## Examples

- One point space: $\operatorname{mag}(\cdot)=1$
- Discrete "metric" space $X: \operatorname{mag}(X)=|X|$
- (Complete graph) $N$ points, distance $R$ :

$$
\operatorname{mag}(\cdot \overbrace{\leftarrow R \rightarrow \cdot \quad \cdots}^{N})=\frac{N}{1+(N-1) \mathrm{e}^{-R}}
$$

## Example: a 3-point space (Simon Willerton)

Take the 3 -point space


- When $t$ is small, $\quad X$ looks like a 1-point space.
- When $t$ is moderate, $X$ looks like a 2-point space.
- When $t$ is large, $\quad X$ looks like a 3-point space.

Indeed, the magnitude of $X$ as a function of $t$ is:

(Slide by T. Leinster.)

## The magnitude function of a metric space

If $(X, d)$ is a finite metric space, we set

$$
\mathcal{Z}_{X}:=\left(\mathrm{e}^{-d(a, b)}\right)_{a, b \in X} \quad \text { and } \quad \operatorname{mag}(X, d):=\operatorname{mag}\left(\mathcal{Z}_{X}\right) .
$$

The magnitude function of $(X, d)$ is given by

$$
\mathcal{M}_{X}(R)=\operatorname{mag}(X, R \cdot d) \quad(R>0)
$$

## Observation

- $\mathcal{M}_{X}$ extends meromorphically to $R \in \mathbb{C}$
- $\mathcal{M}_{X}(R)=|X|+O\left(R^{-\infty}\right)$ as $R \rightarrow \infty$
- $\mathcal{M}_{X}(0)=1$


## The magnitude function of a compact metric space

$(X, d)$ compact metric space, $M(X)$ finite Borel measures on $X$.

$$
\mathcal{Z}_{X}(R): M(X) \rightarrow C(X), \quad \mathcal{Z}_{X}(R) \mu(x):=\int_{X} \mathrm{e}^{-R \mathrm{~d}(x, y)} \mathrm{d} \mu(y)
$$

A weighting measure $\mu_{R}$ is a solution to the equation $\mathcal{Z}_{X}(R) \mu_{R}=1$ on $X$.

## Definition / Theorem (Meckes)

Let $(X, \mathrm{~d})$ a positive definite compact metric space, i.e. $\mathcal{Z}_{A}(R)$ is a positive definite matrix for all finite $A \subseteq X$. Then

$$
\mathcal{M}_{X}(R):=\sup \left\{\mathcal{M}_{A}(R): A \subseteq X \text { finite }\right\}
$$

If $(X, \mathrm{~d})$ admits a weighting measure, $\mathcal{M}_{X}(R)=\mu_{R}(X)$.

## The magnitude function of a compact metric space

$(X, d)$ compact metric space, $M(X)$ finite Borel measures on $X$.

$$
\mathcal{Z}_{X}(R): M(X) \rightarrow C(X), \quad \mathcal{Z}_{X}(R) \mu(x):=\int_{X} \mathrm{e}^{-R \mathrm{~d}(x, y)} \mathrm{d} \mu(y)
$$

A weighting measure $\mu_{R}$ is a solution to the equation $\mathcal{Z}_{X}(R) \mu_{R}=1$ on $X$.
Explicitly for $X \subset \mathbb{R}^{n}, \mathcal{Z}_{X}(R) f(x):=\int_{\mathbb{R}^{n}} \mathrm{e}^{-R|x-y|} f(y) \mathrm{d} V(y)=g_{R} * f(x)$, where $g_{R}(x):=\mathrm{e}^{-R|x|}$. With $\hat{g}_{R}(\xi)=n!\omega_{n} R\left(R^{2}+|\xi|^{2}\right)^{-(n+1) / 2}$,

$$
\mathcal{Z}_{X}(R)=n!\omega_{n} R\left(R^{2}-\Delta\right)^{-(n+1) / 2}
$$

## The magnitude function of a compact metric space

$(X, d)$ compact metric space, $M(X)$ finite Borel measures on $X$.

$$
\mathcal{Z}_{X}(R): M(X) \rightarrow C(X), \quad \mathcal{Z}_{X}(R) \mu(x):=\int_{X} \mathrm{e}^{-R \mathrm{~d}(x, y)} \mathrm{d} \mu(y)
$$

A weighting measure $\mu_{R}$ is a solution to the equation $\mathcal{Z}_{X}(R) \mu_{R}=1$ on $X$.
Explicitly for $X \subset \mathbb{R}^{n}, \mathcal{Z}_{X}(R) f(x):=\int_{\mathbb{R}^{n}} \mathrm{e}^{-R|x-y|} f(y) \mathrm{d} V(y)=g_{R} * f(x)$, where $g_{R}(x):=\mathrm{e}^{-R|x|}$. With $\hat{g}_{R}(\xi)=n!\omega_{n} R\left(R^{2}+|\xi|^{2}\right)^{-(n+1) / 2}$,

$$
\mathcal{Z}_{X}(R)=n!\omega_{n} R\left(R^{2}-\Delta\right)^{-(n+1) / 2}
$$

The function $h:=\mathcal{Z}_{X}(R) \mu_{R}$ extends to $\mathbb{R}^{n}$, with $h=1$ on $X$.

## Theorem (Meckes)

$$
\begin{aligned}
\mathcal{M}_{X}(R) & =\frac{1}{n!\omega_{n} R} \inf \left\{\left\|\left(R^{2}-\Delta\right)^{(n+1) / 4} h\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}: h \in H^{(n+1) / 2}\left(\mathbb{R}^{n}\right), h=1 \text { on } X\right\} \\
& =\frac{1}{n!\omega_{n} R}\left\|\left(R^{2}-\Delta\right)^{(n+1) / 4} h\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}
\end{aligned}
$$

where $h \in H^{(n+1) / 2}\left(\mathbb{R}^{n}\right)$ solves

$$
\left(R^{2}-\Delta\right)^{(n+1) / 2} h=0 \quad \text { weakly in } \mathbb{R}^{n} \backslash X, \quad h=1 \text { on } X
$$

## The magnitude function of a compact metric space

$(X, d)$ compact metric space, $M(X)$ finite Borel measures on $X$.

$$
\mathcal{Z}_{X}(R): M(X) \rightarrow C(X), \quad \mathcal{Z}_{X}(R) \mu(x):=\int_{X} \mathrm{e}^{-R \mathrm{~d}(x, y)} \mathrm{d} \mu(y)
$$

A weighting measure $\mu_{R}$ is a solution to the equation $\mathcal{Z}_{X}(R) \mu_{R}=1$ on $X$. Explicitly for $X \subset \mathbb{R}^{n}$,

$$
\mathcal{Z}_{X}(R)=n!\omega_{n} R\left(R^{2}-\Delta\right)^{-(n+1) / 2}
$$

## Theorem (Meckes)

$$
\mathcal{M}_{X}(R)=\frac{1}{n!\omega_{n} R}\left\|\left(R^{2}-\Delta\right)^{(n+1) / 4} h\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}
$$

where $h \in H^{(n+1) / 2}\left(\mathbb{R}^{n}\right)$ solves

$$
\left(R^{2}-\Delta\right)^{(n+1) / 2} h=0 \quad \text { weakly in } \mathbb{R}^{n} \backslash X, \quad h=1 \text { on } X
$$

## Example

$X=[-1,1] \subset \mathbb{R} . \mathcal{M}_{X}(R)=1+R=\chi(X)+\frac{\text { Length }(X)}{2} R$.

## Geometry of the magnitude function

## Conjecture (Leinster, Willerton)

Let $X \subseteq \mathbb{R}^{n}$ be a compact convex subset. Then

$$
\mathcal{M}_{X}(R)=\sum_{k=0}^{n} \frac{V_{k}(X)}{k!\omega_{k}} R^{k}
$$

Here $V_{k}(X)$ is the $k$-th intrinsic volume of $X, \omega_{k}$ volume of unit ball in $\mathbb{R}^{k}$.
For $X$ a smooth convex body: $V_{n}(X)=\operatorname{vol}_{n}(X), V_{n-1}(X)=\operatorname{vol}_{n-1}(\partial X)$, $V_{n-2}(X)=\int_{\partial X} H \mathrm{~d} S, \ldots, V_{0}(X)=\chi(X)$.

Special cases:
$n=1: \mathcal{M}_{X}(R)=\chi(X)+\frac{\text { Length }(X)}{2} R$.
$n=2: \mathcal{M}_{X}(R)=\chi(X)+\frac{\operatorname{Perim}(\partial X)}{4} R+\frac{\operatorname{Area}(X)}{2 \pi} R^{2}$.
The conjecture was motivated by computational examples, the historical analogy with the Euler characteristic, and Hadwiger's theorem.

## Geometry of the magnitude function

## Conjecture (Leinster, Willerton)

Let $X \subseteq \mathbb{R}^{n}$ be a compact convex subset. Then

$$
\mathcal{M}_{X}(R)=\sum_{k=0}^{n} \frac{V_{k}(X)}{k!\omega_{k}} R^{k}
$$

Here $V_{k}(X)$ is the $k$-th intrinsic volume of $X, \omega_{k}$ volume of unit ball in $\mathbb{R}^{k}$.
For $X$ a smooth convex body: $V_{n}(X)=\operatorname{vol}_{n}(X), V_{n-1}(X)=\operatorname{vol}_{n-1}(\partial X)$, $V_{n-2}(X)=\int_{\partial X} H \mathrm{~d} S, \ldots, V_{0}(X)=\chi(X)$.

Consequences include: Inclusion-Exclusion principle

$$
\mathcal{M}_{A \cup B}=\mathcal{M}_{A}+\mathcal{M}_{B}-\mathcal{M}_{A \cap B}
$$

Conjecture true for $X \subset \mathbb{R}$
$X=[-1,1] \subset \mathbb{R} . \mathcal{M}_{X}(R)=1+R=\chi(X)+\frac{\text { Length }(X)}{2} R$.

## Leinster-Willerton conjecture: (Counter) Examples

Barcelo, Carbery 2017 prove the conjectured behaviour for $R \rightarrow \infty$ and $R \rightarrow 0$ :

## Theorem

Let $X \subseteq \mathbb{R}^{n}$ be a compact smooth domain. Then

$$
\begin{aligned}
& \mathcal{M}_{X}(R)=\frac{\operatorname{vol}(X)}{n!\omega_{n}} R^{n}+o\left(R^{n}\right), \text { as } R \rightarrow \infty \\
& \lim _{R \rightarrow 0} \mathcal{M}_{X}(R)=1
\end{aligned}
$$

## Leinster-Willerton conjecture: (Counter) Examples

Barcelo, Carbery 2017 prove the conjectured behaviour for $R \rightarrow \infty$ and $R \rightarrow 0$ :

## Theorem

Let $X \subseteq \mathbb{R}^{n}$ be a compact smooth domain. Then

$$
\begin{aligned}
& \mathcal{M}_{X}(R)=\frac{\operatorname{vol}(X)}{n!\omega_{n}} R^{n}+o\left(R^{n}\right), \text { as } R \rightarrow \infty \\
& \lim _{R \rightarrow 0} \mathcal{M}_{X}(R)=1
\end{aligned}
$$

Furthermore, they solve the magnitude PDE for $X=B(0,1) \subseteq \mathbb{R}^{n}, n=5$ :

$$
\mathcal{M}_{X}(R)=\frac{1}{n!\omega_{n} R}\left\|\left(R^{2}-\Delta\right)^{(n+1) / 4} h\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}
$$

where $h \in H^{(n+1) / 2}\left(\mathbb{R}^{n}\right)$ satisfies

$$
\left(R^{2}-\Delta\right)^{(n+1) / 2} h=0 \quad \text { weakly in } \mathbb{R}^{n} \backslash X, \quad h=1 \text { on } X
$$

The result is

## Leinster-Willerton conjecture: (Counter) Examples

Barcelo, Carbery 2017 prove the conjectured behaviour for $R \rightarrow \infty$ and $R \rightarrow 0$ :

## Theorem

Let $X \subseteq \mathbb{R}^{n}$ be a compact smooth domain. Then

$$
\begin{aligned}
& \mathcal{M}_{X}(R)=\frac{\operatorname{vol}(X)}{n!\omega_{n}} R^{n}+o\left(R^{n}\right), \text { as } R \rightarrow \infty \\
& \lim _{R \rightarrow 0} \mathcal{M}_{X}(R)=1
\end{aligned}
$$

Counterexample to Leinster-Willerton conjecture (Barcelo, Carbery 2017)
Let $X=B(0,1) \subseteq \mathbb{R}^{5}$ be the unit ball. Then

$$
\mathcal{M}_{X}(R)=\frac{R^{5}}{5!}+\frac{3 R^{5}+27 R^{4}+105 R^{3}+216 R^{2}+72}{24(R+3)}
$$

Not a polynomial. Also coefficients of $R^{k}$ wrong.
Willerton obtains similar rational functions for balls in odd dimensions.

## Asymptotic Leinster-Willerton conjecture

With M. Goffeng, we studied the magnitude PDE for general $X, n$ odd:

$$
\left(R^{2}-\Delta\right)^{(n+1) / 2} h=0 \quad \text { weakly in } \mathbb{R}^{n} \backslash X, \quad h=1 \text { on } X .
$$

Using Green's formula, for suitable boundary traces $\left.\mathcal{D}_{R}^{k} h\right|_{\partial X}$ of order $k$ :

$$
\begin{aligned}
\mathcal{M}_{X}(R) & =\frac{1}{n!\omega_{n} R}\left\|\left(R^{2}-\Delta\right)^{(n+1) / 4} h\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2} \\
& =\frac{\operatorname{vol}_{n}(X)}{n!\omega_{n}} R^{n}-\frac{1}{n!\omega_{n}} \sum_{\frac{m}{2}<j \leq m} R^{n-2 j} \int_{\partial X} \mathcal{D}_{R}^{2 j-1} h d S \\
& =\frac{\operatorname{vol}_{n}(X)}{n!\omega_{n}} R^{n}-\frac{1}{n!\omega_{n}} \sum_{\frac{m}{2}<j \leq m} R^{n-2 j} \int_{\partial X} \Lambda_{2 j-1}(R) 1 d S .
\end{aligned}
$$

The $\Lambda_{k}$ are components of an $m \times m$ Dirichlet-to-Neumann operator, a parameter-elliptic pseudodifferential operator on $\partial X$, meromorphic in $R$. Analytic Fredholm theory and an explicit symbol computation show:

## Asymptotic Leinster-Willerton conjecture

$$
\mathcal{M}_{x}(R)=\frac{\operatorname{vol}_{n}(X)}{n!\omega_{n}} R^{n}-\frac{1}{n!\omega_{n}} \sum_{\frac{m}{2}<j \leq m} R^{n-2 j} \int_{\partial x} \Lambda_{2 j-1}(R) 1 d S .
$$

The $\Lambda_{k}$ are components of an $m \times m$ Dirichlet-to-Neumann operator, a parameter-elliptic pseudodifferential operator on $\partial X$, meromorphic in $R$. Analytic Fredholm theory and an explicit symbol computation show:

## Theorem (Gimperlein, Goffeng, Amer J Math $2021+\epsilon$ )

Let $X \subseteq \mathbb{R}^{n}$ be compact with smooth boundary and $n=2 m-1$.

- $\mathcal{M}_{X}$ extends meromorphically to $\mathbb{C}$.
- $\mathcal{M}_{X}$ holomorphic in sector $\left\{|\arg (z)|<\frac{\pi}{n+1}\right\}$.

Finite number of poles in any sector $\{|\arg (z)|<\alpha\}, \alpha<\frac{\pi}{2}$.

## Asymptotic Leinster-Willerton conjecture

## Theorem (Gimperlein, Goffeng, Amer J Math $2021+\epsilon$ )

Let $X \subseteq \mathbb{R}^{n}$ be compact with smooth boundary and $n=2 m-1$.

- $\mathcal{M}_{X}$ extends meromorphically to $\mathbb{C}$.
- $\mathcal{M}_{X}$ holomorphic in sector $\left\{|\arg (z)|<\frac{\pi}{n+1}\right\}$.

Finite number of poles in any sector $\{|\arg (z)|<\alpha\}, \alpha<\frac{\pi}{2}$.

- There are constants $\left(c_{k}(X)\right)_{k \in \mathbb{N}}$ such that for all $N \in \mathbb{N}$

$$
\mathcal{M}_{X}(R)=\frac{1}{n!\omega_{n}} \sum_{k=0}^{n+N} c_{k}(X) R^{n-k}+O\left(R^{-N}\right)
$$

The first four coefficients are given by

$$
\begin{aligned}
& c_{0}(X)=\operatorname{vol}_{n}(X), c_{1}(X)=m \operatorname{vol}_{n-1}(\partial X), \\
& c_{2}(X)=\frac{m^{2}}{2}(n-1) \int_{\partial X} H d S, \quad(H \text { mean curvature of } \partial X) \\
& c_{3}(X)=\alpha_{n} \int_{\partial X} H^{2} d S \quad \text { (Willmore energy) }
\end{aligned}
$$

## Asymptotic Leinster-Willerton conjecture

## Theorem (Gimperlein, Goffeng, Amer J Math $2021+\epsilon$ )

Let $X \subseteq \mathbb{R}^{n}$ be compact with smooth boundary and $n=2 m-1$.

- $\mathcal{M}_{X}$ extends meromorphically to $\mathbb{C}$.
- $\mathcal{M}_{X}$ holomorphic in sector $\left\{|\arg (z)|<\frac{\pi}{n+1}\right\}$.

Finite number of poles in any sector $\{|\arg (z)|<\alpha\}, \alpha<\frac{\pi}{2}$.

- There are constants $\left(c_{k}(X)\right)_{k \in \mathbb{N}}$ such that for all $N \in \mathbb{N}$

$$
\mathcal{M}_{X}(R)=\frac{1}{n!\omega_{n}} \sum_{k=0}^{n+N} c_{k}(X) R^{n-k}+O\left(R^{-N}\right)
$$

The first four coefficients are given by

$$
\begin{aligned}
& c_{0}(X)=\operatorname{vol}_{n}(X), c_{1}(X)=m \operatorname{vol}_{n-1}(\partial X), \\
& c_{2}(X)=\frac{m^{2}}{2}(n-1) \int_{\partial X} H d S, \quad(H \text { mean curvature of } \partial X) \\
& c_{3}(X)=\alpha_{n} \int_{\partial X} H^{2} d S \quad \text { (Willmore energy, not intrinsic volume) }
\end{aligned}
$$

## Asymptotic Leinster-Willerton conjecture

## Theorem (Gimperlein, Goffeng, Amer J Math $2021+\epsilon$ )

Let $X \subseteq \mathbb{R}^{n}$ be compact with smooth boundary and $n=2 m-1$.

- $\mathcal{M}_{X}$ extends meromorphically to $\mathbb{C}$.
- $\mathcal{M}_{X}$ holomorphic in sector $\left\{|\arg (z)|<\frac{\pi}{n+1}\right\}$.

Finite number of poles in any sector $\{|\arg (z)|<\alpha\}, \alpha<\frac{\pi}{2}$.

- There are constants $\left(c_{k}(X)\right)_{k \in \mathbb{N}}$ such that for all $N \in \mathbb{N}$

$$
\mathcal{M}_{X}(R)=\frac{1}{n!\omega_{n}} \sum_{k=0}^{n+N} c_{k}(X) R^{n-k}+O\left(R^{-N}\right)
$$

The first four coefficients are given by

$$
\begin{aligned}
& c_{0}(X)=\operatorname{vol}_{n}(X), c_{1}(X)=m \operatorname{vol}_{n-1}(\partial X), \\
& c_{2}(X)=\frac{m^{2}}{2}(n-1) \int_{\partial X} H d S, \quad c_{3}(X)=\alpha_{n} \int_{\partial X} H^{2} d S
\end{aligned}
$$

- For $j \geq 4$, the coefficient $c_{j}(X)$ is an integral over $\partial X$ of a universal polynomial in covariant derivatives of the fundamental form of total order $j-2$ and total degree $j-1$.


## Corollaries

## Asymptotic inclusion-exclusion

Let $n=2 m-1$. If $A, B \subseteq \mathbb{R}^{n}$, as well as $A \cup B$ and $A \cap B$ are smooth compact domains then

$$
\mathcal{M}_{A \cup B}(R)=\mathcal{M}_{A}(R)+\mathcal{M}_{B}(R)-\mathcal{M}_{A \cap B}(R)+O\left(R^{-\infty}\right) .
$$

## Definite failure of original Leinster-Willerton conjecture

The coefficient $c_{3}(X)=\alpha_{n} \int_{\partial X} H^{2} \mathrm{~d} S$ is not Hausdorff continuous and not an intrinsic volume. Indeed, for $n=3$ by homogeneity $c_{3}(X)$ would need to be proportional to the Euler characteristic. But $c_{3}=$ Willmore energy can be made arbitrarily large on surfaces of genus zero.

Can you "magnitude" the shape of a drum?
Let $X$ as in theorem, $B$ ball. If $\mathcal{M}_{X} \sim \mathcal{M}_{B}$, then $X$ is isometric to $B$ (use asymptotics \& isoperimetric inequality).
There are nonconvex domains $X, Y=$ balls with a hole which are not isometric, but $\mathcal{M}_{X}=\mathcal{M}_{Y}$ (Meckes).

Poles and zeros of the magnitude function $\mathcal{M}_{B_{21}}$ $B_{21}=$ unit ball in dimension $n=21$


## Poles and zeros of $\mathcal{M}_{B_{n}}$ in dimensions $n=13,17,21$


(a)

(b)

Figure: (a) poles, (b) zeros.

## Computer algebra delicate:

Naive computation of poles of $\mathcal{M}_{B_{21}}$ (with Maple, Sage)


## Poles of $\mathcal{M}_{X}$ for spherical shell in dimension 3 $X=\left(2 B_{3}\right) \backslash B_{3}^{\circ}$


infinite number of poles approaching curve $|\operatorname{Re}(R)|=\log (|\operatorname{Im}(R)|)$

$$
\mathcal{M}_{X}(R)=\frac{7}{6} R^{3}+5 R^{2}+2 R+2+\frac{\left.\mathrm{e}^{-2 R}\left(R^{2}+1\right)+2 R^{3}-3 R^{2}+2 R-1\right)}{\sinh (2 R)-2 R}
$$

## Asymptotic Leinster-Willerton conjecture

## Theorem (Gimperlein, Goffeng, Amer J Math $2021+\epsilon$ )

Let $X \subseteq \mathbb{R}^{n}$ be compact with smooth boundary and $n=2 m-1$.

- $\mathcal{M}_{X}$ extends meromorphically to $\mathbb{C}$.
- $\mathcal{M}_{X}$ holomorphic in sector $\left\{|\arg (z)|<\frac{\pi}{n+1}\right\}$.

Finite number of poles in any sector $\{|\arg (z)|<\alpha\}, \alpha<\frac{\pi}{2}$.

- There are constants $\left(c_{k}(X)\right)_{k \in \mathbb{N}}$ such that for all $N \in \mathbb{N}$

$$
\mathcal{M}_{X}(R)=\frac{1}{n!\omega_{n}} \sum_{k=0}^{n+N} c_{k}(X) R^{n-k}+O\left(R^{-N}\right)
$$

The first four coefficients are given by

$$
\begin{aligned}
& c_{0}(X)=\operatorname{vol}_{n}(X), c_{1}(X)=m \operatorname{vol}_{n-1}(\partial X), \\
& c_{2}(X)=\frac{m^{2}}{2}(n-1) \int_{\partial X} H d S, \quad c_{3}(X)=\alpha_{n} \int_{\partial X} H^{2} d S
\end{aligned}
$$

- For $j \geq 4$, the coefficient $c_{j}(X)$ is an integral over $\partial X$ of a universal polynomial in covariant derivatives of the fundamental form of total order $j-2$ and total degree $j-1$.


## What is the magnitude of the unit disk?

In even dimensions almost nothing has been known about magnitude.


$$
\mathcal{M}_{B_{2}(0,1)}(R)=?
$$

## What is the magnitude of the unit disk?

In even dimensions almost nothing has been known about magnitude.


Theorem (Gimperlein, Goffeng, Louca 2021)

$$
\mathcal{M}_{B_{2}(0,1)}(R)=\frac{1}{2} R^{2}+\frac{3}{2} R+O(1)
$$

More generally, we extend the previous statements on the meromorphic continuation and asymptotic expansion of $\mathcal{M}_{X}$ to smooth compact domains $X \subset M$, where $M=\mathbb{R}^{n}$ or (under technical assumptions) $M$ manifold with metric.

## What is the magnitude of the unit disk?

In even dimensions almost nothing has been known about magnitude.


## Theorem (Gimperlein, Goffeng, Louca 2021)

$$
\mathcal{M}_{B_{2}(0,1)}(R)=\frac{1}{2} R^{2}+\frac{3}{2} R+O(1)
$$

- Study directly the boundary problem for $\mathcal{Z}_{X}(R)=\left(R^{2}-\Delta\right)^{-(n+1) / 2}$ :

$$
\mathcal{Z}_{X}(R) \mu_{R}=1 \quad \text { in } X, \quad \operatorname{supp} \mu_{R} \subseteq X
$$

- Analysis relies on ideas of Hörmander, Eskin, as recently developed by Grubb for fractional boundary problems involving $(-\Delta)^{s}, s>0$.


## Set-up

- $X \subseteq \mathbb{R}^{n}$ compact domain with smooth boundary (more generally: $X \subseteq \mathbb{R}^{N}$ compact submanifold with boundary).
- Consider the operator

$$
\tilde{\mathcal{Z}}_{X}(R) f(x)=\frac{1}{R} \mathcal{Z}_{X}(R) f(x)=\frac{1}{R} \int_{X} \mathrm{e}^{-R d(x, y)} f(y) d V(y)
$$

- For $s \in \mathbb{R}$ :

$$
\begin{aligned}
H^{s}\left(\mathbb{R}^{n}\right) & :=\left\{u:\left(1+|\xi|^{2}\right)^{s / 2} \hat{u} \in L^{2}\left(\mathbb{R}^{n}\right)\right\} \\
\dot{H}^{s}(X) & :=\left\{u \in H^{s}\left(\mathbb{R}^{n}\right): \operatorname{supp}(u) \subseteq X\right\} \\
\bar{H}^{s}(X) & :=H^{s}\left(\mathbb{R}^{n}\right) / \dot{H}^{s}\left(\mathbb{R}^{n} \backslash X\right)=\left\{\left.u\right|_{X}: u \in H^{s}\left(\mathbb{R}^{n}\right)\right\} .
\end{aligned}
$$

- $\grave{H}^{0}(X)=\bar{H}^{0}(X)=L^{2}(X)$ and the $L^{2}$-pairing extends to a perfect pairing

$$
\dot{H}^{s}(X) \times \bar{H}^{-s}(X) \rightarrow \mathbb{C} .
$$

## Some facts

- $\tilde{\mathcal{Z}}_{X}(R)$ is a parameter-elliptic pseudodifferential operator of order $-n-1$.
- $\tilde{\mathcal{Z}}_{\chi}(R): \stackrel{\circ}{H}^{-(n+1) / 2}(X) \rightarrow \bar{H}^{(n+1) / 2}(X)$ is a continuous isomorphism for $\operatorname{Re}(R) \gg 0$, which extends to a holomorphic Fredholm operator valued function of $R \in \mathbb{C}$.
- Fredholm theory: $\tilde{\mathcal{Z}}_{X}(R)^{-1}: \bar{H}^{(n+1) / 2}(X) \rightarrow \dot{H}^{-(n+1) / 2}(X)$ extends meromorpically to $R \in \mathbb{C}$. It is "computable" up to $O\left(R^{-\infty}\right)$.
- The function $h \in H^{(n+1) / 2}\left(\mathbb{R}^{n}\right)$ defined from

$$
h(x):=R^{-1} \int_{X} \mathrm{e}^{-R|x-y|}\left(\tilde{\mathcal{Z}}_{X}(R)^{-1} 1_{X}\right)(y) \mathrm{d} V(y),
$$

solves Meckes' minimization problem, so that

$$
\mathcal{M}_{X}(R)=R^{-1}\left(\tilde{\mathcal{Z}}_{X}(R)^{-1} 1_{X}, 1_{X}\right)_{L^{2}} .
$$

The magnitude function thus extends meromorphically to $R \in \mathbb{C}$.

## Construction of asymptotic expansions

## Theorem (Gimperlein-Goffeng-Louca '21)

Let $X \subseteq \mathbb{R}^{n}$ be a compact domain with smooth boundary. Then

$$
\mathcal{M}_{X}(R)=\frac{1}{n!\omega_{n}} \sum_{k=0}^{\infty} c_{k}(X) R^{n-k}+O\left(R^{-\infty}\right)
$$

The first three coefficients are given by

$$
c_{0}(X)=\operatorname{vol}_{n}(X), c_{1}(X)=\gamma_{n, 1} \operatorname{vol}_{n-1}(\partial X), c_{2}(X)=\gamma_{n, 2} \int_{\partial X} H \mathrm{~d} S
$$

where $H$ is the mean curvature. There exists an iterative way of computing the coefficients $c_{k}(X)$.

## Construction of asymptotic expansions

## Theorem (Gimperlein-Goffeng-Louca '21)

Let $X \subseteq \mathbb{R}^{n}$ be a compact domain with smooth boundary. Then

$$
\mathcal{M}_{X}(R)=\frac{1}{n!\omega_{n}} \sum_{k=0}^{\infty} c_{k}(X) R^{n-k}+O\left(R^{-\infty}\right)
$$

The first three coefficients are given by

$$
c_{0}(X)=\operatorname{vol}_{n}(X), c_{1}(X)=\gamma_{n, 1} \operatorname{vol}_{n-1}(\partial X), c_{2}(X)=\gamma_{n, 2} \int_{\partial X} H \mathrm{~d} S
$$

- Iterative scheme is a result of a Wiener-Hopf factorization using a 'nice' factorization of the symbol.
- The result holds for $X \subseteq \mathbb{R}^{N}$ a compact submanifold with boundary, and in this case

$$
c_{k}(X)=\int_{X} \alpha_{k}(x) \mathrm{d} V(x)+\int_{\partial X} \beta_{k}(x) \mathrm{d} S(x)
$$

and $\alpha_{k}=0$ for all odd $k$.
There is an iterative scheme to compute $\alpha_{k}$ and $\beta_{k g}$

## The idea for $X \subseteq \mathbb{R}$

Consider $X=[0,1] \subseteq \mathbb{R}$ so we are looking for a $u \in \dot{H}^{-1}(0,1)$ with

$$
\mathcal{Z}_{X}(R) u(x)=\int_{0}^{1} \mathrm{e}^{-R|x-y|} u(y) \mathrm{d} y=1
$$

Fourier transforming gives

$$
\mathcal{F}\left(\mathcal{Z}_{X}(R) u\right)(\xi)=2 R\left(R^{2}+\xi^{2}\right)^{-1} \hat{u}(\xi)=2 R(R+i \xi)^{-1}(R-i \xi)^{-1} \hat{u}(\xi) .
$$

Elementary computations give

$$
\begin{cases}(R+i \xi)^{-1}=\mathcal{F}\left(z_{R}^{+}\right), & z_{R}^{+}(x)=\chi_{[0, \infty)}(x) \mathrm{e}^{-R x} \\ (R-i \xi)^{-1}=\mathcal{F}\left(z_{R}^{-}\right), & z_{R}^{-}(x)=\chi_{(-\infty, 0]}(x) \mathrm{e}^{R x}\end{cases}
$$

## The idea for $X \subseteq \mathbb{R}$

Consider $X=[0,1] \subseteq \mathbb{R}$ so we are looking for a $u \in \dot{H}^{-1}(0,1)$ with

$$
\mathcal{Z}_{X}(R) u(x)=\int_{0}^{1} \mathrm{e}^{-R|x-y|} u(y) \mathrm{d} y=1
$$

Fourier transforming gives

$$
\mathcal{F}\left(\mathcal{Z}_{X}(R) u\right)(\xi)=2 R\left(R^{2}+\xi^{2}\right)^{-1} \hat{u}(\xi)=2 R(R+i \xi)^{-1}(R-i \xi)^{-1} \hat{u}(\xi) .
$$

Elementary computations give

$$
\begin{cases}(R+i \xi)^{-1}=\mathcal{F}\left(z_{R}^{+}\right), & z_{R}^{+}(x)=\chi_{[0, \infty)}(x) \mathrm{e}^{-R x} \\ (R-i \xi)^{-1}=\mathcal{F}\left(z_{R}^{-}\right), & z_{R}^{-}(x)=\chi_{(-\infty, 0]}(x) \mathrm{e}^{R x}\end{cases}
$$

## Paley-Wiener!

Consider $\mathcal{Z}_{X}(R)^{ \pm} f:=z_{R}^{ \pm} * f$.

## The idea for $X \subseteq \mathbb{R}$, continued

The operators $\mathcal{Z}_{X}(R)^{ \pm} f:=z_{R}^{ \pm} * f$ satisfy for any $a \in \mathbb{R}$ :

$$
\left\{\begin{array}{l}
\operatorname{supp}(f) \subseteq[a, \infty) \Rightarrow \operatorname{supp}\left(\mathcal{Z}_{X}(R)^{+} f\right) \subseteq[a, \infty) \\
\operatorname{supp}(f) \subseteq(-\infty, a] \Rightarrow \operatorname{supp}\left(\mathcal{Z}_{X}(R)^{-} f\right) \subseteq(-\infty, a]
\end{array}\right.
$$

Therefore, for any real $s$ and $a, \mathcal{Z}_{X}(R)^{ \pm}$defines isomorphisms

$$
\left\{\begin{array}{l}
\mathcal{Z}_{X}(R)^{+}: \dot{H}^{s}(a, \infty) \rightarrow \dot{H}^{s+1}(a, \infty), \mathcal{Z}_{X}(R)^{+}: \bar{H}^{s}(-\infty, a) \rightarrow \bar{H}^{s+1}(-\infty, a), \\
\mathcal{Z}_{X}(R)^{-}: \dot{H}^{s}(-\infty, a) \rightarrow \dot{H}^{s+1}(-\infty, a), \mathcal{Z}_{X}(R)^{-}: \bar{H}^{s}(a, \infty) \rightarrow \bar{H}^{s+1}(a, \infty) .
\end{array}\right.
$$

## Problem arising in the general setting

How to factor $\mathcal{Z}_{X}(R): \stackrel{\circ}{H}^{-1}(0,1) \rightarrow \bar{H}^{1}(0,1)$ near $\partial X$ as mapping

$$
\dot{H}^{-1}(0,1) \xrightarrow{\mathcal{Z}_{X,+}(R)} \dot{H}^{0}(0,1)=L^{2}(0,1)=\bar{H}^{0}(0,1) \xrightarrow{\mathcal{Z}_{X,-}(R)} \bar{H}^{1}(0,1) ?
$$

## Structure of inverse operator

$$
\mathcal{Z}_{X}(R)^{-1}=\tilde{\chi}_{1} Q^{-1} \chi_{1}+\tilde{\chi}_{2}^{-1} \mathcal{Z}_{X,+}(R)^{-1} \mathcal{Z}_{X,-}(R)^{-1} \chi_{2}+S
$$

where $\chi_{j}$ gluing functions, $Q^{-1}$ interior parametrix, $S=O\left(R^{-\infty}\right)$.

## The idea for $X \subseteq \mathbb{R}$, continued

Formally, $\left(\mathcal{Z}_{X}(R)^{ \pm}\right)^{-1}=R \pm \partial_{X}$. Is it simply that

$$
\mathcal{Z}_{X}(R)^{-1} f=\frac{1}{2 R}\left(R+\partial_{x}\right)\left(R-\partial_{x}\right) f ?
$$

For $f=1_{[0,1]} \in \bar{H}^{1}(0,1)$, then
$\frac{1}{2 R}\left(R+\partial_{x}\right)\left(R-\partial_{x}\right) 1_{[0,1]}=\frac{1}{2 R}\left(R+\partial_{x}\right)(\underbrace{R 1_{[0,1]}}_{\in H^{\circ}(0,1)})=\frac{R}{2} 1_{[0,1]}+\frac{1}{2}\left(\delta_{x=1}-\delta_{x=0}\right)$.
But we have that

$$
\mathcal{Z}_{X}(R)\left(\frac{R}{2} 1_{[0,1]}+\frac{1}{2}\left(\delta_{x=1}-\delta_{x=0}\right)\right)=1-\mathrm{e}^{-R(1-x)},
$$

It does not hold that $\mathrm{e}^{-R(1-x)}=O\left(R^{-\infty}\right)$ in norm sense on $\bar{H}^{1}(0,1)$ !
The correct answer is

$$
\mathcal{Z}_{X}(R)^{-1} 1_{[0,1]}=\frac{R}{2} 1_{[0,1]}+\frac{1}{2}\left(\delta_{x=1}+\delta_{x=0}\right) .
$$

## The idea for $X \subseteq \mathbb{R}$, continued

Formally, $\left(\mathcal{Z}_{X}(R)^{ \pm}\right)^{-1}=R \pm \partial_{X}$. Is it simply that

$$
\mathcal{Z}_{X}(R)^{-1} f=\frac{1}{2 R}\left(R+\partial_{x}\right)\left(R-\partial_{x}\right) f ?
$$

For $f=1_{[0,1]} \in \bar{H}^{1}(0,1)$, then
$\frac{1}{2 R}\left(R+\partial_{x}\right)\left(R-\partial_{x}\right) 1_{[0,1]}=\frac{1}{2 R}\left(R+\partial_{x}\right)(\underbrace{R 1_{[0,1]}}_{\in H^{0}(0,1)})=\frac{R}{2} 1_{[0,1]}+\frac{1}{2}\left(\delta_{x=1}-\delta_{x=0}\right)$.
But we have that

$$
\mathcal{Z}_{X}(R)\left(\frac{R}{2} 1_{[0,1]}+\frac{1}{2}\left(\delta_{x=1}-\delta_{x=0}\right)\right)=1-\mathrm{e}^{-R(1-x)}
$$

It does not hold that $\mathrm{e}^{-R(1-x)}=O\left(R^{-\infty}\right)$ in norm sense on $\bar{H}^{1}(0,1)$ !
The correct answer is

$$
\mathcal{Z}_{X}(R)^{-1} 1_{[0,1]}=\frac{R}{2} 1_{[0,1]}+\frac{1}{2}\left(\delta_{x=1}+\delta_{x=0}\right) .
$$

To fix the sign mistake: build $\mathcal{Z}_{X, \pm}(R)^{-1}$ from gluing $\left(\mathcal{Z}_{X}(R)^{ \pm}\right)^{-1}$ at $x=0$ with $\left(\mathcal{Z}_{X}(R)^{\mp}\right)^{-1}$ at $x=1 \ldots$. Morally we have that

$$
\mathcal{Z}_{X}(R)^{-1}=\frac{1}{2 R}\left(R+\partial_{\chi}\right)\left(R-\partial_{\chi}\right) \text { at } x=1, \mathcal{Z}_{X}(R)^{-1}=\frac{1}{2 R}\left(R-\partial_{X}\right)\left(R+\partial_{X}\right) \text { at }
$$

## Extension to manifolds

Compact, smooth $X \subseteq M$ for d satisfying a technical assumption, e.g.

- $M$ is a sphere with geodesic distance
- $M$ is a Riemannian manifold with geodesic distance and $\operatorname{diam}(X)<\operatorname{inj}(M)$
- $M$ is a submanifold of $\mathbb{R}^{n}$ with the subspace metric

For large $R, \tilde{\mathcal{Z}}_{R}=n!\omega_{n}\left(R^{2}-\Delta\right)^{-\frac{n+1}{2}}+$ l.o.t $(R$, derivatives)

## Some open analytic problems for magnitude

- For general Riemannian manifolds an improved understanding of the cut-locus seems required.
- The magnitude function for domains with edges: $\mathcal{M}_{X \cap Y}$ ?
- Poles of $\mathcal{M}_{X}$ analogous to scattering resonances. Interpretation: Why is there a pole at $R=-3$ for $B(0,1) \subset \mathbb{R}^{5}$ ? Counting: Sharp upper and lower bounds? Does a generic perturbation of $B(0,1) \subset \mathbb{R}^{2 m-1}$ have infinitely many poles?
- Geometric interpretation of the Taylor coefficients for $\mathcal{M}_{X}$ at $R=0$ ? Meckes (2020) proves upper bounds in terms of intrinsic volumes.

Magnitude is just one example of a semiclassical pseudodifferential boundary problem. Related questions arise for log-gases, random matrices, optimal placement problems, ...

## At beginning of talk I asked:

What is the magnitude of the unit disk?


This talk: qualitative properties and semiclassical limit for large radius.
Can one find an exact formula for the solution of the boundary problem for $(1-\Delta)^{3 / 2}$ outside the disk?

## Thank you for your attention!

More details in: arXiv:1706.06839
and more to come very soon

Magnitude bibliography: maths.ed.ac.uk/~tl/magbib

