Heiko Gimperlein

Heriot-Watt University, Edinburgh

(joint with Magnus Goffeng and Nikoletta Louca)

Oldenburg Analysis Seminar, 3 June 2021

Examples of "size"

A good notion of size satisfies:

$$Size(A \cup B) = Size(A) + Size(B) - Size(A \cap B)$$

$$Size(A \times B) = Size(A) Size(B)$$

We shall interpret these conditions very loosely...

Introduction to magnitude

•0000000

A good notion of size satisfies:

$$\operatorname{Size}(A \cup B) = \operatorname{Size}(A) + \operatorname{Size}(B) - \operatorname{Size}(A \cap B)$$

$$Size(A \times B) = Size(A) Size(B)$$

We shall interpret these conditions very loosely...

Examples of size-like notions

- Cardinality of set
- Dimension of vector space
- Measure of a measurable set
- Euler characteristic of topological space
- Intrinsic volumes of convex set (volume, surface area, total mean curvature, ...)
- Capacity in potential theory / diversity of biological system
- Magnitude

Examples of "size"

A good notion of size satisfies:

$$\operatorname{Size}(A \cup B) = \operatorname{Size}(A) + \operatorname{Size}(B) - \operatorname{Size}(A \cap B)$$

$$Size(A \times B) = Size(A) Size(B)$$

We shall interpret these conditions very loosely...

Examples of size-like notions

- Cardinality of set
- Dimension of vector space
- Measure of a measurable set
- Euler characteristic of topological space
- Intrinsic volumes of convex set (volume, surface area, total mean curvature, . . .)
- Capacity in potential theory / diversity of biological system
- Magnitude (Leinster '08)

Elliptic PDEs Semiclassical Analysis Geom. Measure Theory

Introduction to magnitude 0000000

Geometry

Dim. volume, surface area, curvatures Barceló, Carbery, Amer J. Math. (2017) Gimperlein, Goffeng, Amer J. Math. (2021), + Louca (2021) Leinster, Meckes, survey article (2017)

Outline of talk

What is the magnitude of the unit disk?

- What is magnitude?
- Magnitude of compact domains X in \mathbb{R}^n and manifolds
- ullet Leinster-Willerton conjecture: geometry of $\mathcal{M}_X(R) := \max(R \cdot X)$
- Technically: semiclassical analysis of a pseudodifferential boundary problem for $(R^2 \Delta)^{\pm (n+1)/2} + l.o.t$.

Let $\mathcal{Z} \in \mathbb{R}^{n \times n}$. w weighting on \mathcal{Z} if

$$\mathcal{Z}w = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} =: \mathbf{1}.$$

Magnitude of a matrix

Let $\mathcal{Z} \in \mathbb{R}^{n \times n}$. w weighting on \mathcal{Z} if

$$\mathcal{Z}w = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} =: \mathbf{1}.$$

Definition (Magnitude of a matrix)

If Z admits a weighting w and Z^T admits a weighting w',

$$\operatorname{mag}(\mathcal{Z}) := \sum_{i=1}^{n} w_i = \sum_{i=1}^{n} w'_i.$$

Set $mag(\mathcal{Z}) := +\infty$ otherwise.

Magnitude of a matrix

Let $\mathcal{Z} \in \mathbb{R}^{n \times n}$. w weighting on \mathcal{Z} if

$$\mathcal{Z}w = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} =: \mathbf{1}.$$

Definition (Magnitude of a matrix)

If $\mathcal Z$ admits a weighting w and $\mathcal Z^T$ admits a weighting w',

$$\operatorname{mag}(\mathcal{Z}) := \sum_{i=1}^n w_i = \sum_{i=1}^n w_i'.$$

Set $mag(\mathcal{Z}) := +\infty$ otherwise.

Check: $mag(\mathcal{Z})$ is independent of choice of weighting w, \tilde{w} :

$$\operatorname{mag}(\mathcal{Z}) = \langle w, \mathbf{1} \rangle = \langle w, \mathcal{Z}^\mathsf{T} w' \rangle = \langle \mathcal{Z} w, w' \rangle = \langle \mathcal{Z} \tilde{w}, w' \rangle = \langle \tilde{w}, \mathcal{Z}^\mathsf{T} w' \rangle = \langle \tilde{w}, \mathbf{1} \rangle$$

Magnitude of a matrix

Let $\mathcal{Z} \in \mathbb{R}^{n \times n}$. w weighting on \mathcal{Z} if

$$\mathcal{Z}w = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} =: \mathbf{1}.$$

Definition (Magnitude of a matrix)

If \mathcal{Z} admits a weighting w and \mathcal{Z}^T admits a weighting w',

$$\operatorname{mag}(\mathcal{Z}) := \sum_{i=1}^{n} w_i = \sum_{i=1}^{n} w'_i.$$

Set $mag(\mathcal{Z}) := +\infty$ otherwise.

Check: $mag(\mathcal{Z})$ is independent of choice of weighting.

If \mathcal{Z} invertible, $\operatorname{mag}(\mathcal{Z}) = \langle w, \mathbf{1} \rangle = \langle \mathcal{Z}^{-1}\mathbf{1}, \mathbf{1} \rangle = \sum_{i,j} (\mathcal{Z}^{-1})_{ij}$.

Magnitude of (finite) categories and metric spaces

If C is a finite category, we set

$$\mathcal{Z}_{\mathcal{C}} := (\# \mathrm{Mor}_{\mathcal{C}}(i,j))_{i,j \in \mathrm{Obj}(\mathcal{C})}$$
 and $\mathrm{mag}(\mathcal{C}) := \mathrm{mag}(\mathcal{Z}_{\mathcal{C}}).$

(Figure by T.-D. Bradley, arxiv:1809.05923)

Magnitude of (finite) categories and metric spaces

If C is a finite category, we set

Introduction to magnitude

00000000

$$\mathcal{Z}_{\mathcal{C}} := (\#\mathrm{Mor}_{\mathcal{C}}(i,j))_{i,j \in \mathrm{Obj}(\mathcal{C})}$$
 and $\mathrm{mag}(\mathcal{C}) := \mathrm{mag}(\mathcal{Z}_{\mathcal{C}}).$

Theorem (Leinster, original motivation for magnitude)

Let C denote a finite category and BC its classifying space, then

$$\chi(BC) = \text{mag}(C).$$

Similarly, mag recovers Euler characteristic of a triangulated manifold.

Magnitude of (finite) categories and metric spaces

If C is a finite category, we set

$$\mathcal{Z}_{\mathcal{C}} := (\# \mathrm{Mor}_{\mathcal{C}}(i,j))_{i,j \in \mathrm{Obj}(\mathcal{C})}$$
 and $\mathrm{mag}(\mathcal{C}) := \mathrm{mag}(\mathcal{Z}_{\mathcal{C}}).$

Theorem (Leinster, original motivation for magnitude)

Let $\mathcal C$ denote a finite category and $\mathcal B\mathcal C$ its classifying space, then

$$\chi(BC) = \text{mag}(C).$$

If (X, d) is a finite metric space, category theory tells us to set

$$\mathcal{Z}_X := (e^{-d(a,b)})_{a,b \in X}$$
 and $mag(X) := mag(\mathcal{Z}_X)$.

If C is a finite category, we set

$$\mathcal{Z}_{\mathcal{C}} := (\# \mathrm{Mor}_{\mathcal{C}}(i,j))_{i,i \in \mathrm{Obi}(\mathcal{C})}$$
 and $\mathrm{mag}(\mathcal{C}) := \mathrm{mag}(\mathcal{Z}_{\mathcal{C}}).$

Theorem (Leinster, original motivation for magnitude)

Let \mathcal{C} denote a finite category and $B\mathcal{C}$ its classifying space, then

$$\chi(BC) = \text{mag}(C).$$

If (X, d) is a finite metric space, category theory tells us to set

$$\mathcal{Z}_X := (e^{-d(a,b)})_{a,b \in X}$$
 and $mag(X) := mag(\mathcal{Z}_X)$.

Examples

Introduction to magnitude

00000000

- One point space: $mag(\cdot) = 1$
- Discrete "metric" space X: mag(X) = |X|
- (Complete graph) N points, distance R:

$$\operatorname{mag}(\overbrace{\cdot \leftarrow R \to \cdot \quad \cdots \quad \cdot}) = \frac{N}{1 + (N-1)e^{-R}}$$

Example: a 3-point space (Simon Willerton)

Take the 3-point space

Introduction to magnitude 00000000

- When t is small, X looks like a 1-point space.
- When t is moderate, X looks like a 2-point space.
- When t is large, X looks like a 3-point space.

Indeed, the magnitude of X as a function of t is:

If (X, d) is a finite metric space, we set

$$\mathcal{Z}_X := (e^{-d(a,b)})_{a,b \in X}$$
 and $mag(X,d) := mag(\mathcal{Z}_X)$.

The magnitude function of (X, d) is given by

$$\mathcal{M}_X(R) = \max(X, R \cdot d) \qquad (R > 0) .$$

Observation

- \mathcal{M}_X extends meromorphically to $R \in \mathbb{C}$
- $\mathcal{M}_X(R) = |X| + O(R^{-\infty})$ as $R \to \infty$
- $\mathcal{M}_X(0) = 1$

(X, d) compact metric space, M(X) finite Borel measures on X.

$$\mathcal{Z}_X(R): M(X) \to C(X), \quad \mathcal{Z}_X(R)\mu(x) := \int_X e^{-Rd(x,y)} d\mu(y).$$

A weighting measure μ_R is a solution to the equation $\mathcal{Z}_X(R)\mu_R=1$ on X.

Definition / Theorem (Meckes)

Let (X, d) a positive definite compact metric space, i.e. $\mathcal{Z}_A(R)$ is a positive definite matrix for all finite $A \subseteq X$. Then

$$\mathcal{M}_X(R) := \sup \{ \mathcal{M}_A(R) : A \subseteq X \text{ finite} \}$$

If (X, d) admits a weighting measure, $\mathcal{M}_X(R) = \mu_R(X)$.

(X,d) compact metric space, M(X) finite Borel measures on X.

$$\mathcal{Z}_X(R): M(X) \to C(X), \quad \mathcal{Z}_X(R)\mu(x) := \int_X e^{-Rd(x,y)} d\mu(y).$$

A weighting measure μ_R is a solution to the equation $\mathcal{Z}_X(R)\mu_R=1$ on X.

Explicitly for
$$X \subset \mathbb{R}^n$$
, $\mathcal{Z}_X(R)f(x) := \int_{\mathbb{R}^n} \mathrm{e}^{-R|x-y|} f(y) \mathrm{d}V(y) = g_R * f(x)$, where $g_R(x) := \mathrm{e}^{-R|x|}$. With $\hat{g}_R(\xi) = n! \omega_n R(R^2 + |\xi|^2)^{-(n+1)/2}$,

$$\mathcal{Z}_X(R) = n!\omega_n R(R^2 - \Delta)^{-(n+1)/2}.$$

(X,d) compact metric space, M(X) finite Borel measures on X.

$$\mathcal{Z}_X(R): M(X) \to C(X), \quad \mathcal{Z}_X(R)\mu(x) := \int_X \mathrm{e}^{-R\mathrm{d}(x,y)} \mathrm{d}\mu(y).$$

A weighting measure μ_R is a solution to the equation $\mathcal{Z}_X(R)\mu_R=1$ on X.

Explicitly for
$$X \subset \mathbb{R}^n$$
, $\mathcal{Z}_X(R)f(x) := \int_{\mathbb{R}^n} \mathrm{e}^{-R|x-y|} f(y) \mathrm{d}V(y) = g_R * f(x)$, where $g_R(x) := \mathrm{e}^{-R|x|}$. With $\hat{g}_R(\xi) = n! \omega_n R(R^2 + |\xi|^2)^{-(n+1)/2}$,
$$\mathcal{Z}_X(R) = n! \omega_n R(R^2 - \Delta)^{-(n+1)/2}.$$

The function $h := \mathcal{Z}_X(R)\mu_R$ extends to \mathbb{R}^n , with h = 1 on X.

Theorem (Meckes)

Introduction to magnitude

0000000

$$\mathcal{M}_{X}(R) = \frac{1}{n!\omega_{n}R} \inf \left\{ \| (R^{2} - \Delta)^{(n+1)/4} h \|_{L^{2}(\mathbb{R}^{n})}^{2} : h \in H^{(n+1)/2}(\mathbb{R}^{n}), \ h = 1 \text{ on } X \right\}$$
$$= \frac{1}{n!\omega_{n}R} \| (R^{2} - \Delta)^{(n+1)/4} h \|_{L^{2}(\mathbb{R}^{n})}^{2}$$

where $h \in H^{(n+1)/2}(\mathbb{R}^n)$ solves

$$(R^2 - \Delta)^{(n+1)/2} h = 0$$
 weakly in $\mathbb{R}^n \setminus X$, $h = 1$ on X .

(X, d) compact metric space, M(X) finite Borel measures on X.

$$\mathcal{Z}_X(R): M(X) \to C(X), \quad \mathcal{Z}_X(R)\mu(x) := \int_X \mathrm{e}^{-R\mathrm{d}(x,y)} \mathrm{d}\mu(y).$$

A weighting measure μ_R is a solution to the equation $\mathcal{Z}_X(R)\mu_R=1$ on X. Explicitly for $X\subset\mathbb{R}^n$,

$$\mathcal{Z}_X(R) = n!\omega_n R(R^2 - \Delta)^{-(n+1)/2}.$$

Theorem (Meckes)

$$\mathcal{M}_X(R) = \frac{1}{n!\omega_n R} \| (R^2 - \Delta)^{(n+1)/4} h \|_{L^2(\mathbb{R}^n)}^2$$

where $h \in H^{(n+1)/2}(\mathbb{R}^n)$ solves

$$(R^2 - \Delta)^{(n+1)/2} h = 0$$
 weakly in $\mathbb{R}^n \setminus X$, $h = 1$ on X .

Example

$$X = [-1, 1] \subset \mathbb{R}$$
. $\mathcal{M}_X(R) = 1 + R = \chi(X) + \frac{\text{Length}(X)}{2}R$.

Geometry of the magnitude function

Conjecture (Leinster, Willerton)

Let $X \subseteq \mathbb{R}^n$ be a compact convex subset. Then

$$\mathcal{M}_X(R) = \sum_{k=0}^n \frac{V_k(X)}{k!\omega_k} R^k$$
.

Here $V_k(X)$ is the k-th intrinsic volume of X, ω_k volume of unit ball in \mathbb{R}^k .

For X a smooth convex body: $V_n(X) = \operatorname{vol}_n(X)$, $V_{n-1}(X) = \operatorname{vol}_{n-1}(\partial X)$, $V_{n-2}(X) = \int_{a_X} H dS, ..., V_0(X) = \chi(X).$

Special cases:

$$n = 1: \mathcal{M}_X(R) = \chi(X) + \frac{\text{Length}(X)}{2} R.$$

$$n=2$$
: $\mathcal{M}_X(R)=\chi(X)+rac{\mathrm{Perim}(\partial X)}{4}R+rac{\mathrm{Area}(X)}{2\pi}R^2$.

The conjecture was motivated by computational examples, the historical analogy with the Euler characteristic, and Hadwiger's theorem.

Conjecture (Leinster, Willerton)

Let $X \subseteq \mathbb{R}^n$ be a compact convex subset. Then

$$\mathcal{M}_X(R) = \sum_{k=0}^n \frac{V_k(X)}{k!\omega_k} R^k \ .$$

Here $V_k(X)$ is the k-th intrinsic volume of X, ω_k volume of unit ball in \mathbb{R}^k .

For X a smooth convex body: $V_n(X) = \operatorname{vol}_n(X)$, $V_{n-1}(X) = \operatorname{vol}_{n-1}(\partial X)$, $V_{n-2}(X) = \int_{\partial X} H dS$, ..., $V_0(X) = \chi(X)$.

Consequences include: Inclusion-Exclusion principle

$$\mathcal{M}_{A\cup B} = \mathcal{M}_A + \mathcal{M}_B - \mathcal{M}_{A\cap B}$$
.

Conjecture true for $X \subset \mathbb{R}$

$$X = [-1,1] \subset \mathbb{R}$$
. $\mathcal{M}_X(R) = 1 + R = \chi(X) + \frac{\text{Length}(X)}{2}R$.

Leinster-Willerton conjecture: (Counter) Examples

Barcelo, Carbery 2017 prove the conjectured behaviour for $R \to \infty$ and $R \to 0$:

Theorem

Let $X \subseteq \mathbb{R}^n$ be a compact smooth domain. Then

$$\mathcal{M}_X(R) = rac{\mathrm{vol}(X)}{n!\omega_n}R^n + o(R^n), \ ext{as } R o \infty,$$

$$\lim_{R\to 0}\mathcal{M}_X(R)=1.$$

Leinster-Willerton conjecture: (Counter) Examples

Barcelo, Carbery 2017 prove the conjectured behaviour for $R \to \infty$ and $R \to 0$:

Theorem

Let $X \subseteq \mathbb{R}^n$ be a compact smooth domain. Then

$$\mathcal{M}_X(R) = rac{\mathrm{vol}(X)}{n!\omega_n}R^n + o(R^n), \ ext{as } R o \infty, \ \lim_{R o 0} \mathcal{M}_X(R) = 1.$$

Furthermore, they solve the magnitude PDE for $X=B(0,1)\subseteq\mathbb{R}^n$, n=5:

$$\mathcal{M}_X(R) = \frac{1}{n!\omega_n R} \| (R^2 - \Delta)^{(n+1)/4} h \|_{L^2(\mathbb{R}^n)}^2$$

where $h \in H^{(n+1)/2}(\mathbb{R}^n)$ satisfies

$$(R^2 - \Delta)^{(n+1)/2} h = 0$$
 weakly in $\mathbb{R}^n \setminus X$, $h = 1$ on X .

The result is

Leinster-Willerton conjecture: (Counter) Examples

Barcelo, Carbery 2017 prove the conjectured behaviour for $R \to \infty$ and $R \to 0$:

Theorem

Let $X \subseteq \mathbb{R}^n$ be a compact smooth domain. Then

$$\mathcal{M}_X(R) = rac{\mathrm{vol}(X)}{n!\omega_n}R^n + o(R^n), \text{ as } R o \infty,$$

$$\lim_{R o 0} \mathcal{M}_X(R) = 1.$$

Counterexample to Leinster-Willerton conjecture (Barcelo, Carbery 2017)

Let $X = B(0,1) \subseteq \mathbb{R}^5$ be the unit ball. Then

$$\mathcal{M}_X(R) = \frac{R^5}{5!} + \frac{3R^5 + 27R^4 + 105R^3 + 216R^2 + 72}{24(R+3)}$$

Not a polynomial. Also coefficients of R^k wrong.

Willerton obtains similar rational functions for balls in odd dimensions.

With M. Goffeng, we studied the magnitude PDE for general X, n odd:

$$(R^2 - \Delta)^{(n+1)/2}h = 0$$
 weakly in $\mathbb{R}^n \setminus X$, $h = 1$ on X .

Using Green's formula, for suitable boundary traces $\mathcal{D}_R^k h|_{\partial X}$ of order k:

$$\mathcal{M}_{X}(R) = \frac{1}{n!\omega_{n}R} \| (R^{2} - \Delta)^{(n+1)/4} h \|_{L^{2}(\mathbb{R}^{n})}^{2}$$

$$= \frac{\text{vol}_{n}(X)}{n!\omega_{n}} R^{n} - \frac{1}{n!\omega_{n}} \sum_{\frac{m}{2} < j \le m} R^{n-2j} \int_{\partial X} \mathcal{D}_{R}^{2j-1} h \, dS$$

$$= \frac{\text{vol}_{n}(X)}{n!\omega_{n}} R^{n} - \frac{1}{n!\omega_{n}} \sum_{\frac{m}{2} < j \le m} R^{n-2j} \int_{\partial X} \Lambda_{2j-1}(R) \, 1 \, dS.$$

The Λ_k are components of an $m \times m$ Dirichlet-to-Neumann operator, a parameter-elliptic pseudodifferential operator on ∂X , meromorphic in R. Analytic Fredholm theory and an explicit symbol computation show:

$$\mathcal{M}_X(R) = \frac{\operatorname{vol}_n(X)}{n!\omega_n} R^n - \frac{1}{n!\omega_n} \sum_{\frac{m}{2} < j \le m} R^{n-2j} \int_{\partial X} \Lambda_{2j-1}(R) \, 1 \, dS.$$

The Λ_k are components of an $m \times m$ Dirichlet-to-Neumann operator, a parameter-elliptic pseudodifferential operator on ∂X , meromorphic in R. Analytic Fredholm theory and an explicit symbol computation show:

Theorem (Gimperlein, Goffeng, Amer J Math 2021 $+\epsilon$)

Let $X \subseteq \mathbb{R}^n$ be compact with smooth boundary and n = 2m - 1.

- \mathcal{M}_X extends meromorphically to \mathbb{C} .
- \mathcal{M}_X holomorphic in sector $\{|\arg(z)| < \frac{\pi}{n+1}\}$. Finite number of poles in any sector $\{|\arg(z)| < \alpha\}, \ \alpha < \frac{\pi}{2}.$

Theorem (Gimperlein, Goffeng, Amer J Math 2021 $+\epsilon$)

Let $X \subseteq \mathbb{R}^n$ be compact with smooth boundary and n = 2m - 1.

- \mathcal{M}_X extends meromorphically to \mathbb{C} .
- \mathcal{M}_X holomorphic in sector $\{|\arg(z)| < \frac{\pi}{n+1}\}$. Finite number of poles in any sector $\{|\arg(z)| < \alpha\}, \ \alpha < \frac{\pi}{2}.$
- There are constants $(c_k(X))_{k\in\mathbb{N}}$ such that for all $N\in\mathbb{N}$

$$\mathcal{M}_X(R) = \frac{1}{n!\omega_n} \sum_{k=0}^{n+N} c_k(X) R^{n-k} + O(R^{-N}).$$

The first four coefficients are given by

$$\begin{split} c_0(X) &= \mathrm{vol}_n(X), \ c_1(X) = m \mathrm{vol}_{n-1}(\partial X), \\ c_2(X) &= \frac{m^2}{2} \ (n-1) \int_{\partial X} H \, dS, \qquad (H \text{ mean curvature of } \partial X) \\ c_3(X) &= \alpha_n \int_{\partial X} H^2 \, dS \qquad (Willmore energy) \end{split}$$

Theorem (Gimperlein, Goffeng, Amer J Math 2021 $+\epsilon$)

Let $X \subseteq \mathbb{R}^n$ be compact with smooth boundary and n = 2m - 1.

- \mathcal{M}_X extends meromorphically to \mathbb{C} .
- \mathcal{M}_X holomorphic in sector $\{|\arg(z)| < \frac{\pi}{n+1}\}$. Finite number of poles in any sector $\{|\arg(z)| < \alpha\}, \ \alpha < \frac{\pi}{2}.$
- There are constants $(c_k(X))_{k\in\mathbb{N}}$ such that for all $N\in\mathbb{N}$

$$\mathcal{M}_X(R) = \frac{1}{n!\omega_n} \sum_{k=0}^{n+N} c_k(X) R^{n-k} + O(R^{-N}).$$

The first four coefficients are given by

$$\begin{split} c_0(X) &= \mathsf{vol}_n(X), \ c_1(X) = m \mathsf{vol}_{n-1}(\partial X), \\ c_2(X) &= \frac{m^2}{2} \ (n-1) \int_{\partial X} H \, dS, \qquad (H \text{ mean curvature of } \partial X) \\ c_3(X) &= \alpha_n \int_{\partial X} H^2 \, dS \qquad \text{(Willmore energy, not intrinsic volume)} \end{split}$$

Theorem (Gimperlein, Goffeng, Amer J Math 2021 $+\epsilon$)

Let $X \subseteq \mathbb{R}^n$ be compact with smooth boundary and n = 2m - 1.

- \mathcal{M}_X extends meromorphically to \mathbb{C} .
- \mathcal{M}_X holomorphic in sector $\{|\arg(z)| < \frac{\pi}{n+1}\}$. Finite number of poles in any sector $\{|\arg(z)| < \alpha\}$, $\alpha < \frac{\pi}{2}$.
- There are constants $(c_k(X))_{k\in\mathbb{N}}$ such that for all $N\in\mathbb{N}$

$$\mathcal{M}_X(R) = \frac{1}{n!\omega_n} \sum_{k=0}^{n+N} c_k(X) R^{n-k} + O(R^{-N}).$$

The first four coefficients are given by

$$c_0(X) = \operatorname{vol}_n(X), \ c_1(X) = m \operatorname{vol}_{n-1}(\partial X),$$
 $c_2(X) = \frac{m^2}{2} (n-1) \int_{\partial Y} H \, dS, \qquad c_3(X) = \alpha_n \int_{\partial Y} H^2 \, dS$

• For $j \ge 4$, the coefficient $c_j(X)$ is an integral over ∂X of a universal polynomial in covariant derivatives of the fundamental form of total order j-2 and total degree j-1.

Corollaries

Asymptotic inclusion-exclusion

Let n=2m-1. If $A,B\subseteq\mathbb{R}^n$, as well as $A\cup B$ and $A\cap B$ are smooth compact domains then

$$\mathcal{M}_{A \cup B}(R) = \mathcal{M}_A(R) + \mathcal{M}_B(R) - \mathcal{M}_{A \cap B}(R) + O(R^{-\infty}).$$

Definite failure of original Leinster-Willerton conjecture

The coefficient $c_3(X) = \alpha_n \int_{\partial X} H^2 \mathrm{d}S$ is not Hausdorff continuous and not an intrinsic volume. Indeed, for n=3 by homogeneity $c_3(X)$ would need to be proportional to the Euler characteristic. But c_3 = Willmore energy can be made arbitrarily large on surfaces of genus zero.

Can you "magnitude" the shape of a drum?

Let X as in theorem, B ball. If $\mathcal{M}_X \sim \mathcal{M}_B$, then X is isometric to B (use asymptotics & isoperimetric inequality).

There are nonconvex domains X, Y = balls with a hole which are not isometric, but $\mathcal{M}_X = \mathcal{M}_Y$ (Meckes).

Poles and zeros of \mathcal{M}_{B_n} in dimensions n=13,17,21

Figure: (a) poles, (b) zeros.

Computer algebra delicate: Naive computation of poles of $\mathcal{M}_{B_{21}}$ (with Maple, Sage)

 $X = (2B_3) \setminus B_3^{\circ}$

infinite number of poles approaching curve $|Re(R)| = \log(|Im(R)|)$

$$\mathcal{M}_X(R) = \frac{7}{6}R^3 + 5R^2 + 2R + 2 + \frac{e^{-2R}(R^2 + 1) + 2R^3 - 3R^2 + 2R - 1)}{\sinh(2R) - 2R}$$

Theorem (Gimperlein, Goffeng, Amer J Math 2021 $+\epsilon$)

Let $X \subseteq \mathbb{R}^n$ be compact with smooth boundary and n = 2m - 1.

- \mathcal{M}_X extends meromorphically to \mathbb{C} .
- \mathcal{M}_X holomorphic in sector $\{|\arg(z)| < \frac{\pi}{n+1}\}$. Finite number of poles in any sector $\{|\arg(z)| < \alpha\}$, $\alpha < \frac{\pi}{2}$.
- There are constants $(c_k(X))_{k\in\mathbb{N}}$ such that for all $N\in\mathbb{N}$

$$\mathcal{M}_X(R) = \frac{1}{n!\omega_n} \sum_{k=0}^{n+N} c_k(X) R^{n-k} + O(R^{-N}).$$

The first four coefficients are given by

$$c_0(X) = \operatorname{vol}_n(X), \ c_1(X) = m \operatorname{vol}_{n-1}(\partial X),$$
 $c_2(X) = \frac{m^2}{2} (n-1) \int_{\partial X} H \, dS, \qquad c_3(X) = \alpha_n \int_{\partial X} H^2 \, dS$

• For $j \ge 4$, the coefficient $c_j(X)$ is an integral over ∂X of a universal polynomial in covariant derivatives of the fundamental form of total order j-2 and total degree j-1.

What is the magnitude of the unit disk?

In even dimensions almost nothing has been known about magnitude.

$$\mathcal{M}_{B_2(0,1)}(R) = ?$$

lander Proceedings of the Proceding Company of the Company of the

In even dimensions almost nothing has been known about magnitude.

Theorem (Gimperlein, Goffeng, Louca 2021)

$$\mathcal{M}_{B_2(0,1)}(R) = \frac{1}{2}R^2 + \frac{3}{2}R + O(1)$$

More generally, we extend the previous statements on the meromorphic continuation and asymptotic expansion of \mathcal{M}_X to smooth compact domains $X \subset M$, where $M = \mathbb{R}^n$ or (under technical assumptions) M manifold with metric.

In even dimensions almost nothing has been known about magnitude.

Theorem (Gimperlein, Goffeng, Louca 2021)

$$\mathcal{M}_{B_2(0,1)}(R) = \frac{1}{2}R^2 + \frac{3}{2}R + O(1)$$

• Study directly the boundary problem for $\mathcal{Z}_X(R) = (R^2 - \Delta)^{-(n+1)/2}$:

$$\mathcal{Z}_X(R)\mu_R = 1$$
 in X , supp $\mu_R \subseteq X$.

• Analysis relies on ideas of Hörmander, Eskin, as recently developed by Grubb for fractional boundary problems involving $(-\Delta)^s$, s > 0.

- $X \subseteq \mathbb{R}^n$ compact domain with smooth boundary (more generally: $X \subseteq \mathbb{R}^N$ compact submanifold with boundary).
- Consider the operator

$$\tilde{\mathcal{Z}}_X(R)f(x) = \frac{1}{R}\mathcal{Z}_X(R)f(x) = \frac{1}{R}\int_X e^{-Rd(x,y)}f(y) \ dV(y)$$

• For $s \in \mathbb{R}$:

$$\begin{split} &H^{\mathfrak{s}}(\mathbb{R}^{n}) := \{u : (1 + |\xi|^{2})^{\mathfrak{s}/2} \hat{u} \in L^{2}(\mathbb{R}^{n})\}; \\ &\mathring{H}^{\mathfrak{s}}(X) := \{u \in H^{\mathfrak{s}}(\mathbb{R}^{n}) : \operatorname{supp}(u) \subseteq X\}; \\ &\bar{H}^{\mathfrak{s}}(X) := H^{\mathfrak{s}}(\mathbb{R}^{n}) / \mathring{H}^{\mathfrak{s}}(\mathbb{R}^{n} \setminus X) = \{u | x : u \in H^{\mathfrak{s}}(\mathbb{R}^{n})\}. \end{split}$$

• $\mathring{H}^0(X) = \overline{H}^0(X) = L^2(X)$ and the L^2 -pairing extends to a perfect pairing

$$\mathring{H}^s(X) \times \bar{H}^{-s}(X) \to \mathbb{C}.$$

Some facts

- $\tilde{Z}_X(R)$ is a parameter-elliptic pseudodifferential operator of order -n-1.
- $\tilde{\mathcal{Z}}_X(R): \mathring{H}^{-(n+1)/2}(X) \to \bar{H}^{(n+1)/2}(X)$ is a continuous isomorphism for $\operatorname{Re}(R) \gg 0$, which extends to a holomorphic Fredholm operator valued function of $R \in \mathbb{C}$.
- Fredholm theory: $\tilde{\mathcal{Z}}_X(R)^{-1}: \bar{H}^{(n+1)/2}(X) \to \mathring{H}^{-(n+1)/2}(X)$ extends meromorpically to $R \in \mathbb{C}$. It is "computable" up to $O(R^{-\infty})$.
- The function $h \in H^{(n+1)/2}(\mathbb{R}^n)$ defined from

$$h(x) := R^{-1} \int_X e^{-R|x-y|} (\tilde{\mathcal{Z}}_X(R)^{-1} 1_X)(y) dV(y),$$

solves Meckes' minimization problem, so that

$$\mathcal{M}_X(R) = R^{-1}(\tilde{\mathcal{Z}}_X(R)^{-1}1_X, 1_X)_{L^2}.$$

The magnitude function thus extends meromorphically to $R \in \mathbb{C}$.

Construction of asymptotic expansions

Theorem (Gimperlein-Goffeng-Louca '21)

Let $X \subseteq \mathbb{R}^n$ be a compact domain with smooth boundary. Then

$$\mathcal{M}_X(R) = \frac{1}{n!\omega_n} \sum_{k=0}^{\infty} c_k(X) R^{n-k} + O(R^{-\infty}).$$

The first three coefficients are given by

$$c_0(X) = \operatorname{vol}_n(X), \ c_1(X) = \gamma_{n,1} \operatorname{vol}_{n-1}(\partial X), \ c_2(X) = \gamma_{n,2} \int_{\partial X} H dS,$$

where H is the mean curvature. There exists an iterative way of computing the coefficients $c_k(X)$.

Construction of asymptotic expansions

Theorem (Gimperlein-Goffeng-Louca '21)

Let $X \subseteq \mathbb{R}^n$ be a compact domain with smooth boundary. Then

$$\mathcal{M}_X(R) = \frac{1}{n!\omega_n} \sum_{k=0}^{\infty} c_k(X) R^{n-k} + O(R^{-\infty}).$$

The first three coefficients are given by

$$c_0(X) = \operatorname{vol}_n(X), \ c_1(X) = \gamma_{n,1} \operatorname{vol}_{n-1}(\partial X), \ c_2(X) = \gamma_{n,2} \int_{\partial X} H dS,$$

- Iterative scheme is a result of a Wiener-Hopf factorization using a 'nice' factorization of the symbol.
- The result holds for $X \subseteq \mathbb{R}^N$ a compact submanifold with boundary, and in this case

$$c_k(X) = \int_X \alpha_k(x) dV(x) + \int_{\partial X} \beta_k(x) dS(x),$$

and $\alpha_k = 0$ for all odd k.

There is an iterative scheme to compute α_k and β_{k}

The idea for $X \subseteq \mathbb{R}$

Consider $X=[0,1]\subseteq\mathbb{R}$ so we are looking for a $u\in\mathring{H}^{-1}(0,1)$ with

$$\mathcal{Z}_X(R)u(x) = \int_0^1 e^{-R|x-y|} u(y) dy = 1.$$

Fourier transforming gives

$$\mathcal{F}(\mathcal{Z}_X(R)u)(\xi) = 2R(R^2 + \xi^2)^{-1}\hat{u}(\xi) = 2R(R + i\xi)^{-1}(R - i\xi)^{-1}\hat{u}(\xi).$$

Elementary computations give

$$\begin{cases} (R+i\xi)^{-1} = \mathcal{F}(z_R^+), & z_R^+(x) = \chi_{[0,\infty)}(x)e^{-Rx} \\ (R-i\xi)^{-1} = \mathcal{F}(z_R^-), & z_R^-(x) = \chi_{(-\infty,0]}(x)e^{Rx} \end{cases}$$

The idea for $X \subseteq \mathbb{R}$

Consider $X=[0,1]\subseteq\mathbb{R}$ so we are looking for a $u\in\mathring{H}^{-1}(0,1)$ with

$$\mathcal{Z}_X(R)u(x) = \int_0^1 e^{-R|x-y|} u(y) dy = 1.$$

Fourier transforming gives

$$\mathcal{F}(\mathcal{Z}_X(R)u)(\xi) = 2R(R^2 + \xi^2)^{-1}\hat{u}(\xi) = 2R(R + i\xi)^{-1}(R - i\xi)^{-1}\hat{u}(\xi).$$

Elementary computations give

$$\begin{cases} (R+i\xi)^{-1} = \mathcal{F}(z_R^+), & z_R^+(x) = \chi_{[0,\infty)}(x) e^{-Rx} \\ (R-i\xi)^{-1} = \mathcal{F}(z_R^-), & z_R^-(x) = \chi_{(-\infty,0]}(x) e^{Rx} \end{cases}$$

Paley-Wiener!

Consider $\mathcal{Z}_X(R)^{\pm}f := z_R^{\pm} * f$.

The idea for $X \subseteq \mathbb{R}$, continued

Introduction to magnitude

The operators $\mathcal{Z}_X(R)^{\pm}f:=z_R^{\pm}*f$ satisfy for any $a\in\mathbb{R}$:

$$\begin{cases} \operatorname{supp}(f) \subseteq [a, \infty) \Rightarrow \operatorname{supp}(\mathcal{Z}_X(R)^+ f) \subseteq [a, \infty), \\ \operatorname{supp}(f) \subseteq (-\infty, a] \Rightarrow \operatorname{supp}(\mathcal{Z}_X(R)^- f) \subseteq (-\infty, a]. \end{cases}$$

Therefore, for any real s and a, $\mathcal{Z}_X(R)^{\pm}$ defines isomorphisms

$$\begin{cases} \mathcal{Z}_X(R)^+ : \mathring{H}^s(a,\infty) \to \mathring{H}^{s+1}(a,\infty), \ \mathcal{Z}_X(R)^+ : \overline{H}^s(-\infty,a) \to \overline{H}^{s+1}(-\infty,a), \\ \mathcal{Z}_X(R)^- : \mathring{H}^s(-\infty,a) \to \mathring{H}^{s+1}(-\infty,a), \ \mathcal{Z}_X(R)^- : \overline{H}^s(a,\infty) \to \overline{H}^{s+1}(a,\infty). \end{cases}$$

Problem arising in the general setting

How to factor $\mathcal{Z}_X(R): \mathring{H}^{-1}(0,1) \to \overline{H}^1(0,1)$ near ∂X as mapping

$$\mathring{H}^{-1}(0,1) \xrightarrow{\mathcal{Z}_{X,+}(R)} \mathring{H}^{0}(0,1) = L^{2}(0,1) = \overline{H}^{0}(0,1) \xrightarrow{\mathcal{Z}_{X,-}(R)} \overline{H}^{1}(0,1)?$$

Structure of inverse operator

$$\mathcal{Z}_X(R)^{-1} = \tilde{\chi}_1 Q^{-1} \chi_1 + \tilde{\chi}_2^{-1} \mathcal{Z}_{X,+}(R)^{-1} \mathcal{Z}_{X,-}(R)^{-1} \chi_2 + S$$

where χ_j gluing functions, Q^{-1} interior parametrix, $S = O(R^{-\infty})$.

The idea for $X \subseteq \mathbb{R}$, continued

Formally, $(\mathcal{Z}_X(R)^{\pm})^{-1} = R \pm \partial_x$. Is it simply that

$$\mathcal{Z}_X(R)^{-1}f = \frac{1}{2R}(R + \partial_x)(R - \partial_x)f$$
?

For $f = 1_{[0,1]} \in \overline{H}^1(0,1)$, then

$$\frac{1}{2R}(R+\partial_x)(R-\partial_x)1_{[0,1]} = \frac{1}{2R}(R+\partial_x)(\underbrace{R1_{[0,1]}}_{\in \mathring{H}^0(0,1)}) = \frac{R}{2}1_{[0,1]} + \frac{1}{2}(\delta_{x=1} - \delta_{x=0}).$$

But we have that

$$\mathcal{Z}_X(R)\left(\frac{R}{2}\mathbf{1}_{[0,1]} + \frac{1}{2}(\delta_{x=1} - \delta_{x=0})\right) = 1 - e^{-R(1-x)},$$

It does not hold that $e^{-R(1-x)} = O(R^{-\infty})$ in norm sense on $\overline{H}^1(0,1)!$ The correct answer is

$$\mathcal{Z}_X(R)^{-1}1_{[0,1]} = \frac{R}{2}1_{[0,1]} + \frac{1}{2}(\delta_{x=1} + \delta_{x=0}).$$

The idea for $X \subseteq \mathbb{R}$, continued

Formally, $(\mathcal{Z}_X(R)^{\pm})^{-1} = R \pm \partial_X$. Is it simply that

$$\mathcal{Z}_X(R)^{-1}f = \frac{1}{2R}(R + \partial_x)(R - \partial_x)f$$
?

For $f = 1_{[0,1]} \in \overline{H}^1(0,1)$, then

$$\frac{1}{2R}(R+\partial_x)(R-\partial_x)1_{[0,1]}=\frac{1}{2R}(R+\partial_x)(\underbrace{R1_{[0,1]}})=\frac{R}{2}1_{[0,1]}+\frac{1}{2}(\delta_{x=1}-\delta_{x=0}).$$

But we have that

$$\mathcal{Z}_X(R)\left(\frac{R}{2}\mathbf{1}_{[0,1]} + \frac{1}{2}(\delta_{x=1} - \delta_{x=0})\right) = 1 - e^{-R(1-x)},$$

It does not hold that $e^{-R(1-x)} = O(R^{-\infty})$ in norm sense on $\overline{H}^1(0,1)!$ The correct answer is

$$\mathcal{Z}_X(R)^{-1}1_{[0,1]} = \frac{R}{2}1_{[0,1]} + \frac{1}{2}(\delta_{x=1} + \delta_{x=0}).$$

To fix the sign mistake: build $\mathcal{Z}_{X,+}(R)^{-1}$ from gluing $(\mathcal{Z}_X(R)^{\pm})^{-1}$ at x=0 with $(\mathcal{Z}_X(R)^{\mp})^{-1}$ at x=1... Morally we have that

$$\mathcal{Z}_X(R)^{-1}=rac{1}{2R}(R+\partial_x)(R-\partial_x)$$
 at $x=1$, $\mathcal{Z}_X(R)^{-1}=rac{1}{2R}(R-\partial_x)(R+\partial_x)$ at

Extension to manifolds

Compact, smooth $X \subseteq M$ for d satisfying a technical assumption, e.g.

- M is a sphere with geodesic distance
- M is a Riemannian manifold with geodesic distance and diam(X) < inj(M)
- M is a submanifold of \mathbb{R}^n with the subspace metric

For large R, $\tilde{\mathcal{Z}}_R = n!\omega_n(R^2 - \Delta)^{-\frac{n+1}{2}} + \text{l.o.t}(R, \text{derivatives})$

Some open analytic problems for magnitude

- For general Riemannian manifolds an improved understanding of the cut-locus seems required.
- The magnitude function for domains with edges: $\mathcal{M}_{X\cap Y}$?
- Poles of \mathcal{M}_X analogous to scattering resonances. Interpretation: Why is there a pole at R=-3 for $B(0,1)\subset\mathbb{R}^5$? Counting: Sharp upper and lower bounds? Does a generic perturbation of $B(0,1)\subset\mathbb{R}^{2m-1}$ have infinitely many poles?
- Geometric interpretation of the Taylor coefficients for \mathcal{M}_X at R=0? Meckes (2020) proves *upper bounds* in terms of intrinsic volumes.

Magnitude is just one example of a semiclassical pseudodifferential boundary problem. Related questions arise for log-gases, random matrices, optimal placement problems, . . .

At beginning of talk I asked:

What is the magnitude of the unit disk?

This talk: qualitative properties and semiclassical limit for large radius.

Can one find an exact formula for the solution of the boundary problem for $(1-\Delta)^{3/2}$ outside the disk?

Thank you for your attention!

More details in: arXiv:1706.06839 and more to come very soon

Magnitude bibliography: maths.ed.ac.uk/~tl/magbib