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Examples of “size”

A good notion of size satisfies:
Size(AU B) = Size(A) + Size(B) — Size(AN B)

Size(A x B) = Size(A) Size(B)

We shall interpret these conditions very loosely...
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A good notion of size satisfies:
Size(AU B) = Size(A) + Size(B) — Size(AN B)

Size(A x B) = Size(A) Size(B)

We shall interpret these conditions very loosely...

Examples of size-like notions

o Cardinality of set

Dimension of vector space
Measure of a measurable set

Euler characteristic of topological space

Intrinsic volumes of convex set (volume, surface area, total mean
curvature, . ..)

Capacity in potential theory / diversity of biological system

o Magnitude
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Examples of “size”

A good notion of size satisfies:
Size(AU B) = Size(A) + Size(B) — Size(AN B)

Size(A x B) = Size(A) Size(B)

We shall interpret these conditions very loosely...

Examples of size-like notions

o Cardinality of set

Dimension of vector space
Measure of a measurable set

Euler characteristic of topological space

Intrinsic volumes of convex set (volume, surface area, total mean
curvature, . ..)

Capacity in potential theory / diversity of biological system
e Magnitude (Leinster '08)




Introduction to magnitude
[¢] le]ele]ele]e)

Triangulated manifolds:

Euler characteristic Homology theory

= persistent homology

Semiclassical Analysis -Dim, volume, surface area, curvatures

Barceld, Carbery, Amer J. Math. (2017)
Geom . Measure Theory Gimperlein, Goffeng, Amer J. Math. (2021), + Louca (2021)

Leinster, Meckes, survey article (2017)
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Outline of talk

What is the magnitude of the unit disk?

@ Magnitude of compact domains X in R” and manifolds

@ What is magnitude?

o Leinster-Willerton conjecture: geometry of Mx(R) := mag(R - X)

@ Technically: semiclassical analysis of a pseudodifferential boundary
problem for (R? — A)*("+1)/2 1 [ o.t.
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Let Z € R™". w weighting on Z if
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Magnitude of a matrix

Let Z € R™". w weighting on Z if

1

Definition (Magnitude of a matrix)

If Z admits a weighting w and Z7 admits a weighting w’,

mag(Z) := i w; = i w!.
i=1 i=1

Set mag(Z) := +o0 otherwise.
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Magnitude of a matrix

Let Z € R™". w weighting on Z if
1

Definition (Magnitude of a matrix)

If Z admits a weighting w and Z7 admits a weighting w’,

mag(Z) := z”: w; = 2": w!.
i=1 i=1

Set mag(Z) := +oco otherwise.

Check: mag(Z2) is independent of choice of weighting w, W:

mag(2) = (w,1) = (w, ZTwW') = (Zw,w') = (ZW,w') = (W, Z"W)= (W, 1)
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Magnitude of a matrix

Let Z € R™". w weighting on Z if

1

Definition (Magnitude of a matrix)

If Z admits a weighting w and Z7 admits a weighting w’,

mag(Z2) := i w; = i w!.
i=1 i=1

Set mag(Z) := +o0 otherwise.

Check: mag(Z) is independent of choice of weighting.
If Z invertible, mag(Z) = (w,1) = (Z711,1) = Z;,j(z_l)ij-
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Magnitude of (finite) categories and metric spaces

If C is a finite category, we set

Ze = (#More(i, j))ijeobjcy and mag(C) := mag(Zc).
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(Figure by T.-D. Bradley, arxiv:1809.05923)
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Magnitude of (finite) categories and metric spaces

If C is a finite category, we set

Ze = (#Morc(i,j)),-,jeObj(c) and mag(C) := mag(Zc).

Theorem (Leinster, original motivation for magnitude)

Let C denote a finite category and BC its classifying space, then
X(BC) = mag(C).

Similarly, mag recovers Euler characteristic of a triangulated manifold

(Ficure bv T -D Bradlev arxiv:-1800 05023)
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Magnitude of (finite) categories and metric spaces

If C is a finite category, we set

Ze = (#Morc(i,j)),-’je()bj(c) and mag(C) := mag(Zc).

Theorem (Leinster, original motivation for magnitude)

Let C denote a finite category and BC its classifying space, then
X(BC) = mag(C).

If (X, d) is a finite metric space, category theory tells us to set

Zx = (e74@D), ex and  mag(X) := mag(Zx).
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Magnitude of (finite) categories and metric spaces

If C is a finite category, we set
Zo = (#l\/lorc(i,j)),-’je()bj(c) and mag(C) := mag(Zc).

Theorem (Leinster, original motivation for magnitude)

Let C denote a finite category and BC its classifying space, then

x(BC) = mag(C).

If (X,d) is a finite metric space, category theory tells us to set
Zx = (e*d(avb))a,bex and mag(X) := mag(Zx).

Examples

@ One point space: mag(:) =1
@ Discrete "metric” space X: mag(X) = |X|
o (Complete graph) N points, distance R:

N

N
) = T-DeF

mag(- < R — -
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Example: a 3-point space (Simon Willerton)
Take the 3-point space

10000
X= O——_ ¢
10006

e When t is small, X looks like a 1-point space.
e When t is moderate, X looks like a 2-point space.
e When t is large, X looks like a 3-point space.

Indeed, the magnitude of X as a function of t is:

0.0001 0.01 1 100

(Slide by T. Leinster.)
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The magnitude function of a metric space

If (X,d) is a finite metric space, we set
Zx = (79D, ex and  mag(X,d) := mag(Zx).
The magnitude function of (X, d) is given by

Mx(R) = mag(X,R - d) (R>0).

Observation

@ M extends meromorphically to R € C
@ Mx(R)=|X|+ O(R ) as R — o
o ./\/lx(O) =1
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The magnitude function of a compact metric space

(X, d) compact metric space, M(X) finite Borel measures on X.
Zx(R) : M(X) = C(X), Zx(R)u(x) = / e RN qpu(y).
X

A weighting measure ug is a solution to the equation Zx(R)ur =1 on X.

Definition / Theorem (Meckes)

Let (X,d) a positive definite compact metric space, i.e. Za(R) is a positive
definite matrix for all finite A C X. Then

Mx(R) := sup{Ma(R) : A C X finite}

If (X,d) admits a weighting measure, Mx(R) = ur(X).
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The magnitude function of a compact metric space

(X, d) compact metric space, M(X) finite Borel measures on X.
Zx(R): M(X) = C(X), Zx(R)u(x) = / e R qp(y).
X

A weighting measure pr is a solution to the equation Zx(R)ur =1 on X.

Explicitly for X C R", Zx(R)f(x) := [,, e " If(y)dV(y) = gr * f(x),
where gr(x) 1= e RXl. With gr(&) = nlw,R(R? + |¢[?)~("+1)/2,

Zx(R) = nlw,R(R* — A)~(")/2,




Introduction to magnitude
0000000

The magnitude function of a compact metric space

(X, d) compact metric space, M(X) finite Borel measures on X.
Zx(R) : M(X) = C(X),  Zx(R)u(x) = / o AN ().
X
A weighting measure pr is a solution to the equation Zx(R)ur =1 on X.

Explicitly for X C R", Zx(R)f(x) := [, e RYIf(y)dV(y) = gr * F(x),
where ggr(x) := e RIXI With 8r(€) = nlw,R(R? + |§|2)_("+1)/2,

Zx(R) = nlw,R(R* — A)~("/2,
The function h := Zx(R)ur extends to R”, with h =1 on X.

Theorem (Meckes)

Mx(R) = n!%? inf{||(R2 — D) AR ey - h € HDAR™), h=10n X

1
= mH(RZ - A)("+1)/4h|ﬁ2(n§n)

where h € H"/2(R") solves

(R* = A)™V2h =0 weakly in R"\ X, h=1on X.
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The magnitude function of a compact metric space

(X, d) compact metric space, M(X) finite Borel measures on X.
Zx(R) : M(X) = C(X), Zx(R)u(x) := / e RN qp(y).
X

A weighting measure ug is a solution to the equation Zx(R)ug = 1 on X.
Explicitly for X C R",

Zx(R) = nlw,R(R* — A)~(")/2,

Theorem (Meckes)

1 n
Mx(R) = ——— (R = 8)"/ 2

wnR
where h € H"™Y/2(R") solves

(R*—A)"™2ph =0 weakly in R"\ X, h=1on X.

X =[-1,1] CR. Mx(R) =1+ R = x(X) + LenetX g,
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Geometry of the magnitude function

Conjecture (Leinster, Willerton)

Let X C R" be a compact convex subset. Then

Vi(X) ok
R

k!wk

Mx(R) =

Here Vi(X) is the k-th intrinsic volume of X, wk volume of unit ball in RX.

For X a smooth convex body: Vi(X) = vola(X), Va—1(X) = volp—1(9X),
Vaea(X) = [,5 HAS, .., Vo(X) = x(X).

Special cases:
n=1: Mx(R) _ X(X) + Length(X)R
n=2: MX(R) _ X(X) + Pcrlm 9X) R+ Arca(X)R ]

The conjecture was motivated by computational examples, the historical
analogy with the Euler characteristic, and Hadwiger's theorem.
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Geometry of the magnitude function

Conjecture (Leinster, Willerton)

Let X C R" be a compact convex subset. Then
"\ Vi(X) RK

Mx(R) = Klwk

Here Vi(X) is the k-th intrinsic volume of X, wi volume of unit ball in R*.

For X a smooth convex body: Vi(X) = vola(X), Va—1(X) = volp—1(9X),
Viea(X) = [,y HAS, ..., Vo(X) = x(X).

Consequences include: Inclusion-Exclusion principle

Maug = Ma+ Mp — Mans .

Conjecture true for X C R

X =[-1,1] CR. Mx(R) =1+ R = x(X) + LezetX® g,
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Leinster-Willerton conjecture: (Counter) Examples

Barcelo, Carbery 2017 prove the conjectured behaviour for R — co and R — 0:

Let X C R" be a compact smooth domain. Then

vol(X)

Mx(R) = o R" + o(R"), as R — oo,

lim Mx(R) = 1.
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Leinster-Willerton conjecture: (Counter) Examples

Barcelo, Carbery 2017 prove the conjectured behaviour for R — oo and R — O:

Let X C R" be a compact smooth domain. Then

vol(X)

Mx(R) = R" 4+ o(R"), as R — oo,

nlwn

lim Mx(R) = 1.

Furthermore, they solve the magnitude PDE for X = B(0,1) CR”, n=5:

1 n
Mx(R) = - [I(R? = )" hl )

wpR
where h € H"/2(R") satisfies
(RP = A)™Y2h =0 weakly in R"\ X, h=1on X.

The result is
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Leinster-Willerton conjecture: (Counter) Examples

Barcelo, Carbery 2017 prove the conjectured behaviour for R — oo and R — 0:

Theorem

Let X C R" be a compact smooth domain. Then

= 0

AanOMX(R) =1.

R" 4+ o(R"), as R — oo,

| A

Counterexample to Leinster-Willerton conjecture (Barcelo, Carbery 2017)

Let X = B(0,1) C R® be the unit ball. Then

M (R)_Rj 3R® 4+ 27R* 4+ 105R° 4 216R° 4 72
XA 24(R +3)

Not a polynomial. Also coefficients of R¥ wrong.

Willerton obtains similar rational functions for balls in odd dimensions.

A\
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Asymptotic Leinster-Willerton conjecture

With M. Goffeng, we studied the magnitude PDE for general X, n odd:
(R? — A)"™D/2ph =0 weakly in R"\ X, h=1on X.
Using Green's formula, for suitable boundary traces Dh|sx of order k:

1

Mx(R) = m”("?2 - A)(n+1)/4h||%2(uv)

(X 1 _ N

:V°I( Jgo — N R"¥ [ DY hdS
nwp nwp %<j§m Jox
(X 1 [

— "°|( Jpr — > RHJ/ Ayj—1(R) 1dS.
n'wp niwp ni<m )¢

2 >

The Ak are components of an m x m Dirichlet-to-Neumann operator, a
parameter-elliptic pseudodifferential operator on X, meromorphic in R.
Analytic Fredholm theory and an explicit symbol computation show:
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Asymptotic Leinster-Willerton conjecture

MX(R) _ VO|n(X) R" _ 1 Z Rn72j/8x /\Zj—l(R) 1dS.

nlw, nlw,

The Ak are components of an m x m Dirichlet-to-Neumann operator, a
parameter-elliptic pseudodifferential operator on 9X, meromorphic in R.
Analytic Fredholm theory and an explicit symbol computation show:

Theorem (Gimperlein, Goffeng, Amer J Math 2021 +e)

Let X C R"” be compact with smooth boundary and n =2m — 1.

@ Mx extends meromorphically to C.

@ Mx holomorphic in sector {|arg(z)| < ;i5}-

Finite number of poles in any sector {|arg(z)| < a}, a < 3.
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Asymptotic Leinster-Willerton conjecture

Theorem (Gimperlein, Goffeng, Amer J Math 2021 +¢)
Let X C R" be compact with smooth boundary and n=2m — 1.
@ Mx extends meromorphically to C.

@ Mx holomorphic in sector {|arg(z)| < 75}
Finite number of poles in any sector {|arg(z)| < a}, a < 3.

@ There are constants (cx(X))ken such that for all N € N

1 n+N
Mx(R) = —— > alX)R™K+ O(R™M).
N k=0

The first four coefficients are given by
c(X) = voI,,(X) (X) = mvol,_1(0X),

a(X)=— (n— 1)/ HdS, (H mean curvature of 0X)

a(X) = an/ H? dS (Willmore energy)
oX
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Asymptotic Leinster-Willerton conjecture

Theorem (Gimperlein, Goffeng, Amer J Math 2021 +¢)

Let X C R" be compact with smooth boundary and n=2m — 1.
@ Mx extends meromorphically to C.
@ Mx holomorphic in sector {|arg(z)| < 75}

Finite number of poles in any sector {|arg(z)| < a}, a < 3.

@ There are constants (cx(X))ken such that for all N € N

1 n+N
Mx(R) = —— > alX)R™K+ O(R™M).
N k=0

The first four coefficients are given by

co(X) = volu(X), c1(X) = mvol,_1(0X),

m2

o(X) = > (n—1) /8X HdS, (H mean curvature of 9.X)

a(X) = a,,/ H? dS (Willmore energy, not intrinsic volume)
oX
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Asymptotic Leinster-Willerton conjecture

Theorem (Gimperlein, Goffeng, Amer J Math 2021 +¢)
Let X C R" be compact with smooth boundary and n =2m — 1.
@ Mx extends meromorphically to C.

us

@ Mx holomorphic in sector {|arg(z)| < 75}
Finite number of poles in any sector {|arg(z)| < a}, a < 3.

@ There are constants (cx(X))ken such that for all N € N

1 n+N
Mx(R) = —— > aX)R™F+ O(R™M).
N k=0

The first four coefficients are given by

co(X) = voly(X), c(X) = mvol,_1(0X),
2
c2(X):1 (n—1) HdS, C3(X):an/ H? dS
2 ox ox
@ For j > 4, the coefficient ¢;j(X) is an integral over X of a universal
polynomial in covariant derivatives of the fundamental form of total
order /| — 2 and total degree j — 1.
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Corollaries

Asymptotic inclusion-exclusion

Let n=2m—1. If A,B CR", as well as AU B and AN B are smooth
compact domains then

MAug(R) = MA(R) + MB(R) — MAQB(R) + O(Rioo).

Definite failure of original Leinster-Willerton conjecture

The coefficient c3(X) = a [, H*dS is not Hausdorff continuous and
not an intrinsic volume. Indeed, for n = 3 by homogeneity c3(X) would
need to be proportional to the Euler characteristic. But ¢z = Willmore
energy can be made arbitrarily large on surfaces of genus zero.

Can you “magnitude” the shape of a drum?

Let X as in theorem, B ball. If Mx ~ Mg, then X is isometric to B
(use asymptotics & isoperimetric inequality).

There are nonconvex domains X, Y = balls with a hole which are not
isometric, but Mx = My (Meckes).
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Poles and zeros of the magnitude function Mg,
B>1 = unit ball in dimension n = 21

+20
o poles L5
+ +  zeros
£ 7 10
o +
+
a
+ L+ @ *
+ 0O + + ot +
+ 0 + 5
+ o + ot 04
+ 0O + O + ot 97 .

+ o + O + ot G
*—00—5—0—0—5—04—5—*0—5%4—0%—%
25 20 -15 + @ig + O_5* 5

+ oo % & +5a,

+ o . + o
+ o u+ o, *
+ o Y Us g T
+ oo, +
a
* oo, +
oo+ -10
* o os
+
-15
+-20
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Poles and zeros of Mg, in dimensions n = 13,17,21

20 20
o n=21 g n=21
* n=17 15 a * n=17 15
+ n= + n=
o n=13 © o o n=13 .
o B o o 2
a % +0 o % o *
o * 5 o * LY 5
o * o Py *.o
o * + L] * + *
o u*g*g*u‘*"m o P u*?*é*‘:‘?‘n
25 20" o5 B0 *u‘;y»ﬂ 5 25 20 o —fé*“u *E*Tt*";:hﬂu’.e 5
* +
o ¥ A g ¥ o Pl
LI “u;u* 5 LI S nu*"‘“* o s
o o 0 " L 10
o a o
-15 a 15
-20 -20

(a) (b)

Figure: (a) poles, (b) zeros.
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Computer algebra delicate:
Naive computation of poles of Mp,, (with Maple, Sage)

A0 ®

-30 -26 -20 -15 -10 -5 0
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Poles of M x for spherical shell in dimension 3
X = (2Bs) \ BS

infinite number of poles approaching curve |Re(R)| = log(|Im(R)|)

e 2R(R?2 + 1)+ 2R® —3R? + 2R — 1)
sinh(2R) — 2R

.
Mx(R) = 6R3+5R2+2R+2+
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Asymptotic Leinster-Willerton conjecture

Theorem (Gimperlein, Goffeng, Amer J Math 2021 +¢)
Let X C R" be compact with smooth boundary and n =2m — 1.
@ Mx extends meromorphically to C.

us

@ Mx holomorphic in sector {|arg(z)| < 75}
Finite number of poles in any sector {|arg(z)| < a}, a < 3.

@ There are constants (cx(X))ken such that for all N € N

1 n+N
Mx(R) = —— > aX)R™F+ O(R™M).
N k=0

The first four coefficients are given by

co(X) = voly(X), c(X) = mvol,_1(0X),
2
c2(X):1 (n—1) HdS, C3(X):an/ H? dS
2 ox ox
@ For j > 4, the coefficient ¢;j(X) is an integral over X of a universal
polynomial in covariant derivatives of the fundamental form of total
order /| — 2 and total degree j — 1.
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What is the magnitude of the unit disk?

In even dimensions almost nothing h

as been known about magnitude.

-
€

\
4

Mp,0,1)(R) =7
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What is the magnitude of the unit disk?

In even dimensions almost nothing has been known about magnitude.

&
@

Theorem (Gimperlein, Goffeng, Louca 2021)

1 3
MBQ(OJ)(R) = ERZ aF ER == O(l)

More generally, we extend the previous statements on the meromorphic
continuation and asymptotic expansion of Mx to smooth compact
domains X C M, where M = R”" or (under technical assumptions) M
manifold with metric.
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What is the magnitude of the unit disk?

In even dimensions almost nothing has been known about magnitude.

Y
@

Theorem (Gimperlein, Goffeng, Louca 2021)

1 3
MBZ(O,l)(R) = §R2 + ER + O(l)

e Study directly the boundary problem for Zx(R) = (R? — A)~("+1)/2;
Zx(R)pr =1 in X, suppug C X.

@ Analysis relies on ideas of Hérmander, Eskin, as recently developed
by Grubb for fractional boundary problems involving (—A)*, s> 0.
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@ X C R" compact domain with smooth boundary
(more generally: X C R" compact submanifold with boundary).

@ Consider the operator

E(RIF() = g 2x(RIF(x) = & [ () av(y)

@ ForscR:
HP(R") = {u: (1+[P)"%a € (RN}
H*(X) := {u € H*(R") : supp(u) C X};
A (X) == H*(R")/H*(R"\ X) = {u|x : ue H(R")}.
o H°(X) = A°(X) = L*(X) and the [*-pairing extends to a perfect pairing

o

A*(X) x H*(X) = C.
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Some facts

° Z~X(R) is a parameter-elliptic pseudodifferential operator of order
—n—1.

o Zx(R): H-(m1/2(X) — H("+1)/2(X) is a continuous isomorphism
for Re(R) > 0, which extends to a holomorphic Fredholm operator
valued function of R € C.

e Fredholm theory: Zx(R)™!: H("D/2(X) — H~("1)/2(X) extends
meromorpically to R € C. It is “computable” up to O(R™°).
o The function h € H("*1)/2(R") defined from

) = R [ e B (R) M0V ()
X
solves Meckes' minimization problem, so that
Mx(R) = RTH(Zx(R) '1x, 1x).2-

The magnitude function thus extends meromorphically to R € C.
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Construction of asymptotic expansions

Theorem (Gimperlein-Goffeng-Louca '21)
Let X CR" be a compact domain with smooth boundary. Then

1 — n—k —00
The first three coefficients are given by

co(X) = vols(X), a(X) = yn1vol,—1(0X), a(X) = 'y,,,g/ Hds,
X

where H is the mean curvature. There exists an iterative way of
computing the coefficients ci(X).




Even dimensions
[e]e]e] le]elele)

Construction of asymptotic expansions

Theorem (Gimperlein-Goffeng-Louca '21)

Let X CR" be a compact domain with smooth boundary. Then
o kz; ck(X)R"™K + O(R™).
The first three coefficients are given by

co(X) = voly(X), c1(X) = yn1volp_1(0X), c(X) = ’y,,,g/ HdS,
ax

Mx(R) =

@ lIterative scheme is a result of a Wiener-Hopf factorization using a
‘nice’ factorization of the symbol.

@ The result holds for X C RN a compact submanifold with boundary,
and in this case

a(X) = /Xak(x)dV(X) + X Br(x)dS(x),

and oy = 0 for all odd k.
There is an iterative scheme to compute oy and Sy.



Even dimensions
[e]e]e]e] lelele)

The idea for X C R

Consider X = [0,1] C R so we are looking for a u € H~1(0,1) with

1
Zx(R)ul) = [ e uly)ay = 1.
Fourier transforming gives
F(2x(R)u)(€) = 2R(R? + €)1 0(&) = 2R(R + i§) " (R — i§) 4 (¢).

Elementary computations give

{(R €)= F(zh),  z5(x) = Xppeey(X)e R
(R—i€)™ = F(z5), 25 (x) = X(—oo ) (x)e’
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The idea for X C R

Consider X = [0,1] C R so we are looking for a u € H~1(0,1) with

1
Zx(R)u(x) = / e Rx=vly(y)dy = 1.
0
Fourier transforming gives
F(2x(R)u)(§) = 2R(R? + €3)71a(8) = 2R(R + i) (R — i§) T a(€).
Elementary computations give

{(R +i€) V= F(2R),  z4(x) = X[o,00)(x)e R
(R—i&) ™ =Flzg), 2zg(X) = X(—o00)(x)e’

Paley-Wiener!
Consider Zx(R)*f := z& x f.
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The idea for X C R, continued

The operators Zx(R)* f = z% * f satisfy for any a € R:
supp(f) C [a,00) = supp(2x(R)*f) < [a, 00),
supp(f) C (—o0, a] = supp(Zx(R)~f) C (—o0, a.

)=

Therefore, for any real s and a, Zx(R)™ defines isomorphisms

Zx(R)*™ : F5(a, 00) — F*+1(a,00), Zx(R)" : H'(—o00,a) — H (00, a),
Zx(R)™ : (=00, a) — H (=00, a), Zx(R)™ : H(a,00) — H " (a, 00).

Problem arising in the general setting

How to factor Zx(R) : H~1(0,1) — ﬁl(O, 1) near X as mapping
Zx,+(R)

Zx._(R) —1

H71(0,1) F°(0,1) = L2(0,1) = H(0,1) H(0,1)?

|
|

Structure of inverse operator

Zx(R) ' =%1Q 1 + %5 2x+(R) "2x—(R) 'x2+ S

where ; gluing functions, Q! interior parametrix, S = O(R™>).
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The idea for X C R, continued

Formally, (Zx(R)*)™! = R + 0,. Is it simply that
Zx(R) M = 55 (R+ 0x)(R — 8,)f?
For f =1joq € PI(O, 1), then
ar(R+ 0x)(R = 0)1p1) = 2r(R+9:)(Rlp) = 51,1 + 5(dx=1 — dx=0)-

F9(0,1
But we have that eHo.)

Zx(R) (B1p,1) + 2(6x=1 — 0x=0)) = 1 — e RO,

It does not hold that e=R(1=%) = O(R=>) in norm sense on H (0, 1)!
The correct answer is

Zx(R) My = 31 + 3(0x=1 + dx=0).
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The idea for X C R, continued

Formally, (Zx(R)*)™! = R + 0,. Is it simply that
Zx(R) M = 55 (R+ 0x)(R — 8,)f?
For f =1joq € PI(O, 1), then
ar(R+ 0x)(R = 0)1p1) = 2r(R+9:)(Rlp) = 51,1 + 5(dx=1 — dx=0)-

F9(0,1
But we have that €Ho(0.1)

Zx(R) (Bl + 2(6x=1 — 6xm0)) = 1 — e RO,
It does not hold that e=R(1=%) = O(R=>) in norm sense on H (0, 1)!
The correct answer is
Zx(R) 1y = 31 + 3(0x=1 + dx=0).

To fix the sign mistake: build Zx +(R)™! from gluing (Zx(R)*)~?! at
x = 0 with (Zx(R)¥)~! at x = 1... Morally we have that

Zx(R) ™ = 5:(R+0)(R—0x) at x=1, Zx(R)™* = 55(R — 0x)(R + 0x) at
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Extension to manifolds

Compact, smooth X C M for d satisfying a technical assumption, e.g.
@ M is a sphere with geodesic distance
@ M is a Riemannian manifold with geodesic distance and
diam(X) < inj(M)
@ M is a submanifold of R” with the subspace metric

ntl

For large R, Zg = nlw,(R? — A)~"% + l.o.t(R, derivatives)
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Some open analytic problems for magnitude

o For general Riemannian manifolds an improved understanding of the
cut-locus seems required.

@ The magnitude function for domains with edges: Mxny?

@ Poles of Mx analogous to scattering resonances.
Interpretation: Why is there a pole at R = —3 for B(0,1) C R>?
Counting: Sharp upper and lower bounds? Does a generic
perturbation of B(0,1) C R?®™~1 have infinitely many poles?

@ Geometric interpretation of the Taylor coefficients for Mx at R = 07
Meckes (2020) proves upper bounds in terms of intrinsic volumes.

Magnitude is just one example of a semiclassical pseudodifferential
boundary problem. Related questions arise for log-gases, random
matrices, optimal placement problems, ...
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At beginning of talk | asked:

What is the magnitude of the unit disk?

This talk: qualitative properties and semiclassical limit for large radius.

Can one find an exact formula for the solution of the boundary problem
for (1 — A)3/2 outside the disk?



Conclusions
[e]e]e] ]

Thank you for your attention!

More details in: arXiv:1706.06839
and more to come very soon

Magnitude bibliography: maths.ed.ac.uk/~tl/magbib


maths.ed.ac.uk/~tl/magbib
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