
Introduction to magnitude Leinster-Willerton conjecture Even dimensions Conclusions

The magnitude function:
Spectral geometry and

fractional-order boundary problems

Heiko Gimperlein

Heriot-Watt University, Edinburgh

(joint with Magnus Goffeng and Nikoletta Louca)

Oldenburg Analysis Seminar, 3 June 2021



Introduction to magnitude Leinster-Willerton conjecture Even dimensions Conclusions

Examples of “size”

A good notion of size satisfies:

Size(A ∪ B) = Size(A) + Size(B)− Size(A ∩ B)

Size(A× B) = Size(A) Size(B)

We shall interpret these conditions very loosely...
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Examples of “size”

A good notion of size satisfies:

Size(A ∪ B) = Size(A) + Size(B)− Size(A ∩ B)

Size(A× B) = Size(A) Size(B)

We shall interpret these conditions very loosely...

Examples of size-like notions

Cardinality of set

Dimension of vector space

Measure of a measurable set

Euler characteristic of topological space

Intrinsic volumes of convex set (volume, surface area, total mean
curvature, . . . )

Capacity in potential theory / diversity of biological system

Magnitude
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Examples of “size”

A good notion of size satisfies:

Size(A ∪ B) = Size(A) + Size(B)− Size(A ∩ B)

Size(A× B) = Size(A) Size(B)

We shall interpret these conditions very loosely...

Examples of size-like notions

Cardinality of set

Dimension of vector space

Measure of a measurable set

Euler characteristic of topological space

Intrinsic volumes of convex set (volume, surface area, total mean
curvature, . . . )

Capacity in potential theory / diversity of biological system

Magnitude (Leinster ’08)
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Magnitude
Notion of size: How big is X?

Leinster, Doc. Math. (2008)
Euler characteristic for enriched categories

Topology Algebra
Projective modules over Koszul algebra:

Euler form

Ecology
Relates to diversity of 

ecosystem 
(number of species)

Elliptic PDEs
Semiclassical Analysis
Geom. Measure Theory

Geometry 
Dim, volume, surface area, curvatures 

Barceló, Carbery, Amer J. Math. (2017)
Gimperlein, Goffeng, Amer J. Math. (2021), + Louca (2021)
Leinster, Meckes, survey article (2017) 

metric spaces
number of points

Triangulated manifolds: 
Euler characteristic Homology theory

≈ persistent homology
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Outline of talk

What is the magnitude of the unit disk?

What is magnitude?

Magnitude of compact domains X in Rn and manifolds

Leinster-Willerton conjecture: geometry of MX (R) := mag(R · X )

Technically: semiclassical analysis of a pseudodifferential boundary
problem for (R2 −∆)±(n+1)/2 + l .o.t.
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Magnitude of a matrix

Let Z ∈ Rn×n. w weighting on Z if

Zw =

1
...
1

 =: 1.
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Magnitude of a matrix

Let Z ∈ Rn×n. w weighting on Z if

Zw =

1
...
1

 =: 1.

Definition (Magnitude of a matrix)

If Z admits a weighting w and ZT admits a weighting w ′,

mag(Z) :=
n∑

i=1

wi =
n∑

i=1

w ′i .

Set mag(Z) := +∞ otherwise.
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Magnitude of a matrix

Let Z ∈ Rn×n. w weighting on Z if

Zw =

1
...
1

 =: 1.

Definition (Magnitude of a matrix)

If Z admits a weighting w and ZT admits a weighting w ′,

mag(Z) :=
n∑

i=1

wi =
n∑

i=1

w ′i .

Set mag(Z) := +∞ otherwise.

Check: mag(Z) is independent of choice of weighting w , w̃ :

mag(Z) = 〈w , 1〉 = 〈w ,ZTw ′〉 = 〈Zw ,w ′〉 = 〈Zw̃ ,w ′〉 = 〈w̃ ,ZTw ′〉= 〈w̃ , 1〉
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Magnitude of a matrix

Let Z ∈ Rn×n. w weighting on Z if

Zw =

1
...
1

 =: 1.

Definition (Magnitude of a matrix)

If Z admits a weighting w and ZT admits a weighting w ′,

mag(Z) :=
n∑

i=1

wi =
n∑

i=1

w ′i .

Set mag(Z) := +∞ otherwise.

Check: mag(Z) is independent of choice of weighting.
If Z invertible, mag(Z) = 〈w , 1〉 = 〈Z−11, 1〉 =

∑
i,j(Z−1)ij .
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Magnitude of (finite) categories and metric spaces

If C is a finite category, we set

ZC := (#MorC(i , j))i,j∈Obj(C) and mag(C) := mag(ZC).

(Figure by T.-D. Bradley, arxiv:1809.05923)
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Magnitude of (finite) categories and metric spaces

If C is a finite category, we set

ZC := (#MorC(i , j))i,j∈Obj(C) and mag(C) := mag(ZC).

Theorem (Leinster, original motivation for magnitude)

Let C denote a finite category and BC its classifying space, then

χ(BC) = mag(C).

Similarly, mag recovers Euler characteristic of a triangulated manifold.

(Figure by T.-D. Bradley, arxiv:1809.05923)
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Magnitude of (finite) categories and metric spaces

If C is a finite category, we set

ZC := (#MorC(i , j))i,j∈Obj(C) and mag(C) := mag(ZC).

Theorem (Leinster, original motivation for magnitude)

Let C denote a finite category and BC its classifying space, then

χ(BC) = mag(C).

If (X , d) is a finite metric space, category theory tells us to set

ZX := (e−d(a,b))a,b∈X and mag(X ) := mag(ZX ).
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Magnitude of (finite) categories and metric spaces

If C is a finite category, we set

ZC := (#MorC(i , j))i,j∈Obj(C) and mag(C) := mag(ZC).

Theorem (Leinster, original motivation for magnitude)

Let C denote a finite category and BC its classifying space, then

χ(BC) = mag(C).

If (X , d) is a finite metric space, category theory tells us to set

ZX := (e−d(a,b))a,b∈X and mag(X ) := mag(ZX ).

Examples

One point space: mag(·) = 1

Discrete “metric” space X : mag(X ) = |X |
(Complete graph) N points, distance R:

mag(

N︷ ︸︸ ︷
·← R → · · · · ·) = N

1+(N−1)e−R
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(Slide by T. Leinster.)
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The magnitude function of a metric space

If (X , d) is a finite metric space, we set

ZX := (e−d(a,b))a,b∈X and mag(X , d) := mag(ZX ).

The magnitude function of (X , d) is given by

MX (R) = mag(X ,R · d) (R > 0) .

Observation

MX extends meromorphically to R ∈ C
MX (R) = |X |+ O(R−∞) as R →∞
MX (0) = 1
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The magnitude function of a compact metric space

(X , d) compact metric space, M(X ) finite Borel measures on X .

ZX (R) : M(X )→ C(X ), ZX (R)µ(x) :=

∫
X

e−Rd(x,y)dµ(y).

A weighting measure µR is a solution to the equation ZX (R)µR = 1 on X .

Definition / Theorem (Meckes)

Let (X , d) a positive definite compact metric space, i.e. ZA(R) is a positive
definite matrix for all finite A ⊆ X . Then

MX (R) := sup{MA(R) : A ⊆ X finite}

If (X , d) admits a weighting measure, MX (R) = µR(X ).
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The magnitude function of a compact metric space

(X , d) compact metric space, M(X ) finite Borel measures on X .

ZX (R) : M(X )→ C(X ), ZX (R)µ(x) :=

∫
X

e−Rd(x,y)dµ(y).

A weighting measure µR is a solution to the equation ZX (R)µR = 1 on X .

Explicitly for X ⊂ Rn, ZX (R)f (x) :=
∫
Rn e
−R|x−y|f (y)dV (y) = gR ∗ f (x),

where gR(x) := e−R|x|. With ĝR(ξ) = n!ωnR(R2 + |ξ|2)−(n+1)/2,

ZX (R) = n!ωnR(R2 −∆)−(n+1)/2.
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The magnitude function of a compact metric space

(X , d) compact metric space, M(X ) finite Borel measures on X .

ZX (R) : M(X )→ C(X ), ZX (R)µ(x) :=

∫
X

e−Rd(x,y)dµ(y).

A weighting measure µR is a solution to the equation ZX (R)µR = 1 on X .

Explicitly for X ⊂ Rn, ZX (R)f (x) :=
∫
Rn e
−R|x−y|f (y)dV (y) = gR ∗ f (x),

where gR(x) := e−R|x|. With ĝR(ξ) = n!ωnR(R2 + |ξ|2)−(n+1)/2,

ZX (R) = n!ωnR(R2 −∆)−(n+1)/2.

The function h := ZX (R)µR extends to Rn, with h = 1 on X .

Theorem (Meckes)

MX (R) =
1

n!ωnR
inf

{
‖(R2 −∆)(n+1)/4h‖2

L2(Rn) : h ∈ H(n+1)/2(Rn), h = 1 on X
}

=
1

n!ωnR
‖(R2 −∆)(n+1)/4h‖2

L2(Rn)

where h ∈ H(n+1)/2(Rn) solves

(R2 −∆)(n+1)/2h = 0 weakly in Rn \ X , h = 1 on X .
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The magnitude function of a compact metric space

(X , d) compact metric space, M(X ) finite Borel measures on X .

ZX (R) : M(X )→ C(X ), ZX (R)µ(x) :=

∫
X

e−Rd(x,y)dµ(y).

A weighting measure µR is a solution to the equation ZX (R)µR = 1 on X .
Explicitly for X ⊂ Rn,

ZX (R) = n!ωnR(R2 −∆)−(n+1)/2.

Theorem (Meckes)

MX (R) =
1

n!ωnR
‖(R2 −∆)(n+1)/4h‖2

L2(Rn)

where h ∈ H(n+1)/2(Rn) solves

(R2 −∆)(n+1)/2h = 0 weakly in Rn \ X , h = 1 on X .

Example

X = [−1, 1] ⊂ R. MX (R) = 1 + R = χ(X ) + Length(X )
2

R.
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Geometry of the magnitude function

Conjecture (Leinster, Willerton)

Let X ⊆ Rn be a compact convex subset. Then

MX (R) =
n∑

k=0

Vk(X )

k!ωk
Rk .

Here Vk(X ) is the k-th intrinsic volume of X , ωk volume of unit ball in Rk .

For X a smooth convex body: Vn(X ) = voln(X ), Vn−1(X ) = voln−1(∂X ),
Vn−2(X ) =

∫
∂X

HdS , ..., V0(X ) = χ(X ).

Special cases:
n = 1: MX (R) = χ(X ) + Length(X )

2
R.

n = 2: MX (R) = χ(X ) + Perim(∂X )
4

R + Area(X )
2π

R2.

The conjecture was motivated by computational examples, the historical
analogy with the Euler characteristic, and Hadwiger’s theorem.
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Geometry of the magnitude function

Conjecture (Leinster, Willerton)

Let X ⊆ Rn be a compact convex subset. Then

MX (R) =
n∑

k=0

Vk(X )

k!ωk
Rk .

Here Vk(X ) is the k-th intrinsic volume of X , ωk volume of unit ball in Rk .

For X a smooth convex body: Vn(X ) = voln(X ), Vn−1(X ) = voln−1(∂X ),
Vn−2(X ) =

∫
∂X

HdS , ..., V0(X ) = χ(X ).

Consequences include: Inclusion-Exclusion principle

MA∪B =MA +MB −MA∩B .

Conjecture true for X ⊂ R

X = [−1, 1] ⊂ R. MX (R) = 1 + R = χ(X ) + Length(X )
2

R.
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Leinster-Willerton conjecture: (Counter) Examples

Barcelo, Carbery 2017 prove the conjectured behaviour for R →∞ and R → 0:

Theorem

Let X ⊆ Rn be a compact smooth domain. Then

MX (R) =
vol(X )

n!ωn
Rn + o(Rn), as R →∞,

lim
R→0
MX (R) = 1.
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Leinster-Willerton conjecture: (Counter) Examples

Barcelo, Carbery 2017 prove the conjectured behaviour for R →∞ and R → 0:

Theorem

Let X ⊆ Rn be a compact smooth domain. Then

MX (R) =
vol(X )

n!ωn
Rn + o(Rn), as R →∞,

lim
R→0
MX (R) = 1.

Furthermore, they solve the magnitude PDE for X = B(0, 1) ⊆ Rn, n = 5:

MX (R) =
1

n!ωnR
‖(R2 −∆)(n+1)/4h‖2

L2(Rn)

where h ∈ H(n+1)/2(Rn) satisfies

(R2 −∆)(n+1)/2h = 0 weakly in Rn \ X , h = 1 on X .

The result is
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Leinster-Willerton conjecture: (Counter) Examples

Barcelo, Carbery 2017 prove the conjectured behaviour for R →∞ and R → 0:

Theorem

Let X ⊆ Rn be a compact smooth domain. Then

MX (R) =
vol(X )

n!ωn
Rn + o(Rn), as R →∞,

lim
R→0
MX (R) = 1.

Counterexample to Leinster-Willerton conjecture (Barcelo, Carbery 2017)

Let X = B(0, 1) ⊆ R5 be the unit ball. Then

MX (R) =
R5

5!
+

3R5 + 27R4 + 105R3 + 216R2 + 72

24(R + 3)

Not a polynomial. Also coefficients of Rk wrong.

Willerton obtains similar rational functions for balls in odd dimensions.
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Asymptotic Leinster-Willerton conjecture

With M. Goffeng, we studied the magnitude PDE for general X , n odd:

(R2 −∆)(n+1)/2h = 0 weakly in Rn \ X , h = 1 on X .

Using Green’s formula, for suitable boundary traces Dk
Rh|∂X of order k:

MX (R) =
1

n!ωnR
‖(R2 −∆)(n+1)/4h‖2

L2(Rn)

=
voln(X )

n!ωn
Rn − 1

n!ωn

∑
m
2 <j≤m

Rn−2j

∫
∂X

D2j−1
R h dS

=
voln(X )

n!ωn
Rn − 1

n!ωn

∑
m
2 <j≤m

Rn−2j

∫
∂X

Λ2j−1(R) 1 dS .

The Λk are components of an m ×m Dirichlet-to-Neumann operator, a
parameter-elliptic pseudodifferential operator on ∂X , meromorphic in R.
Analytic Fredholm theory and an explicit symbol computation show:
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Asymptotic Leinster-Willerton conjecture

MX (R) =
voln(X )

n!ωn
Rn − 1

n!ωn

∑
m
2 <j≤m

Rn−2j

∫
∂X

Λ2j−1(R) 1 dS .

The Λk are components of an m ×m Dirichlet-to-Neumann operator, a
parameter-elliptic pseudodifferential operator on ∂X , meromorphic in R.
Analytic Fredholm theory and an explicit symbol computation show:

Theorem (Gimperlein, Goffeng, Amer J Math 2021 +ε)

Let X ⊆ Rn be compact with smooth boundary and n = 2m − 1.

MX extends meromorphically to C.

MX holomorphic in sector {|arg(z)| < π
n+1}.

Finite number of poles in any sector {|arg(z)| < α}, α < π
2 .
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Asymptotic Leinster-Willerton conjecture

Theorem (Gimperlein, Goffeng, Amer J Math 2021 +ε)

Let X ⊆ Rn be compact with smooth boundary and n = 2m − 1.

MX extends meromorphically to C.

MX holomorphic in sector {|arg(z)| < π
n+1}.

Finite number of poles in any sector {|arg(z)| < α}, α < π
2 .

There are constants (ck(X ))k∈N such that for all N ∈ N

MX (R) =
1

n!ωn

n+N∑
k=0

ck(X )Rn−k + O(R−N).

The first four coefficients are given by

c0(X ) = voln(X ), c1(X ) = mvoln−1(∂X ),

c2(X ) =
m2

2
(n − 1)

∫
∂X

H dS , (H mean curvature of ∂X )

c3(X ) = αn

∫
∂X

H2 dS (Willmore energy)
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Asymptotic Leinster-Willerton conjecture

Theorem (Gimperlein, Goffeng, Amer J Math 2021 +ε)

Let X ⊆ Rn be compact with smooth boundary and n = 2m − 1.

MX extends meromorphically to C.

MX holomorphic in sector {|arg(z)| < π
n+1}.

Finite number of poles in any sector {|arg(z)| < α}, α < π
2 .

There are constants (ck(X ))k∈N such that for all N ∈ N

MX (R) =
1

n!ωn

n+N∑
k=0

ck(X )Rn−k + O(R−N).

The first four coefficients are given by

c0(X ) = voln(X ), c1(X ) = mvoln−1(∂X ),

c2(X ) =
m2

2
(n − 1)

∫
∂X

H dS , (H mean curvature of ∂X )

c3(X ) = αn

∫
∂X

H2 dS (Willmore energy, not intrinsic volume)
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Asymptotic Leinster-Willerton conjecture

Theorem (Gimperlein, Goffeng, Amer J Math 2021 +ε)

Let X ⊆ Rn be compact with smooth boundary and n = 2m − 1.

MX extends meromorphically to C.

MX holomorphic in sector {|arg(z)| < π
n+1}.

Finite number of poles in any sector {|arg(z)| < α}, α < π
2 .

There are constants (ck(X ))k∈N such that for all N ∈ N

MX (R) =
1

n!ωn

n+N∑
k=0

ck(X )Rn−k + O(R−N).

The first four coefficients are given by

c0(X ) = voln(X ), c1(X ) = mvoln−1(∂X ),

c2(X ) =
m2

2
(n − 1)

∫
∂X

H dS , c3(X ) = αn

∫
∂X

H2 dS

For j ≥ 4, the coefficient cj(X ) is an integral over ∂X of a universal
polynomial in covariant derivatives of the fundamental form of total
order j − 2 and total degree j − 1.
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Corollaries

Asymptotic inclusion-exclusion

Let n = 2m − 1. If A,B ⊆ Rn, as well as A ∪ B and A ∩ B are smooth
compact domains then

MA∪B(R) =MA(R) +MB(R)−MA∩B(R) + O(R−∞).

Definite failure of original Leinster-Willerton conjecture

The coefficient c3(X ) = αn

∫
∂X

H2dS is not Hausdorff continuous and
not an intrinsic volume. Indeed, for n = 3 by homogeneity c3(X ) would
need to be proportional to the Euler characteristic. But c3 = Willmore
energy can be made arbitrarily large on surfaces of genus zero.

Can you “magnitude” the shape of a drum?

Let X as in theorem, B ball. If MX ∼MB , then X is isometric to B
(use asymptotics & isoperimetric inequality).
There are nonconvex domains X ,Y = balls with a hole which are not
isometric, but MX =MY (Meckes).
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Poles and zeros of the magnitude function MB21

B21 = unit ball in dimension n = 21

-25 -20 -15 -10 -5 5
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15

20

poles

zeros



Introduction to magnitude Leinster-Willerton conjecture Even dimensions Conclusions

Poles and zeros of MBn
in dimensions n = 13, 17, 21

-25 -20 -15 -10 -5 5

-20

-15

-10

-5

0

5

10

15

20

n = 21

n = 17

n = 13

(a)

-25 -20 -15 -10 -5 5

-20

-15

-10

-5

0

5

10

15

20

n = 21

n = 17

n = 13

(b)

Figure: (a) poles, (b) zeros.
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Computer algebra delicate:
Naive computation of poles of MB21

(with Maple, Sage)
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Poles of MX for spherical shell in dimension 3
X = (2B3) \ B◦3

-3 -2 -1  1 2 3

-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

infinite number of poles approaching curve |Re(R)| = log(|Im(R)|)

MX (R) =
7

6
R3 + 5R2 + 2R + 2 +

e−2R(R2 + 1) + 2R3 − 3R2 + 2R − 1)

sinh(2R)− 2R
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Asymptotic Leinster-Willerton conjecture

Theorem (Gimperlein, Goffeng, Amer J Math 2021 +ε)

Let X ⊆ Rn be compact with smooth boundary and n = 2m − 1.

MX extends meromorphically to C.

MX holomorphic in sector {|arg(z)| < π
n+1}.

Finite number of poles in any sector {|arg(z)| < α}, α < π
2 .

There are constants (ck(X ))k∈N such that for all N ∈ N

MX (R) =
1

n!ωn

n+N∑
k=0

ck(X )Rn−k + O(R−N).

The first four coefficients are given by

c0(X ) = voln(X ), c1(X ) = mvoln−1(∂X ),

c2(X ) =
m2

2
(n − 1)

∫
∂X

H dS , c3(X ) = αn

∫
∂X

H2 dS

For j ≥ 4, the coefficient cj(X ) is an integral over ∂X of a universal
polynomial in covariant derivatives of the fundamental form of total
order j − 2 and total degree j − 1.
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What is the magnitude of the unit disk?

In even dimensions almost nothing has been known about magnitude.

MB2(0,1)(R) = ?
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What is the magnitude of the unit disk?

In even dimensions almost nothing has been known about magnitude.

Theorem (Gimperlein, Goffeng, Louca 2021)

MB2(0,1)(R) =
1

2
R2 +

3

2
R + O(1)

More generally, we extend the previous statements on the meromorphic
continuation and asymptotic expansion of MX to smooth compact
domains X ⊂ M, where M = Rn or (under technical assumptions) M
manifold with metric.
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What is the magnitude of the unit disk?

In even dimensions almost nothing has been known about magnitude.

Theorem (Gimperlein, Goffeng, Louca 2021)

MB2(0,1)(R) =
1

2
R2 +

3

2
R + O(1)

Study directly the boundary problem for ZX (R) = (R2 −∆)−(n+1)/2:

ZX (R)µR = 1 in X , suppµR ⊆ X .

Analysis relies on ideas of Hörmander, Eskin, as recently developed
by Grubb for fractional boundary problems involving (−∆)s , s > 0.
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Set-up

X ⊆ Rn compact domain with smooth boundary
(more generally: X ⊆ RN compact submanifold with boundary).

Consider the operator

Z̃X (R)f (x) =
1

R
ZX (R)f (x) =

1

R

∫
X

e−Rd(x,y)f (y) dV (y)

For s ∈ R:

Hs(Rn) := {u : (1 + |ξ|2)s/2û ∈ L2(Rn)};

H̊s(X ) := {u ∈ Hs(Rn) : supp(u) ⊆ X};

H̄s(X ) := Hs(Rn)/H̊s(Rn \ X ) = {u|X : u ∈ Hs(Rn)}.

H̊0(X ) = H̄0(X ) = L2(X ) and the L2-pairing extends to a perfect pairing

H̊s(X )× H̄−s(X )→ C.
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Some facts

Z̃X (R) is a parameter-elliptic pseudodifferential operator of order
−n − 1.

Z̃X (R) : H̊−(n+1)/2(X )→ H̄(n+1)/2(X ) is a continuous isomorphism
for Re(R)� 0, which extends to a holomorphic Fredholm operator
valued function of R ∈ C.

Fredholm theory: Z̃X (R)−1 : H̄(n+1)/2(X )→ H̊−(n+1)/2(X ) extends
meromorpically to R ∈ C. It is “computable” up to O(R−∞).

The function h ∈ H(n+1)/2(Rn) defined from

h(x) := R−1

∫
X

e−R|x−y |(Z̃X (R)−11X )(y)dV (y),

solves Meckes’ minimization problem, so that

MX (R) = R−1(Z̃X (R)−11X , 1X )L2 .

The magnitude function thus extends meromorphically to R ∈ C.
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Construction of asymptotic expansions

Theorem (Gimperlein-Goffeng-Louca ’21)

Let X ⊆ Rn be a compact domain with smooth boundary. Then

MX (R) =
1

n!ωn

∞∑
k=0

ck(X )Rn−k + O(R−∞).

The first three coefficients are given by

c0(X ) = voln(X ), c1(X ) = γn,1 voln−1(∂X ), c2(X ) = γn,2

∫
∂X

HdS ,

where H is the mean curvature. There exists an iterative way of
computing the coefficients ck(X ).
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Let X ⊆ Rn be a compact domain with smooth boundary. Then

MX (R) =
1

n!ωn

∞∑
k=0

ck(X )Rn−k + O(R−∞).

The first three coefficients are given by

c0(X ) = voln(X ), c1(X ) = γn,1 voln−1(∂X ), c2(X ) = γn,2

∫
∂X

HdS ,

Iterative scheme is a result of a Wiener-Hopf factorization using a
‘nice’ factorization of the symbol.
The result holds for X ⊆ RN a compact submanifold with boundary,
and in this case

ck(X ) =

∫
X

αk(x)dV (x) +

∫
∂X

βk(x)dS(x),

and αk = 0 for all odd k .
There is an iterative scheme to compute αk and βk .



Introduction to magnitude Leinster-Willerton conjecture Even dimensions Conclusions

The idea for X ⊆ R

Consider X = [0, 1] ⊆ R so we are looking for a u ∈ H̊−1(0, 1) with

ZX (R)u(x) =

∫ 1

0

e−R|x−y |u(y)dy = 1.

Fourier transforming gives

F(ZX (R)u)(ξ) = 2R(R2 + ξ2)−1û(ξ) = 2R(R + iξ)−1(R − iξ)−1û(ξ).

Elementary computations give{
(R + iξ)−1 = F(z+

R ), z+
R (x) = χ[0,∞)(x)e−Rx

(R − iξ)−1 = F(z−R ), z−R (x) = χ(−∞,0](x)eRx
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∫ 1

0

e−R|x−y |u(y)dy = 1.

Fourier transforming gives

F(ZX (R)u)(ξ) = 2R(R2 + ξ2)−1û(ξ) = 2R(R + iξ)−1(R − iξ)−1û(ξ).

Elementary computations give{
(R + iξ)−1 = F(z+

R ), z+
R (x) = χ[0,∞)(x)e−Rx

(R − iξ)−1 = F(z−R ), z−R (x) = χ(−∞,0](x)eRx

Paley-Wiener!

Consider ZX (R)±f := z±R ∗ f .
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The idea for X ⊆ R, continued

The operators ZX (R)±f := z±R ∗ f satisfy for any a ∈ R:{
supp(f ) ⊆ [a,∞)⇒ supp(ZX (R)+f ) ⊆ [a,∞),

supp(f ) ⊆ (−∞, a]⇒ supp(ZX (R)−f ) ⊆ (−∞, a].

Therefore, for any real s and a, ZX (R)± defines isomorphisms{
ZX (R)+ : H̊s(a,∞)→ H̊s+1(a,∞), ZX (R)+ : H

s
(−∞, a)→ H

s+1
(−∞, a),

ZX (R)− : H̊s(−∞, a)→ H̊s+1(−∞, a), ZX (R)− : H
s
(a,∞)→ H

s+1
(a,∞).

Problem arising in the general setting

How to factor ZX (R) : H̊−1(0, 1)→ H
1
(0, 1) near ∂X as mapping

H̊−1(0, 1)
ZX,+(R)−−−−−→ H̊0(0, 1) = L2(0, 1) = H

0
(0, 1)

ZX,−(R)−−−−−→ H
1
(0, 1)?

Structure of inverse operator

ZX (R)−1 = χ̃1Q
−1χ1 + χ̃−1

2 ZX ,+(R)−1ZX ,−(R)−1
χ2 + S

where χj gluing functions, Q−1 interior parametrix, S = O(R−∞).
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The idea for X ⊆ R, continued

Formally, (ZX (R)±)−1 = R ± ∂x . Is it simply that

ZX (R)−1f = 1
2R (R + ∂x)(R − ∂x)f ?

For f = 1[0,1] ∈ H
1
(0, 1), then

1
2R (R + ∂x)(R − ∂x)1[0,1] = 1

2R (R + ∂x)(R1[0,1]︸ ︷︷ ︸
∈H̊0(0,1)

) = R
2 1[0,1] + 1

2 (δx=1 − δx=0).

But we have that

ZX (R)
(
R
2 1[0,1] + 1

2 (δx=1 − δx=0)
)

= 1− e−R(1−x),

It does not hold that e−R(1−x) = O(R−∞) in norm sense on H
1
(0, 1)!

The correct answer is

ZX (R)−11[0,1] = R
2 1[0,1] + 1

2 (δx=1 + δx=0).

To fix the sign mistake: build ZX ,±(R)−1 from gluing (ZX (R)±)−1 at
x = 0 with (ZX (R)∓)−1 at x = 1... Morally we have that

ZX (R)−1 = 1
2R (R + ∂x)(R − ∂x) at x = 1, ZX (R)−1 = 1

2R (R − ∂x)(R + ∂x) at x = 0
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Extension to manifolds

Compact, smooth X ⊆ M for d satisfying a technical assumption, e.g.

M is a sphere with geodesic distance

M is a Riemannian manifold with geodesic distance and
diam(X ) < inj(M)

M is a submanifold of Rn with the subspace metric

For large R, Z̃R = n!ωn(R2 −∆)−
n+1

2 + l.o.t(R, derivatives)
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Some open analytic problems for magnitude

For general Riemannian manifolds an improved understanding of the
cut-locus seems required.

The magnitude function for domains with edges: MX∩Y ?

Poles of MX analogous to scattering resonances.
Interpretation: Why is there a pole at R = −3 for B(0, 1) ⊂ R5?
Counting: Sharp upper and lower bounds? Does a generic
perturbation of B(0, 1) ⊂ R2m−1 have infinitely many poles?

Geometric interpretation of the Taylor coefficients forMX at R = 0?
Meckes (2020) proves upper bounds in terms of intrinsic volumes.

Magnitude is just one example of a semiclassical pseudodifferential
boundary problem. Related questions arise for log-gases, random
matrices, optimal placement problems, . . .
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At beginning of talk I asked:

What is the magnitude of the unit disk?

This talk: qualitative properties and semiclassical limit for large radius.

Can one find an exact formula for the solution of the boundary problem
for (1−∆)3/2 outside the disk?
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Thank you for your attention!

More details in: arXiv:1706.06839
and more to come very soon

Magnitude bibliography: maths.ed.ac.uk/~tl/magbib

maths.ed.ac.uk/~tl/magbib
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