
Solutions to semilinear wave equations of very low regularity

Heiko Gimperlein, Michael Oberguggenberger*�

Abstract

This paper observes new phenomena for the wellposedness and propagation of singularities for semi-
linear wave equations with p-th power nonlinearity for initial data of very low Sobolev-regularity. In
one space dimension we obtain solutions whose singular support propagates along any ray outside
the light cone. These solutions exist for any Sobolev exponent s < 1

2 in space, while the singular
support of any solution of higher regularity is contained in the light cone. Motivated by these exam-
ples, we study wellposedness of semilinear wave equations for Sobolev data whose Fourier transform
is supported in a half-line. Our result improves the wellposedness results for Sobolev data without
the support condition and, in some cases, obtains wellposedness below L2(R). Extensions to higher
space dimensions are given.

1 Introduction

This paper observes new phenomena for the wellposedness and propagation of singularities for semi-
linear wave equations with initial data of very low Sobolev-regularity. We address the problem

∂2t u−∆u = ±up, u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), (1)

in space dimension n, where p ≥ 2 is assumed to be a positive integer. The specialization to this case
is needed for two reasons. First, we wish to study propagation of singularities from the initial data,
and hence we need a smooth nonlinearity in order to avoid the occurrence of additional singularities.
Second, we will use the Hörmander product of distributions, so only integer powers are amenable.

It is a general principle in linear wave propagation that sharp wave crests (singularities) propagate
along light cones, or more precisely, along the bicharacteristics of the linear wave operator ∂2t u−∆u.
For semilinear wave equations, singularities of sufficiently smooth solutions are known to propagate
along unions of bicharacteristics, where in space dimension n > 1 new singularities may arise at points
of intersection of incoming wave crests. In dimension n = 1, a fundamental result for problem (1)
assures that the singularities of any solution in L∞

loc(R2) propagate only along light cones [35, 38].

In this article we obtain solutions in C([−T, T ] : Hs
loc(R)), for any s < 1

2 , whose singular support
lies outside the light cone. As C([−T, T ] : Hs

loc(R)) ⊂ L∞
loc(R2) when s > 1

2 , they establish a sharp
threshold s = 1

2 for the Sobolev exponent between solutions with expected, respectively anomalous,
propagation of singularities. Note that the maximal regularity of solutions with unexpected properties
has attracted significant recent interest for equations from continuum mechanics and geometry [11].

For the anomalous solutions u presented here, at fixed time t the Fourier transform û with respect to
x is supported in a half-line. Motivated by this fact, we also extend the range of wellposedness for
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problem (1) to data and solutions u with this property. The main result of this article is

Theorem. Let n = 1 and Hs
Γ(R) = {f ∈ Hs(R) : supp f̂ ⊂ [0,∞)}.

(a) (Anomalous propagation) For any c ̸= ±1 there exist solutions to (1) with singular support along
the line {x+ ct = 0, t ∈ R}, i.e., along any ray off the light cone. More prescisely, for any c ̸= ±1 and
any s < 1

2 there are Hs
loc-solutions with this property.

(b) (Low regularity wellposedness) Problem (1) is wellposed in Hs
Γ(R) for p = 2 and s > −1

2 and for
p ≥ 3 and s > 1

2 − 1
2p−4 .

Part (a) combines Proposition 3 with the discussion in Section 4. The construction builds on recent
examples found by one of the authors [24]; for any s < 1

2 there is such a solution in C([−T, T ] :
Hs

loc(R)) ∩ C1([−T, T ] : Hs−1
loc (R)), if p is large enough. Part (b) is the content of Theorem 9. Note

that it improves the wellposedness results for data in Hs(R) without the support condition, where
problem (1) is wellposed if s > 1

2 − 1
p and illposed if s < 1

2 − 1
p . The solutions constructed in (a) do

not fall into the known Hs-wellposedness regimes.

Section 7 addresses the extension of this Theorem to higher space dimensions n > 1. We give examples
of anomalous solutions to (1) which belong to C([−T, T ] : Hs

loc(Rn))∩C1([−T, T ] : Hs−1
loc (Rn)) for s < n

2 .
A similar extension of the wellposedness theory remains open.

The remainder of this introduction is devoted to a literature review of propagation of singularities and
of critical Sobolev exponents.

The investigation of propagation of singularities in semilinear hyperbolic equations and systems started
with the discovery of Jeffrey Rauch and Michael Reed [35, 37] that – unlike in the linear case – singu-
larities may arise that cannot be traced back via bicharacteristics to singularities in the initial data,
but may be produced at later times by the interaction of singularity bearing bicharacteristics. For a
survey of the huge number of results up to around 1990 we refer to the monograph [4]. Rauch and
Reed coined the term anomalous singularities for this phenomenon. However, these “anomalous sin-
gularities” still propagated along characteristics/bicharacteristics, as opposed to the noncharacteristic
singularities in the present paper, which are even more anomalous.

There is one exception, namely the wave equation ∂2t u − ∂2xu = f(u) with smooth nonlinearity f(·)
in one space dimension (actually any (2× 2)-first order system in n = 1) where the propagation is as
in the linear case. This is due to the fact that there are only two characteristic directions, thereby
avoiding nonlinear interaction at later times. Here the results of [35, 38] say that for distributional
solutions to the semilinear wave equation which belong to L∞

loc(R2) no anomalous singularities arise.
(This applies, in particular, to solutions which belong to C([−T, T ] : Hs(R)) with s > 1

2 .) For example,
if the singular support of the initial data is {x = 0} then the solution is smooth except possibly along
the light cone {|x| = |t|}.
In higher space dimensions, the first and prototypical result is due to Rauch [33]. It says the following:
Suppose that u is a distributional solution to (1) (even with a polynomial nonlinearity) which belongs
to Hs

loc(Rn × R) with s > (n + 1)/2 and let the initial data belong to C∞(Rn \ {0}). Then u is C∞

on {|x| > |t|}, and it belongs to Hs+1+σ
loc (Rn × R) on {|x| < |t|} for all σ < s − (n + 1)/2. It is also

known that the singular support of the solution may contain the solid cone {|x| ≤ |t|}, see [1], where
an example is given with Sobolev regularity just above 3s− n+ 2 in {|x| < |t|}.
These results date back to a time when the investigation of critical exponents had not yet been picked
up. Accordingly, the usual setting was in Hs

loc(Rn × R) with s > (n + 1)/2, in which case Hs
loc is an

algebra. The methods were commonly based on a microlocal analysis of the nonlinear action [5, 36], as
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well as on paradifferential calculus [7]. Few papers addressed propagation of local regularity in lower
Sobolev regularity, as the paper [14] which went as low as s > 0 (but still requiring L∞

loc); see also the
early counterexamples of anomalous bicharacteristic behavior in low regularity in the second part of
[34].

In the meantime the wellposedness of problem (1) for data of low regularity has been clarified. Recall
that problem (1) is locally wellposed in Hs if, for every u0 ∈ Hs(Rn), u1 ∈ Hs−1(Rn), there is T > 0
and a unique distributional solution u belonging to C([−T, T ] : Hs(Rn)) ∩ C1([−T, T ] : Hs−1(Rn)).
Further, u is required to belong to a space on which the p-th power is welldefined (usually Lp

loc(R
n+1)),

and the map (u0, u1) → u should be continuous. The p-th power here may also be understood as a
Fourier product, see Section 3.

As summarized in [9, 12], the critical regularity for local Hs-wellposedness of problem (1) is

scrit = max

(
n

2
− 2

p− 1
,
n+ 1

4
− 1

p− 1
, 0

)
.

Essentially, wellposedness has been established for s ≥ scrit, possibly with additional constraints in
certain ranges of p and n, while illposedness has been proven for s < scrit, again with certain gaps in
the ranges. Relevant literature is [17, 19, 20, 21, 22, 41], as well as recent directions for the probabilistic
wellposedness [8, 25, 26, 27, 43]. For more details, the reader is referred to the summaries in [9, 12].
The case n = 1 deserves special attention. The critical exponent is

ssob = max

(
1

2
− 1

p
, 0

)
. (2)

The stronger bound is needed in order to have Hs(R) ⊂ Lp(R). It was shown in [9] that problem
(1) is Hs-illposed for s < ssob. In addition, it was shown there that norm inflation takes place for
1
2 − 1

p−1 < s < ssob and for s ≤ −1
2 . Further, the authors also showed that the solution map is

discontinuous at (0, 0) for s ≤ 1
2 − 1

p−1 . These results were complemented by [12] which proved norm
inflation also in the range s < 0. It is also noted in [9] that problem (1) is locally Hs-wellposed when
n = 1 and s ≥ ssob.

2 Notation

The notation generally follows [40]. In particular, the Fourier transform is used in the form

Ff(ξ) = f̂(ξ) =

∫
e−2πixξf(x)dx.

As usual, ⟨ξ⟩ = (1 + |ξ|2)1/2. For s ∈ R, we write

L2
s(Rn) = {h ∈ S ′(Rn) : ⟨ξ⟩sh(ξ) ∈ L2(Rn)}.

The Sobolev spaces and local Sobolev spaces, respectively, are defined by

Hs(Rn) = {f ∈ S ′(Rn) : f̂ ∈ L2
s(Rn)}

and
Hs

loc(Rn) = {f ∈ S ′(Rn) : ψf ∈ Hs(Rn) for all ψ ∈ D(Rn)}.
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The distribution (x+ i0)λ ∈ S ′(R) is defined as

lim
ε→0

(x2 + ε2)λ/2e iλ arg(x+iε).

It is an entire function of λ ∈ C, see e.g. [13, Section I.3.6]. Its Fourier transform is given by

F
(
(x+ i0)λ

)
(ξ) =

(2π)−λ

Γ(−λ)
e iλπ/2ξ−λ−1

+

for λ ̸= 0, 1, 2, 3, . . . [13, Section II.2.3], where ξµ+ is the pseudofunction as defined in [13, Section I.3.2].

Remark 1. The following properties are easy to show. We assume here that λ < 0 so that the
pseudofunction ξ−λ−1

+ is locally integrable. Then, for λ < 0, the following equivalences hold:

(a) (x+ i0)λ ∈ Hs
loc(R) ⇔ s < λ+ 1

2 ,

(b) (x+ i0)λ ∈ Hs(R) ⇔ λ < −1
2 and s < λ+ 1

2 .

3 Multiplication of distributions

Let S, T ∈ S ′(Rn). The S ′-convolution of S and T is said to exist, if

(φ ∗ S−)T ∈ D′
L1(Rn), for all φ ∈ S(Rn),

where S−(x) = S(−x). In this case, the convolution is defined by ⟨S ∗ T, φ⟩ = ⟨(φ ∗ S−)T, 1⟩, and
S ∗ T belongs to S ′(Rn).

Let u, v ∈ S ′(Rn). If the S ′-convolution of Fu and Fv exists, one may define the Fourier product

u · v = F−1(Fu ∗ Fv). (3)

The definition can be localized as follows. Assume that for every x ∈ Rn there is a neighborhood Ωx

and χx ∈ D(Rn), χx ≡ 1 on Ωx, such that the S ′-convolution of F(χxu) and F(χxv) exists. Locally
near x, the product u · v is defined to be F−1(F(χxu) ∗ F(χxv)). Globally, it is defined by a partition
of unity argument.

Remark 2. Here are some special cases in which the Fourier product exists.

(a) The existence of the S ′-convolution of S, T ∈ S ′(Rn) is guaranteed if both S and T have their
support in a closed, acute and convex cone Γ in Rn. Further, S ∗ T is also supported in Γ, and the
map (S, T ) → S ∗ T is separately continuous in S ′(Rn) [44, I.5.6, I.4.5]. Let

S ′
Γ(Rn) = {f ∈ S ′(Rn) : supp f̂ ⊂ Γ}.

For u, v ∈ S ′
Γ(Rn), the product u ·v is thus definable by (3) and belongs to S ′

Γ(Rn). Thus S ′
Γ(Rn) forms

an algebra with respect to multiplication, and the multiplication map is separately continuous.

(b) Let u, v ∈ L2(Rn), φ ∈ S(Rn). Then (φ ∗ û−)v̂ ∈ L1(Rn) ⊂ D′
L1(Rn). A simple calculation shows

that the S ′-convolution û ∗ v̂ exists and coincides with the ordinary convolution. By the exchange
formula for L2-functions, the Fourier product u ·v coincides with the ordinary product of two L2-
functions. Using localization as indicated above, the same holds for the product of two L2

loc-functions.
In particular, for u, v ∈ Hs

loc(Rn) with s > n/2, the Fourier product exists and coincides with the
product in the algebra Hs

loc(Rn).
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When 1 ≤ p < 2, 2 < q ≤ ∞, 1
p + 1

q = 1, there are examples of u ∈ Lp(R), v ∈ Lq(R) whose Fourier
product does not exist, as shown in the recent paper [29]. However, if both the ordinary product and
the Fourier product exist, they necessarily coincide.

(c) The product defined by Hörmander’s wave front set criterion [15], requiring that for every (x, ξ) ∈
Rn × (Rn \ {0}), (x, ξ) ∈ WF(u) implies (x,−ξ) ̸∈ WF(v), is also a special case. This can be seen by
localizing the arguments establishing case (a), see e.g. [23, Proposition 6.3].

The remark shows that all products of functions and distributions occurring in this paper can be
subsumed under the framework of the Fourier product. Further details and a discussion of different
products of distributions can be found in [23].

4 Anomalous propagation of singularities to 1D-semilinear wave
equations

In this section, we consider the propagation of singularities for the semilinear wave equation (1) in one
dimension. The following proposition exhibits solutions with stationary singular support. They are
used below to construct solutions whose singular support propagates in arbitrary noncharacteristic
directions.

Proposition 3. For every s < 1
2 there are λ < 0 and p ∈ N such that

(a) the distribution u0(x) = (x+ i0)λ belongs to Hs
loc(R), singsuppu0 = {0}, and

(b) u(x, t) ≡ u0(x) is a distributional solution to the semilinear wave equation

∂2t u− ∂2xu = −λ(λ− 1)up, u(x, 0) = u0(x), ∂tu(x, 0) = 0 (4)

where the nonlinear term is understood in the sense of the Fourier product. Its singular support is the
noncharacteristic line {(0, t) : t ∈ R}.
Similarly, for any 1 ̸= p ∈ N there are λ and s < 1

2 such that u(x, t) ≡ u0(x) is a distributional
solution of (1).

Multiplying the solution u of (4) by a constant, we obtain a corresponding solution of (1).

The special solutions exhibited here are self-similar solutions to the semilinear wave equation. However,
they do not belong to the classes of functions considered e.g. in [6, 18, 30, 31, 39].

Proof of Proposition 3. The function C → S ′(R), λ → (x+ i0)λ is analytic and it is well-known that
d2

dx2 (x + i0)λ = λ(λ − 1)(x + i0)λ−2. The support of its Fourier transform is [0,∞), so all integer
powers make sense by means of the Fourier product. Further,

(x+ i0)λ−2 = (x+ i0)λp

provided λ = 2
1−p . Noting that λ < 0, Remark 1 shows that (x + i0)λ belongs to Hs

loc(R) iff s <

λ+ 1
2 = 2

1−p + 1
2 . Let p→ ∞ to produce the desired s.

Finally, if 1 ̸= p ∈ N, setting λ = 2
1−p produces a solution in Hs

loc(R) for s <
1
2 − 2

p−1 .
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Remark 4. (a) Anomalous propagation of singularities. When s > 1
2 , equation (4) with initial

data in Hs(R) × Hs−1(R) would have a unique solution which belongs to C0([−T, T ] : Hs(Rn)) ⊂
L∞(R× [−T, T ]), so the anomalous singular support of the solution from Propositon 3 would be ruled
out by the results in [35, 36].

(b) Critical exponents. By Remark 1, (x+ i0)λ with λ = 2
1−p actually belongs to Hs(R) for p = 2 and

p = 3, where s < 2
1−p + 1

2 . However, this is outside the range of wellposedness given by Theorem 9
and, furthemore, below ssob in (2).

Using certain Lorentz transformations, it is possible to transform the stationary solutions u0(x) =
(x + i0)λ from Proposition 3 to time dependent solutions with singular support on noncharacteristic
rays. Starting with the case n = 1, the transformation[

x
t

]
→ L

[
x
t

]
, L =

[
cosh θ sinh θ
sinh θ cosh θ

]
keeps the quadratic form x2 − t2 invariant, while the transformation[

x
t

]
→ L′

[
x
t

]
, L′ =

[
sinh θ cosh θ
cosh θ sinh θ

]
keeps the quadratic form t2 − x2 invariant. Therefore, if u(x, t) solves

∂2t u− ∂2xu = f(u), (5)

then v(x, t) = u ◦ L(x, t) and w(x, t) = u ◦ L′(x, t) solve

∂2t v − ∂2xv = −f(v), ∂2tw − ∂2xw = +f(w),

respectively. In particular, if u(x, t) ≡ u0(x) is a stationary solution to (5) (with ∂tu(x, 0) = 0), then
v(x, t) = u0(x cosh θ + t sinh θ) solves the same equation with a sign change and with initial data

v(x, 0) = u0(x cosh θ), ∂tv(x, 0) = sinh θ u′0(x cosh θ)

while w(x, t) = u0(x sinh θ + t cosh θ) solves (5) with initial data

w(x, 0) = u0(x sinh θ), ∂tv(x, 0) = cosh θ u′0(x sinh θ).

Suppose now that u0(x) has singular support equal to x = 0. The reparametrization

cosh θ =
1√

1− c2
, sinh θ =

c√
1− c2

with |c| < 1 leads to

v(x, t) = u0

( x+ ct√
1− c2

)
which has its singular support along the line {x + ct = 0, t ∈ R}, that is, inside the light cone, while
the singular support of the initial data is still {x = 0}. Similarly, the reparametrization

cosh θ =
c√

c2 − 1
, sinh θ = ± 1√

c2 − 1

with c > 1 leads to

w(x, t) = u0

(±x+ ct√
c2 − 1

)
which has its singular support along the line {x ± ct = 0, t ∈ R}, that is, outside the light cone. In
conclusion, the stationary solutions from Proposition 3 can be transformed to nonstationary solutions
with singular support on any ray off the light cone.
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5 Special products of distributions

The subsequent analysis requires refined estimates for products of Sobolev functions whose Fourier
transform is supported in Γ = [0,∞) ⊂ R. For later reference we present results for Rn.

Let Γ be a closed, acute, convex cone in Rn and s ∈ R. Notation:

Hs
Γ(Rn) = {f ∈ Hs(Rn) : supp f̂ ⊂ Γ} = S ′

Γ(Rn) ∩Hs(Rn).

Note that the solutions given in Section 4 locally belong to Hs
Γ(R) at any fixed time t, for Γ = [0,∞).

The product of two members f ∈ Hs1
Γ (Rn) and g ∈ Hs2

Γ (Rn) is understood in the sense of the Fourier
product.

Proposition 5. (a) Let s1 ≤ 0, s2 ≤ n
2 and f ∈ Hs1

Γ (Rn), g ∈ Hs2
Γ (Rn). Then fg ∈ Hσ

Γ(Rn) for
σ < −n

2 + s1 + s2.

(b) Let s1 ≥ 0, s2 ∈ R and f ∈ Hs1
Γ (Rn), g ∈ Hs2

Γ (Rn). Then fg ∈ Hσ
Γ(Rn) for σ ≤ s1, σ < −n

2 + s2.

In both cases, ∥fg∥Hσ ≤ ∥f∥Hs1∥g∥Hs2 for some constant C > 0.

Proof. (1) Assume first that Γ is the positive coordinate cone

Γ = {ξ ∈ Rn : ξi ≥ 0, i = 1, . . . , n}.

Write
∫ ξ
0 for the n-dimensional integral

∫
ξ1
. . .

∫
ξn

etc. The proof of (a) starts with Minkowski’s
inequality for integrals and the observation that

1[0,ξ](η) = 1[η,∞)(ξ)

holds for the characteristic functions of the indicated n-dimensional intervals. Thus

∥f̂ ∗ ĝ∥L2
σ

=

(∫ ∞

0

∣∣∣ ∫ ξ

0
f̂(ξ − η)ĝ(η)dη

∣∣∣2⟨ξ⟩2σdξ)1/2

=

(∫ ∞

0

∣∣∣ ∫ ∞

0
1[0,ξ](η)f̂(ξ − η)ĝ(η)⟨ξ⟩σdη

∣∣∣2dξ)1/2

≤
∫ ∞

0

(∫ ∞

0
1[0,η](ξ)|f̂(ξ − η)|2|ĝ(η)|2⟨ξ⟩2σdξ

)1/2

dη

=

∫ ∞

0

(∫ ∞

η
|f̂(ξ − η)|2|ĝ(η)|2⟨ξ⟩2σdξ

)1/2

dη

=

∫ ∞

0

(∫ ∞

0
|f̂(ξ)|2|ĝ(η)|2⟨ξ + η⟩2σdξ

)1/2

dη.

For ξ ≥ 0, η ≥ 0 and s1 ≤ 0, σ − s1 ≤ 0 (which holds for the σ under consideration provided s2 ≤ n
2 )

one has

⟨ξ + η⟩2σ = ⟨ξ + η⟩2s1⟨ξ + η⟩2σ−2s1 ≤ ⟨ξ⟩2s1⟨η⟩2σ−2s1 = ⟨ξ⟩2s1⟨η⟩2s2+2σ−2s1−2s2 .

Thus

∥f̂ ∗ ĝ∥L2
σ

≤
(∫ ∞

0
|f̂(ξ)|2⟨ξ⟩2s1 dξ

)1/2 ∫ ∞

0
|ĝ(η)|⟨η⟩s2⟨η⟩σ−s1−s2 dη

≤ ∥f∥Hs1∥g∥Hs2

(∫ ∞

0
⟨η⟩2σ−2s1−2s2 dη

)1/2

.
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The latter integral is finite for σ < −n
2 + s1 + s2.

In the situation (b), we estimate, using that s1 ≥ 0 and σ − s1 ≤ 0,

⟨ξ + η⟩2σ = ⟨ξ + η⟩2s1⟨ξ + η⟩2σ−2s1 ≤ ⟨ξ⟩2s1⟨η⟩2s1⟨η⟩2σ−2s1 = ⟨ξ⟩2s1⟨η⟩2s2+2σ−2s2 .

This time using Hölder’s inequality we get

∥f̂ ∗ ĝ∥L2
σ

≤
(∫ ∞

0
|f̂(ξ)|2⟨ξ⟩2s1 dξ

)1/2 ∫ ∞

0
|ĝ(η)|⟨η⟩s2⟨η⟩σ−s2 dη

≤ ∥f∥Hs1∥g∥Hs2

(∫ ∞

0
⟨η⟩2σ−2s2 dη

)1/2

,

which is finite since σ < −n
2 + s2.

(2) If Γ is an arbitrary convex cone, note that if the supports of f̂ and ĝ are contained in Γ, so is the
support of f̂ ∗ ĝ. Since Γ is acute, one may assume (after rotation) that Γ ⊂ {(ξ′, ξn) ∈ Rn : ξn ≥ α|ξ′|}
for some α > 0; here ξ′ = (ξ1, . . . , ξn−1). Using a dilation ξ̃n = βξn, ξ̃′ = ξ′ one may make the opening
angle arbitrarily small. After a further rotation, one may assume that Γ ⊂ {ξ ∈ Rn : ξi ≥ 0, i =
1, . . . , n}, that is case (1). Rotations and dilations do not change Hs(Rn).

Remark 6. The estimates in (a) are sharp. For example, when n = 1, s ≤ 0 and f ∈ Hs
Γ(R), (a)

implies that f2 ∈ Hσ
Γ(R) for σ < −1

2 +2s. The bounds are realized by f(x) = (x+i0)−1, which belongs
to Hs

Γ(R) if and only if s < −1
2 , while f

2(x) = (x+ i0)−2 belongs to Hσ
Γ(R) if and only if σ < −3

2 as
predicted.

The estimates in (b) are not sharp. For example, if s = s1 = s2 >
n
2 , fg is known to belong to

Hs
Γ(Rn), while (b) only predicts fg ∈ Hσ

Γ(R) for σ < −n
2 + s.

On the other hand, if f and g merely belong to Hs1(Rn) and Hs2(Rn), then fg are only known to
belong to Hσ(Rn) for σ < −n

2 + s1 + s2 under the condition that s1 + s2 ≥ 0 [16, Theorem 8.2.1], see
also [3, Lemma 1.3] and [4, formula (1.5)].

In view of the intended application to the semilinear wave equation (1) we now assume that

u ∈ Hs
Γ(Rn)

where Γ is a cone as above. Let p be a positive integer. We wish to determine ranges for σ such that
up ∈ Hσ

Γ(Rn).

Remark 7. (Sobolev properties of integer powers)

The case s ≤ 0. Here

up ∈ Hσ
Γ(Rn) for σ < −n

2
(p− 1) + ps.

The case 0 < s ≤ n
2 . Here Proposition 5(a) immediately gives that

up ∈ Hσ
Γ(Rn) for σ < −n

2
(p− 1) + (p− 1)s = (p− 1)(s− n

2
).

This follows by induction, using Proposition 5(a) and (b). Indeed, u2 ∈ Hσ
Γ(Rn) for σ < −n

2 + s by
item (b). For p = 3 we use item (a) with s1 = −n

2 +s, s2 = s to obtain u3 ∈ Hσ
Γ(Rn) for σ < −n+2s.

For p = 4 we use again item (a) with s1 = −n+ 2s, s2 = s to obtain u4 ∈ Hσ
Γ(Rn) for σ < −3

2n+ 3s,
and so on.
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Note that in particular for s = n
2 , u

p ∈ Hσ
Γ(Rn) for all p and σ < 0.

The case s > n
2 . Here up ∈ Hs

Γ(Rn) for all p since the latter space is an algebra.

In all cases, ∥up∥Hσ ≤ C∥u∥pHs for some constant C > 0.

The application of Proposition 5 does not produce new estimates for the power function on Hs
Γ(Rn)

for n ≥ 2 and s ≤ n
2 . We henceforth concentrate on the case n = 1. In the context of the semilinear

wave equation, the question arises whether u ∈ Hs
Γ(R) implies up ∈ Hs−1

Γ (R), that is, whether the σ
in Remark 7 can attain a value ≥ s− 1. The answer is summarized in the following remark, which is
of interest when s ≤ 1

2 .

Remark 8. Suppose that u ∈ Hs
Γ(R), where Γ is a closed half-ray. Then up ∈ Hs−1

Γ (R) in the
following cases:

p = 2, −1
2 < s <∞,

p ≥ 3, 1
2 − 1

2p−4 < s <∞.
(6)

In all cases, ∥up∥Hs−1 ≤ C∥u∥pHs for some constant C > 0.

6 Application to 1D-semilinear wave equations

In this section, we address wellposedness of the Cauchy problem for the semilinear wave equation

∂2t u− ∂2xu = ±up, u(x, 0) = u0(x), ∂tu(x, 0) = u1(x) (7)

in one space dimension; here p ≥ 2 is a positive integer. We denote by Γ ⊂ R a closed half-ray which
may be assumed to be the half-line [0,∞).

Theorem 9. Assume that p and s are in the range given by (6). Let u0 ∈ Hs
Γ(R), u1 ∈ Hs−1

Γ (R).
Then there is T > 0 such that problem (7) has a unique distributional solution in C([−T, T ] : Hs

Γ(R))∩
C1([−T, T ] : Hs−1

Γ (R)). Further, the map (u0, u1) → u is locally Lipschitz continuous.

Proof. Let E(t, ·) = F−1
(
sin t|ξ|
|ξ|

)
and

(
Mu

)
(t) =

d

dt
E(t) ∗ u0 + E(t) ∗ u1 +

∫ t

0
E(t− τ) ∗ up(τ)dτ.

The goal is to construct a fixed point u = Mu in the ball

BT = {u ∈ C([−T, T ] : Hs
Γ(R)) : sup

−T≤t≤T
∥u(t)− d

dtE(t) ∗ u0 − E(t) ∗ u1∥Hs(R) ≤ 1}

for small T . Note that (for t ≥ 0)

M̂u(ξ, t) = cos(t|ξ|)û0(ξ) +
sin t|ξ|
|ξ|

û1(ξ) +

∫ t

0

sin(t− τ)|ξ|
|ξ|

û∗p(ξ, τ)dτ

from where

∥Mu(t)∥Hs(R) ≤ ∥u0∥Hs(R) + ∥u1∥Hs−1(R) + C

∫ t

0
∥up(τ)∥Hs−1(R)dτ.

The case p = 2, s > −1/2. Let v ∈ Hs
Γ(R). Then v2 ∈ Hσ

Γ(R) for σ < −1
2 + 2s, say σ = −1

2 + 2s− ε.
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We have −1
2 + 2s− ε > s− 1 for small ε > 0 and so

v2 ∈ Hs−1
Γ (R), ∥v2∥Hs−1(R) ≤ C∥v∥2Hs(R).

Similarly, if v, w ∈ Hσ
Γ(R) then

v2 − w2 ∈ Hs−1
Γ (R), ∥v2 − w2∥Hs−1(R) ≤ C∥v − w∥Hs(R)∥v + w∥Hs(R).

It follows that

(a) u ∈ C([−T, T ] : Hs
Γ(R)) ⇒ u2 ∈ C([−T, T ] : Hs−1

Γ (R)). Indeed, apply the estimate above to
v = u(t+ h), w = u(t).

(b) M : BT → BT . This follows from the estimate

∥Mu(t)∥Hs(R) ≤ ∥u0∥Hs(R) + ∥u1∥Hs−1(R) + C

∫ t

0
∥u(τ)∥pHs(R)dτ.

(c) M is a contraction on BT for small T . This follows from the similar estimate

∥Mu(t)−Mv(t)∥Hs(R) ≤ C

∫ t

0
∥u(τ)− v(τ)∥Hs(R) sup

0≤τ≤T
∥u(τ)− v(τ)∥Hs(R)dτ.

Existence and uniqueness follow. Also, u = Mu and u ∈ C([−T, T ] : Hs
Γ(R)) implies that u ∈

C1([−T, T ] : Hs−1
Γ (R)). Finally, Gronwall’s inequality gives local Lipschitz continuity.

For p ≥ 3 a similar argument works using factorization of vp − wp and Proposition 5.

Remark 10. Note that the lower bound in (6) is smaller than ssob in (2) only for p = 2 and p = 3,
so in these cases Theorem 9 improves the results of [9, 12].

7 Extensions to semilinear wave equations in higher dimensions

The results of the previous sections focused on new phenomena for semilinear wave equations on the
real line. We now discuss their extension to higher dimensions.

In addition to (x + i0)λ, which was considered above, we introduce the radially symmetric pseudo-
function rλ ∈ S ′(Rn), defined by

⟨rλ, φ⟩ =
∫

|x|λφ(x)dx

for Reλ > −n. It can be extended to a meromorphic S ′(Rn)-valued function of λ ∈ C with simple
poles at λ = −n− 2k, k ∈ N, [13, Section I.3.9]. Its Fourier transform is given by

F
(
rλ
)
(ρ) = π−λ−n/2Γ

(
λ+n
2

)
Γ
(−λ

2

) ρ−λ−n

for λ ̸= −n− 2k and λ ̸= 2k, k ∈ N [13, Section II.3.3], [40, Formula (VII,7;13)].
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Remark 11. The product of the pseudofunctions rλ is defined as a Fourier product: First, one may
extend the definition to λ ∈ C by taking finite parts in the poles. It was proved in [28, Satz 5] that
the S ′-convolution of Pf rα and Pf rβ exists if and only if Re(α + β) < −n. This can be used to
characterize the range of exponents for which the Fourier product exists. However, for the present
paper, only the range λ ∈ R, −n < λ < 0 will be needed, in which case both rλ and F(rλ) are locally
integrable functions. We show that – in the indicated range of exponents – the Fourier product of rλ

and rµ exists if λ + µ > −n. Up to constant factors, the respective Fourier transforms are ρ−λ−n

and ρ−µ−n. Take φ ∈ S(Rn). Then (φ ∗ ρ−λ−n)ρ−µ−n ∈ E ′(Rn) + L1(Rn) ⊂ D′
L1(Rn) provided

−λ − n − µ − n + n − 1 < −1. This is exactly the case when λ + µ > −n. Thus the Fourier product
of rλ and rµ exists in this range. A proof that rλ ·rµ = rλ+µ can be found, e.g., in [23, Example 5.4].
Incidentally, rλ, rµ and rλ+µ are locally integrable functions in the range 0 > λ, µ > −n, λ+µ > −n,
and the usual product equals rλrµ = rλ+µ, thus coincides with the Fourier product. The same holds
for integer powers (rλ)p = rλp when λp > −n.

Outside the poles, the pseudofunctions rλ satisfy

∆rλ = λ(λ+ n− 2)rλ−2.

In particular, when λ > 2−n and p = 1− 2/λ, rλ belongs to Lp
loc(R

n), (rλ)p = rλp and it satisfies the
elliptic equation

∆rλ = λ(λ+ n− 2)(rλ)p,

where the derivatives are understood in the weak sense and the pth power as the evaluation of the
Nemytskii operator Lp

loc(R
n) → L1

loc(Rn).

Remark 12. The following properties are easy to show. We assume here that λ < 0 so that the
pseudofunction ρ−λ−n is locally integrable.

(a) For λ < 0, the following equivalences hold:

(1) rλ ∈ Hs
loc(Rn) ⇔ s < λ+ n

2 ,

(2) rλ ∈ Hs(Rn) ⇔ λ < −n
2 and s < λ+ n

2 .

(b) If −n < λ < 0, both rλ and its Fourier transform belong to L1
loc(Rn) and

rλ ∈ Hs
loc(Rn) ⇔ s < λ+

n

2
.

The conditions λ − 2 > −n and λ < 0 can only be satisfied if n ≥ 3. In the ranges of λ under
consideration, rλ belongs to Lp

loc(R
n).

Proposition 13. Let n ≥ 3. For every s < n
2 there are λ < 0 and p ∈ N such that

(a) the distribution u0(x) = rλ belongs to Hs
loc(R), singsuppu0 = {0}, and

(b) u(x, t) ≡ u0(x) is a distributional solution to the semilinear wave equation

∂2t u−∆u = −λ(λ− 1)up, u(x, 0) = u0(x), ∂tu(x, 0) = 0, (8)

where the nonlinear term is understood in the sense of the Nemytskii operator Lp
loc(R

n) → L1
loc(Rn).

Its singular support is the noncharacteristic line {(0, t) : t ∈ R}.

Proof. It is clear that the function u(x, t) satisfies the semilinear wave equation (8) when λ = 2
1−p .

As noted, rλ belongs to Hs
loc(R) iff s < λ+ n

2 = 2
1−p + n

2 . Let p→ ∞ to produce the desired s.
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Remark 14. (a) When s > n+1
2 , the anomalous singular support of the solution from Propositon

13 would be ruled out by the results in [33]. Thus there is a gap between the counterexamples in
Proposition 13 (s < n

2 ) and the nonlinear propagation results for s > n+1
2 .

(b) In order to have that rλ ∈ Hs(Rn) it is necessary that λ < −n
2 and s < λ+ n

2 (Remark 12). This
cannot occur for p ≥ 2 and n ≥ 2.

It remains to be checked whether other radial solutions to the semilinear Laplace equation [10, 32]
can serve for constructing anomalous solutions to (1).

Lorentz transformations can be applied, similar to the one-dimensional problem, to transform the
stationary solutions u0(x) = rλ from Proposition 13 to time dependent solutions with singular support
on noncharacteristic rays.

Indeed, suppose that u(x, t) ≡ u0(x) is a stationary solution to

∂2t u−∆u = f(u).

Let |c| < 1 and set

v(x1, . . . , xn, t) = u0

( x1 + ct√
1− c2

, x2, . . . , xn

)
.

Then
∂2t v −∆v = −f(v).

The singular support of v is the ray {x1 + ct = 0, x2 = 0, . . . , xn = 0 : t ∈ R}, which lies inside the
light cone.

Similarly, the choice of |c| > 1 and

w(x1, . . . , xn, t) = u0

(±x1 + ct√
c2 − 1

, x2, . . . , xn

)
gives a solution to ∂2tw − ∆w = f(w) with singular support on a ray in a coordinate plane outside
the light cone. By means of a rotation of the x-coordinate system, one may produce solutions whose
singular support is any ray not contained in the light cone.
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[11] Camillo De Lellis and László Székelyhidi, Jr. On turbulence and geometry: from Nash to Onsager.
Notices Amer. Math. Soc., 66(5):677–685, 2019.

[12] Justin Forlano and Mamoru Okamoto. A remark on norm inflation for nonlinear wave equations.
Dynamics of Partial Differential Equations, 17(4):361–381, 2020.

[13] Izrail’ M. Gel’fand and Georgi E. Shilov. Generalized functions, volume I: Properties and opera-
tions. Academic Press, New York-London, 1964.

[14] Patrick Gérard and Jeffrey Rauch. Propagation de la régularité locale de solutions d’équations
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