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Abstract

Local well-posedness for a nonlinear parabolic-hyperbolic coupled system modelling Micro-Electro-
Mechanical System (MEMS) is studied. The particular device considered is a simple capacitor with
two closely separated plates, one of which has motion modelled by a semi-linear hyperbolic equation.
The gap between the plates contains a gas and the gas pressure is taken to obey a quasi-linear
parabolic Reynolds’ equation. Local-in-time existence of strict solutions of the system is shown,
using well-known local-in-time existence results for the hyperbolic equation, then Hölder continuous
dependence of its solution on that of the parabolic equation, and finally getting local-in-time existence
for a combined abstract parabolic problem. Semigroup approaches are vital for the local–in-time
existence results.

1 Introduction

In the present paper we study the short-time existence, uniqueness and smoothness of solutions for
the coupled parabolic-hyperbolic problem:

∂ (wu)

∂t
=

∂

∂x

(
w3u

∂u

∂x

)
, x ∈ Ω, t ≥ 0; (1.1a)

∂2w

∂t2
=
∂2w

∂x2
− βF
w2

+ βp(u− 1), x ∈ Ω, t ≥ 0, (1.1b)

u(x, 0) = u0(x), w(x, 0) = w0(x),
∂w

∂t
(x, 0) = v0(x), x ∈ Ω, (1.1c)

u(x, t) = θ1, w(x, t) = θ2, x ∈ ∂Ω, t ≥ 0, (1.1d)

which models gas pressure and membrane position in an idealised MEMS capacitor, accounting for
tension, but not elasticity, in the moving part of the capacitor – so that it is modelled as a membrane
rather than a plate.

Here the variables u(x, t) and w(x, t) represent gas pressure and gap width respectively, Ω ⊂ R

is an open, bounded interval, βF , βp, θ1, θ2 > 0 are given constants; u0 = u0(x), v0 = v0(x) and
w0 = w0(x) are given functions. We prove the following result giving well-posedness for short time:

Theorem 1.1. Let σ ∈ (0, 12 ), u0 ∈ H2+σ(Ω), v0 ∈ H1
0 (Ω) and w0 ∈ H2(Ω), compatible with the

boundary conditions and such that u0, w0 > 0. Then there exists a time interval [0, T ) such that the
initial-boundary value problem (1.1) admits a unique strict solution (u,w) on [0, T ) and

u ∈ Cσ+1
(
[0, T );L2(Ω)

)
∩ Cσ

(
[0, T );H2(Ω)

)
,

w ∈ C2
(
[0, T );L2(Ω)

)
∩ C1([0, T );H1(Ω)) ∩ C

(
[0, T );H2(Ω)

)
.
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Remark 1.2. (A) Note that global-in-time solutions are not necessarily expected, as quenching sin-
gularities with inf

x∈Ω
w(x, t) → 0 may develop as t → T . Their precise description is the subject of

reference [18].
(B) The Sobolev regularity of a solution w is also limited because the inhomogeneous term in (1.1b)
does not vanish at boundary ∂Ω of space Ω. In fact, the linear wave equation,

∂2w

∂t2
− ∂2w

∂x2
= 1, (x, t) ∈ (0, 1)× (0,∞), (1.2)

with homogeneous initial conditions w(x, 0) = ∂w
∂t (x, 0) = 0 and homogeneous boundary condition

w(0, t) = w(1, t) = 0, t ∈ [0,∞), has a solution w(t) ∈ H
5
2−ϵ(0, 1) for every ϵ > 0 and t ∈ [0,∞), but

w(t) /∈ H
5
2 (0, 1). We thus do not expect higher integer-order Sobolev regularity for w in Theorem 1.1.

MEMS, micro electro-mechanical systems, are small devices which combine mechanical and elec-
trical parts and effects, with particular examples including microphones, temperature sensors, res-
onators, accelerometers, data-storage devices etc. (see, for example, [14], [33] and [40]). The par-
ticularly simple device considered here is an electrostatically actuated MEMS capacitor (see Fig. 1),
having two parallel plates maintained at different, but constant, potentials. One plate is fixed and
flat, while the other, although flat at equilibrium and in the absence of an applied potential, is free
to move, but held fixed at its edges. It is also maintained at a sufficiently high constant tension for
it to be regarded as a membrane.

The two plates are close, and separated by a narrow gap, of varying width w, filled by a rarefied
gas, with local pressure u. The gas is taken to move according to Reynolds’ equation, which is valid
for a thin layer of viscous fluid, and behave as an isothermal ideal gas, thus giving PDE (1.1a), under
appropriate scaling. Taking the gas to move freely between the gap and the rest of the MEMS device
gives the first boundary condition (1.1d). With the flexible plate subject to sufficiently high tension,
it behaves as a membrane and we have the first two terms of (1.1b), again on scaling appropriately.
Having the membrane subject to pressure u from the gap and a constant pressure from the other side
gives the last terms on the right-hand side of (1.1b), after scaling u with that constant pressure. The
remaining term of the second PDE comes from electrostatic attraction: because the gap is narrow,
the electric field is (approximately) ∝ 1/w, giving a charge density on the membrane ∝ 1/w, and
hence an attractive force ∝ 1/w2 (also proportional to the square of the applied voltage difference
between the membrane and the rigid plate). Holding the membrane at its edges gives the second
boundary condition of (1.1d).

Fixed ground plate

Gas velocityGas of pressure u

x

Gap width w

Flexible membrane

Gas at constant ambient pressure

Figure 1: Schematic of a simple electrostatically actuated MEMS capacitor.

Here we consider the case of one spatial dimension, corresponding to an idealised prismatic device,
translation-invariant and of infinite extent in one direction. In this case the energy space H1(Ω) for
the wave equation is an algebra, simplifying the analysis of the nonlinearity.

In a companion paper [20] we consider the two-dimensional case when the tension in the flexible
electrode is not assumed to be so large. Elastic effects are then taken into account and a bi-harmonic
term is additionally included in the PDE (1.1b) for gap width w.

In another recent paper [19], we study the wellposedness of a different MEMS model, which is
simpler regarding its fluid flow: the equation (1.1a) is replaced by a linear elliptic PDE for the
gas pressure u but, like [20], includes a bi-harmonic term in the equation (1.1b) for gap width w.
Physically, such a simpler fluid model represents the operation of MEMS devices having effectively
incompressible fluid flow and an elastic plate. Here the dynamics of the gas pressure is replaced by a
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quasi-static approximation – applicable when the gas flow can be regarded as slow, so that, to leading
order, the pressure and density can be regarded as constant. The resulting model can be reduced to
a perturbed semilinear dispersive equation for w via standard analysis of linear elliptic equations.

In many industrial applications, the movement of the upper plate is dominated by its tension, so
that elastic effects are negligible. This approximation in the limiting case leads to a wave equation
(1.1b) for the gap width w.

The mathematical analysis of the coupled system (1.1a)-(1.1d) is studied by a delicate combination
of the analytical techniques available for the constituent equations. We here adapt the techniques
from the companion paper [20]: refining the analysis of (1.1b), reducing the coupled system to
an abstract quasilinear, degenerately parabolic equation for the gas pressure u and showing the
wellposedness by analytic semigroup techniques.

In contrast to the model in the companion paper [20], the short-time existence of the coupled
system (1.1a)-(1.1d) leads to the quenching singularity of the semilinear wave equation in [18], which
motivates us to study the local behaviour of the quenching solution of the wave equation in [18]
formally.

MEMS-related models have been studied for a number of years. Most attention has been directed
to models given by a single equation but there has been some work on systems. We now review
some literature which studies such models, numerically and/or analytically, to obtain qualitative
behaviour.

A key steady-state model, describing the shape of the deflected elastic membrane of a canonical
MEMS system, including the steady state of the model looked at in the present paper, can be written
in the dimensionless form

∆w =
βF
w2

, w |∂Ω= 1. (1.3)

Here, w is again the gap between the membrane and the rigid plate. This model has been extensively
studied. For example, the paper [26] has shown that there is a 0 < β∗

F < 4µ0

27 , where µ0 is the
principle eigenvalue for the associated eigenvalue problem

∆ϕ+ µϕ = 0, ϕ |∂Ω= 0,

such that (1.3) has no solutions provided βF > β∗
F , while if βF < β∗

F (1.3) has a solution. Flores et
al. [13] prove that (1.3) has a maximal solution for βF < β∗

F in dimensions N ≤ 2.
A generalisation of this problem has a membrane with a spatially varying permittivity profile,

with the stationary equation for the membrane then given by

∆w =
βF f(x)

w2
, w |∂Ω= 1. (1.4)

Ghoussoub and Guo [15] show how the change of the permittivity profile f(x) affects the critical
value β∗

F . Analytical and numerical techniques give upper and lower bounds on β∗
F which depend on

the permittivity profile, the nature of domain including shape, size and dimension N of the domain.
Taking βF = β∗

F , a corresponding extremal solution of (1.4) exists if 1 ≤ N ≤ 7, but does not exist
if N ≥ 8.

The dynamical problem for an elastic membrane has been of much recent interest and an elastic
membrane in a MEMS capacitor has been modelled by a semilinear wave equation

ϵ2
∂2w

∂t2
+
∂w

∂t
−∆w = −βF

w2
, w |∂Ω= 1, (1.5)

with the first-derivative ∂w/∂t representing damping.
Flores [12] obtains the “pull-in” voltage separating the regime for which the membrane can ap-

proach a steady state, from the “touchdown” regime for which the membrane always collapses onto
the rigid plate. More specifically, it is shown that touchdown – gap width w falls to zero somewhere
– must take place in finite time if βF > β∗

F . Also, for small enough β, depending upon the initial
data (voltage is less than the “dynamic pull-in voltage”), touchdown, i.e. quenching, does not occur.
A related non-local model is studied in [24].

When the contribution of the inertial terms dominate, i.e. ϵ2 ≫ 1, from (1.5), we may neglect the
damping term, and rescale, to obtain the simpler hyperbolic model

∂2w

∂t2
−∆w = −βF

w2
, w |∂Ω= 1, (1.6)
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which has been extensively studied in [6, 12, 29, 31, 35]. In particular, Kavallaris et al. [31] obtain
local and global existence results for this MEMS model. They also study the dynamical behaviour
of solutions and dependence on the parameter βF . The work of Chang and Levine [6] shows that,
for suitable initial data, the similar second-order semilinear PDE

∂2w

∂t2
−∆w = −βF

w
, w |∂Ω= 1,

has a weak solution w in time interval [0, T ] for some T > 0, and that w can be extended to a time
interval of the form [0, T + τ ] for small τ , by using an iterative scheme. Other hyperbolic MEMS
equations can be seen in reference [38] and more general semilinear wave equations are looked at in
Sogge’s book [42].

When the damping term dominates, i.e. ϵ2 ≪ 1, then the semilinear damped wave equation
reduces to the parabolic equation studied in [13]:

∂w

∂t
−∆w = −βF

w2
, w |∂Ω= 1. (1.7)

In the case of two space dimensions, Flores et al. [13] prove that, for βF < β∗
F , the solutions w of

(1.7), with initial value w|t=0 = 1, converge to the maximal steady solution w̄ of (1.3) as t → ∞,
while for βF > β∗

F , touchdown occurs. Related non-local problems can be also found in Kavallaris et
al. [30]. The work [17] of Guo et al. took spatially varying permittivity so that (1.7) is replaced by

∂w

∂t
−∆w = −βF f(x)

w2
, w |∂Ω= 1, w |t=0= 1, (1.8)

with f(x) denoting the permittivity proflle; similar conclusions to Flores et al. [13] are obtained.
The touchdown of a highly damped membrane corresponds to the quenching of a solution to the

parabolic equation, and the quenching profile for a semilinear parabolic equation has been studied
extensively in J. S. Guo [22]. Other quenching solutions for parabolic equations can be found in
papers [5], [16], and references [8], [25], [32] of Kavallaris et al. To be specific, the paper [32] studies
a similar case to (1.8), in which the right-hand side −βF f(x)/w2 of (1.8) is replaced by −βF |x|β/wp

with specific β and p, the resulting equation has a global-in-time solution for initial data close to
1, while quenching occurs for large βF or small initial values. Similar conclusions also hold for a

non-local version of (1.8). Here a non-local term f(t) = 1/
(
1 + α

∫
Ω
(1/w)dx

)2
replaces the f(x)

above, with α a positive constant, and models the effect of connecting the MEMS device to a fixed
capacitor as well as a constant voltage source. More details can be found in Guo and Kavallaris [25],
and Guo et al. [23]. The recent publication [8] of Kavallaris et al. generalises the quenching solution
to stochastic parabolic equation modelling MEMS devices with random fluctuations of the potential
difference.

Recent publications on coupled systems modelling gap flow and membrane motion are less ex-
tensive, only studying the compressible version (1.1b) of the standard nonlinear Reynolds’ equation
numerically, for example in the works [2, 4, 28, 43, 44]. In particular, Bao et al. [3] study squeeze-
film damping with small amplitude deflections and linearise the nonlinear Reynolds’ equation (1.1b)
around the equilibrium position. The resulting equation is a heat equation, so that analytical solu-
tions are then available.

Our proof of Theorem 1.1 is outlined in Subsection 2.2. It relies on techniques for quasilinear
parabolic equations developed, for example, by Amann, Lunardi and Sinestrari [1, 37, 41]. Semigroup
methods of this kind have become a powerful tool for MEMS-related models defined by a single
equation or by an elliptic-parabolic coupled system, see [7], [10] and the recent survey [34]. We
here combine such parabolic techniques for the quasilinear Reynolds’ equation (1.1a) with semigroup
techniques for the semilinear hyperbolic equation (1.1b).

The plan of the paper is as follows: In Section 2, we introduce the relevant Sobolev spaces and
some of their basic properties, we also introduce the mild solution and strict solution for the general
evolution equation and their existence results, then we discuss the steps in the proof of Theorem 1.1.
In Section 3, we use a solving strategy for the system (1.1a), (1.1b) based on decoupling the equations
for the gap width w and the pressure u. We first consider the semilinear hyperbolic equation (1.1b) for
the gap width w with an arbitrarily given pressure u and use semigroup techniques for (1.1b) to show
the local well-posedness of (1.1b). While the regularity theory of semilinear hyperbolic equations has
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been of much recent interest, we here require detailed properties of the solution operator u 7→ w(u)
in order to analyse the nonlinear Reynolds’ equation (1.1a) with abstract coefficients involving w(u).
For example, we prove appropriate Hölder continuity of the solution operator u 7→ w(u) in Section 4.
In Section 5, we investigate the local well-posedness of (1.1a) for u with abstract coefficients involving
w(u) by using techniques for quasilinear parabolic equations.

Notation

Recall that Ω ⊂ R is an open and bounded subset. Denote by C = C(Ω) a positive constant that
may vary from line to line below but depends only on Ω.

Definition 1.3. Denote by X a Banach space equipped with norm ∥ · ∥X , and set k ∈ N and T ∈
(0,∞). B(X) is a space of bounded linear operators on X. In the following, we shall be particularly
interested in X = L2(Ω), L∞(Ω), Hk(Ω), etc. B([0, T ];X) denotes a space which consists of all
measurable, almost everywhere bounded functions u : [0, T ] → X, t 7→ u(t) with norm ∥u∥B([0,T ];X) =
supt∈[0,T ] ∥u(t)∥X . If X is a function space as above, we write u(t) : Ω → R with x 7→ [u(t)](x) =
u(x, t). The closed subspace of continuous functions is denoted by C([0, T ];X), and

Ck([0, T ];X) =
{
u : [0, T ] → X : dju

dtj ∈ C([0, T ];X), j ∈ [0, k]
}
, ∥u∥Ck([0,T ];X) = sup

t∈[0,T ]

k∑
j=0

∥∥∥dju(t)
dtj

∥∥∥
X
.

The definition extends to non-integer order k + α, α ∈ (0, 1), by setting

Cα([0, T ];X) =

{
u : [0, T ] → X : [u]Cα([0,T ];X) = sup

0≤t<t+h≤T

∥u(t+h)−u(t)∥X

|h|α <∞
}
,

∥u∥Cα([0,T ];X) = ∥u∥C([0,T ];X) + [u]Cα([0,T ];X),

Cα+k([0, T ];X) =
{
u ∈ Ck([0, T ];X) : dku

dtk
∈ Cα([0, T ];X)

}
,

∥u∥Cα+k([0,T ];X) = ∥u∥Ck([0,T ];X) +
[
dku
dtk

]
Cα([0,T ];X)

.

Note that C ([0, T ];BL2 (V, r)) =
{
v ∈ C

(
[0, T ];L2 (Ω)

)
: supt∈[0,T ] ∥v(t)− V ∥L2(Ω) ≤ r

}
and

Cα ([0, T ];BL2 (V, r)) =
{
v ∈ Cα

(
[0, T ];L2 (Ω)

)
: supt∈[0,T ] ∥v(t)− V ∥L2(Ω) ≤ r

}
with V ∈ L2(Ω),

analogously, C ([0, T ];BX (U, r)) =
{
u ∈ C ([0, T ];X) : u|∂Ω = U |∂Ω, supt∈[0,T ] ∥u(t)− U∥X ≤ r

}
and Cα ([0, T ];BX (U, r)) =

{
u ∈ Cα ([0, T ];X) : u|∂Ω = U |∂Ω, supt∈[0,T ] ∥u(t)− U∥X ≤ r

}
with

U ∈ X, where X = H1(Ω), H2(Ω).
Let P : D(P) ⊂ X → X be an unbounded linear operator which generates an analytic semigroup

ePt, and define intermediate space DP(α,∞) as follows:

DP(α,∞) =

{
v ∈ X : ∥v∥α = sup

t>0
∥t1−αPePtv∥X <∞

}
.

It is a Banach space with respect to the norm ∥v∥DP(α,∞) = ∥v∥X + ∥v∥α. Its closed subspace

DP(α) =
{
v ∈ X : limt→0 t

1−αPePtv = 0
}
inherits the norm of DP(α,∞).

Our main results on the well-posedness of the semilinear wave equation will be shown by construct-
ing a Picard iteration in the complete metric space Z(T ), given by (1.9), with ṽ0 = v0, w̃0 = w0−θ2,

Z(T ) :=

{(
ṽ
w̃

)
∈ C

(
[0, T ];L2(Ω)×H1

0 (Ω)
)
:

(
ṽ(0)
w̃(0)

)
=

(
ṽ0
w̃0

)
, sup

t∈[0,T ]

∥∥∥∥( ṽ(t)− ṽ0
w̃(t)− w̃0

)∥∥∥∥
L2×H1(Ω)

≤ r

}
.

(1.9)

2 Preliminaries and Outline

The approach in this article is functional analytic. In this section we recall standard notions and
results for abstract evolution equations and discuss the steps in the proof of Theorem 1.1.
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2.1 Abstract Evolution Equations

Definition 2.1. Let X be a Banach space, A : D(A) ⊂ X → X a linear, unbounded operator which
generates a strongly continuous semigroup (C0-semigroup) {T (t) : t ≥ 0}. Further, let T ∈ (0,∞),
G ∈ C([0, T ];X) and Φ0 ∈ X. A function Φ is called a mild solution of the inhomogeneous evolution
equation

Φ′(t) = AΦ(t) + G(t), t ∈ [0, T ], Φ(0) = Φ0, (2.1)

if Φ ∈ C([0, T ];X) is given by the integral formulation

Φ(t) = T (t)Φ0 +

∫ t

0

T (t− s)G(s)ds, t ∈ [0, T ]. (2.2)

A function Φ is said to be a strict solution of (2.1), if Φ ∈ C([0, T ];D(A))∩C1([0, T ];X) is given by
the integral formulation (2.2) and satisfies (2.1).

Lemma 2.2. Consider a linear operator A on a Banach space X which generates a C0-semigroup
{T (t) : t ≥ 0}, T ∈ (0,∞). Further, let Φ0 ∈ D(A) and G ∈ C([0, T ];X). If Φ is a solution of the
inhomogeneous evolution equation (2.1) on [0, T ], then Φ is given by the integral formulation (2.2).

Assume that, in addition, either G ∈ C([0, T ];D(A)) or G ∈ C1([0, T ];X). Then the mild solution
Φ on [0, T ] defined by (2.2) uniquely solves the inhomogeneous evolution equation (2.1), and

Φ ∈ C ([0, T ];D(A)) ∩ C1 ([0, T ];X) .

We refer to Theorem 6.9 in [27] for the proof of Lemma 2.2.

Lemma 2.3. Let X be a Banach space and Φ ∈ C([0, T ];X) be differentiable from the right with right
derivative Ψ ∈ C ([0, T ];X). Then Φ ∈ C1 ([0, T ];X) and Φ′ = Ψ.

We refer to Lemma 8.9 in [27] for the proof of Lemma 2.3.

2.2 Outline of the Proof of Theorem 1.1

We now outline the key steps of the main result in this article, Theorem 1.1. Instead of considering
(1.1), we look for a unique strict short-time solution (u, v, w) of the following, equivalent coupled
system (2.3):

∂u

∂t
=

1

w

∂

∂x

(
w3u

∂u

∂x

)
− v

w
u, x ∈ Ω, t ≥ 0; (2.3a)

∂v

∂t
=
∂2w

∂x2
− βF
w2

+ βp(u− 1), x ∈ Ω, t ≥ 0; (2.3b)

∂w

∂t
= v, x ∈ Ω, t ≥ 0. (2.3c)

The initial values are given by u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω, and boundary
values by u(x, t) = θ1, w(x, t) = θ2, x ∈ ∂Ω, t ≥ 0.

Section 3 shows that there exists a unique solution (v, w) of the hyperbolic sub-system (2.3b),
(2.3c) for given, appropriately regular u, initial values v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω and
boundary values w(x, t) = θ2, x ∈ ∂Ω, t ≥ 0. Section 4 then establishes relevant properties of
solution operators u 7→ (v, w) = (v(u), w(u)) for short time intervals [0, T ], such as Theorem 2.4,
which is a restatement of Theorem 4.1 in Section 4.

Theorem 2.4. The solution operator

W : C ([0, T ];BH2(u0, r)) → C ([0, T ];BL2(v0, r)×BH1(w0, r))

u 7→W (u) = (v, w) = (v(u), w(u))

is Lipschitz continuous with respect to u, i.e.

∥W (u1)−W (u2)∥C([0,T ];L2(Ω)×H1(Ω)) ≤ LW ∥u1 − u2∥C([0,T ];H2(Ω)),

where r > 0 is sufficiently small, LW > 0 is a Lipschitz constant,

BL2(V, r) =
{
f ∈ L2(Ω) : ∥f − V ∥L2(Ω) ≤ r

}
, with V ∈ L2(Ω),

BX(U, r) = {f ∈ X : f |∂Ω = U |∂Ω, ∥f − U∥X ≤ r} , where X = H1(Ω), H2(Ω) and U ∈ X.
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The arguments further give information about the Fréchet derivative of the solution operator W ,
as stated in the following two corollaries, Corollary 2.5 and Corollary 2.6, which are the same as
Corollary 4.2 and Corollary 4.3, respectively, in Section 4, but stated differently.

Corollary 2.5. Given u ∈ C ([0, T ];BH2(u0, r)) and small r > 0, the Fréchet derivative W ′(u) of
W (u),

W ′(u) : C
(
[0, T ];H2(Ω) ∩H1

0 (Ω)
)
→ C

(
[0, T ];L2(Ω)×H1

0 (Ω)
)
,

q 7→W ′(u)q = (v′(u)q, w′(u)q)

is Lipschitz continuous with respect to u, i.e. for ∥q∥C([0,T ];H2(Ω)) ≤ 1,

∥W ′(u1)q −W ′(u2)q∥C([0,T ];L2(Ω)×H1(Ω)) ≤ LF ∥u1 − u2∥C([0,T ];H2(Ω)) .

Here LF is a Lipschitz constant.

Corollary 2.6. If r > 0 is small and given u ∈ Cα ([0, T ];BH2(u0, r)), then there exists a Lipschitz
constant LM > 0, such that

sup
0≤t<t+h≤T

∥[W ′(u)q](t+ h)− [W ′(u)q](t)∥L2(Ω)×H1(Ω) ≤h
αLM ∥q∥C([0,T ];H2(Ω))

+hαTLM ∥q∥Cα([0,T ];H2(Ω))

holds for all q ∈ Cα([0, T ];BH2(ũ0, r)), where ũ0 = u0 − θ1,.

Based on these results for the solution operator u 7→ (v, w) = (v(u), w(u)) to the hyperbolic
problem, we obtain an existence result for the coupled system (1.1) in Section 5. To do so, we
reformulate the system (1.1) as an abstract quasilinear parabolic equation involving v(u) and w(u):

∂u

∂t
=

1

w(u)

∂

∂x

(
[w(u)]3u

∂u

∂x

)
− v(u)

w(u)
u, (x, t) ∈ Ω× (0, T ), (2.4a)

u(x, 0) = u0(x), x ∈ Ω, u(x, t) = θ1, (x, t) ∈ ∂Ω× [0, T ]. (2.4b)

Using a contraction mapping argument, we show that the solution of (2.4) exists as long as
(v(u), w(u)) ∈ C ([0, T ];BL2(v0, r)×BH1(w0, r)) for small r > 0 and T > 0.

More precisely, we set ũ = u− θ1and consider the operator

F (ũ) =
1

w(ũ+ θ1)

∂

∂x

(
[w(ũ+ θ1)]

3(ũ+ θ1)
∂ũ

∂x

)
− v(ũ+ θ1)

w(ũ+ θ1)
(ũ+ θ1).

Theorem 2.4, Corollary 2.5 and Corollary 2.6 imply Hölder estimates for the nonlinear operator F ,
i.e. Theorem 2.7, which slightly simplifies the statement of Lemma 5.4 in Section 5:

Theorem 2.7. Fix T > 0. If ũ, q ∈ Cα ([0, T ];BH2(ũ0, r)), with u0 = ũ0 + θ1, then there exist
constants LA, LB > 0, such that for 0 ≤ t < t+ h ≤ T ,

∥[F (ũ)] (t+ h)− [F (ũ)] (t)∥L2(Ω) ≤
{
[ũ+ θ1]Cα([0,T ];H2(Ω)) + LU

}
LAh

α, (2.5)

∥[F ′(ũ)q] (t+ h)− [F ′(ũ)q] (t)− P∗ [q(t+ h)− q(t)]∥L2(Ω)

≤hαTαLB ∥q∥Cα([0,T ];H2(Ω)) + hαTαLB ∥ũ+ θ1∥Cα([0,T ];H2(Ω)) ∥q∥Cα([0,T ];H2(Ω))

+hαLB ∥q∥C([0,T ];H2(Ω)) + hαLB ∥ũ+ θ1∥Cα([0,T ];H2(Ω)) ∥q∥C([0,T ];H2(Ω)) . (2.6)

Lemma 5.4 further specifies the dependence of LA and LB on the given data of the problem.

The linearisation P∗ of F around the initial condition ũ0 is shown to generate an analytic semi-
group

{
etP

∗
: t ≥ 0

}
.

To prove the short-time existence result for the nonlinear problem (2.7), we now rewrite (2.4) in
the form

ũ′(t) = P∗ũ(t) + [F (ũ)](t)− P∗ũ(t), t ∈ (0, T ), ũ(0) = ũ0, (2.7)

and use a fixed point argument for the nonlinear mapping Γ on a suitable space, defined by

Γ(ũ(t)) = etP
∗
ũ0 +

∫ t

0

e(t−s)P∗
{[F (ũ)](s)− P∗ũ(s)} ds, t ∈ [0, T ]. (2.8)

Combining the existence and regularity results from Section 3 with the existence of a unique strict
solution of (2.7), we conclude the proof of Theorem 1.1.
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3 Well-Posedness Results for the Hyperbolic Equation

Let u0 ∈ H2+σ(Ω), v0 ∈ H1
0 (Ω) and w0 ∈ H2(Ω) be given functions which are compatible with

boundary conditions u0|∂Ω = θ1 and w0|∂Ω = θ2, where σ ∈ (0, 12 ). Set r ∈
(
0, κ

2C

)
with a constant

C = C(Ω) > 0 and κ = infx∈Ω w0(x). We introduce the state space

X = L2(Ω)×H1
0 (Ω), (3.1)

where X is endowed with the norm ∥·∥X = ∥·∥L2(Ω)×H1(Ω) and the scalar product

⟨a,b⟩X =

∫
Ω

a1 · b1 +∇a2 · ∇b2dx, a = (a1, a2) ∈ X, b = (b1, b2) ∈ X.

We define an operator ∆D by

D(∆D) :=
{
φ ∈ H1

0 (Ω) : ∃ f ∈ L2(Ω), ∀ ψ ∈ H1
0 (Ω), such that

∫
Ω

∇φ · ∇ψdx =

∫
Ω

f · ψdx
}
, (3.2)

∆Dφ := −f, where f is given by D(∆D), ∥φ∥D(∆D) := ∥φ∥L2(Ω) + ∥∆Dφ∥L2(Ω) . (3.3)

From elliptic regularity theory, it follows that

D(∆D) =
{
φ ∈ H2(Ω) : φ|∂Ω = 0

}
= H2(Ω) ∩H1

0 (Ω), ∥φ∥D(∆D) ≃ ∥φ∥H2(Ω).

We also define the linear operator A with its domain D(A) and the graph norm of A by

A =

(
0 ∆D

1 0

)
, D(A) = H1

0 (Ω)×D(∆D), (3.4a)

∥a∥D(A) := ∥a∥X + ∥Aa∥X ≃ ∥a1∥H1(Ω) + ∥a2∥H2(Ω), a = (a1, a2) ∈ D(A). (3.4b)

Let T ∈ (0,∞) to be specified below. We now study the initial-boundary value problem for the
semilinear hyperbolic equation (1.1b) for w for a given, fixed function u ∈ C ([0, T ];BH2 (u0, r)),
subject to initial values

w(x, 0) = w0(x),
∂w

∂t
(x, 0) = v0(x), x ∈ Ω, (3.5)

and Dirichlet boundary conditions

w(x, t) = θ2, (x, t) ∈ ∂Ω× [0, T ]. (3.6)

We define w̃(x, t) = w(x, t)− θ2 with w̃(t) : Ω → R, x 7→ [w̃(t)](x) = w̃(x, t). Note that the Dirichlet
boundary conditions w̃(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ] are incorporated in the domain of the Dirichlet
realisation ∆D of the Laplace operator in (3.2) and (3.3). We now rewrite (1.1b) with (3.5) and (3.6)
as the equation (3.7) on the unknown function w̃:

w̃′′(t) = ∆Dw̃(t)−
βF

(w̃(t) + θ2)2
+ βp(ũ(t) + θ1 − 1), t ∈ [0, T ], w̃(0) = w̃0, w̃′(0) = ṽ0, (3.7)

where w̃′ and w̃′′ denote, respectively, the first and second derivatives of the unknown function w̃
with respect to t ∈ (0, T ); ũ = u− θ1 is given in C ([0, T ];BH2 (ũ0, r)). Observe that

ũ0 = u0 − θ1 ∈ H2+σ(Ω) ∩H1
0 (Ω), σ ∈ (0, 1/2) , ṽ0 = v0 ∈ H1

0 (Ω), w̃0 = w0 − θ2 ∈ H2(Ω) ∩H1
0 (Ω).

For a time-dependent state Φ(t) = (φ1(t), φ2(t)) we write

Φ0 = (ṽ0, w̃0) ∈ D(A) (3.8)

and consider the nonlinear operator

[G(φ2)](t) = − βF
(φ2(t) + θ2)2

+ βp(θ1 − 1), G = [G (Φ)] (t) = ([G (φ2)] (t) + βpũ(t), 0) . (3.9)

The existence of a unique strict solution of the equation (3.7) is shown in Theorem 3.6, which is
proved using Lemma 3.1 to Corollary 3.5. The proofs of these results, from Lemma 3.1 to Theorem
3.6, follow from adapting well-known arguments to equation (3.7) and are presented in Appendix
B. These auxiliary results lead to the well-posedness of the semilinear hyperbolic equation (1.1b)
subject to initial values (3.5) and boundary conditions (3.6), for a given function u.

The first Lemma gives an equivalent, abstract formulation of the problem:
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Lemma 3.1. Let ũ ∈ C ([0, T ];BH2 (ũ0, r)) ∩ C1
(
[0, T ];L2(Ω)

)
be given, and define A and G by

(3.4) and (3.9) respectively. The semilinear hyperbolic equation (3.7) has a unique solution

w̃ ∈ C2([0, T ];L2(Ω)) ∩ C1([0, T ];H1
0 (Ω)) ∩ C([0, T ];H2(Ω) ∩H1

0 (Ω))

if and only if the semilinear evolution equation

Φ′(t) = AΦ(t) + [G (Φ)] (t), t ∈ [0, T ], Φ(0) = Φ0, (3.10)

has a unique solution
Φ ∈ C([0, T ];D(A)) ∩ C1([0, T ];X).

In this case, Φ = (w̃′, w̃).

We next recall that the operator A is the generator of a strongly continuous semigroup.

Lemma 3.2. Let Ω be an open and bounded subset of R and X as in (3.1). Then the linear operator
A defined by (3.4) generates a C0-semigroup {T (t) ∈ B (X): t ∈ [0,∞)}.

Standard arguments imply the existence of a unique mild solution to the abstract problem from
Lemma 3.1.

Theorem 3.3. For r ∈
(
0, κ

2C

)
with κ = infx∈Ω {w̃0(x) + θ2} and a constant C = C(Ω) > 0, there

exists T0 > 0, such that for all T ∈ (0, T0) and given ũ ∈ C ([0, T ];BH2 (ũ0, r)), the semilinear
evolution equation(

ṽ′(t)
w̃′(t)

)
= A

(
ṽ(t)
w̃(t)

)
+

(
[G(w̃)](t) + βpũ(t),

0

)
, t ∈ [0, T ],

(
ṽ(0)
w̃(0)

)
=

(
ṽ0
w̃0

)
, (3.11)

has a unique mild solution (ṽ, w̃) ∈ C
(
[0, T ];L2(Ω)×H1

0 (Ω)
)
defined by the integral formulation(

ṽ(t)
w̃(t)

)
= T (t)

(
ṽ0
w̃0

)
+

∫ t

0

{
T (t− s)

(
[G(w̃)](s) + βpũ(s)

0

)}
ds. (3.12)

A refined analysis establishes Hölder and Lipschitz estimates in time, as stated in the following
corollaries.

Corollary 3.4. Let T ∈ (0, T0), r ∈
(
0, κ

2C

)
and given ũ ∈ C ([0, T ];BH2 (ũ0, r))∩C1([0, T ];L2(Ω)).

Then the mild solution of (3.11), (ṽ, w̃) : [0, T ] → L2(Ω)×H1
0 (Ω), defined by the integral formulation

(3.12), is locally Lipschitz continuous with respect to t ∈ [0, T ], i.e. ∀ h ∈ (0, T ],

sup
0≤t<t+h≤T

∥∥∥∥( ṽ(t+ h)− ṽ(t)
w̃(t+ h)− w̃(t)

)∥∥∥∥
L2(Ω)×H1(Ω)

≤ LV h. (3.13)

Here LV is a Lipschitz constant depending on the data βF , βp, T0, κ, Ω, ∥ũ0∥H2(Ω), ∥w̃0∥H1(Ω),

∥(ṽ0, w̃0)∥D(A), M0 = supt∈[0,∞) ∥T (t)∥B(L2(Ω)×H1
0 (Ω)) and ∥ũ∥C1([0,T0);L2(Ω)).

Corollary 3.5. If T ∈ (0, T0), r ∈
(
0, κ

2C

)
and given ũ ∈ Cα ([0, T ];BH2(ũ0, r)) with α ∈ (0, 1),

then the mild solution of (3.11), (ṽ, w̃) : [0, T ] → L2(Ω)×H1
0 (Ω), defined by the integral formulation

(3.12), is locally Hölder continuous with exponent α with respect to t ∈ [0, T ], i.e. for all h ∈ (0, T ],

sup
0≤t<t+h≤T

∥∥∥∥( ṽ(t+ h)− ṽ(t)
w̃(t+ h)− w̃(t)

)∥∥∥∥
L2(Ω)×H1(Ω)

≤ LUh
α. (3.14)

Here LU is a Lipschitz constant depending on α, T0, Ω, βp, βF , κ, ∥ũ0∥H2(Ω), ∥w̃0∥H1(Ω),

∥(ṽ0, w̃0)∥D(A) and M0 = supt∈[0,∞) ∥T (t)∥B(L2(Ω)×H1
0 (Ω)).

We finally conclude that the mild solution from Theorem 3.3 is a strict solution:

Theorem 3.6. For T ∈ (0, T0) and given ũ ∈ C ([0, T ];BH2 (ũ0, r)) ∩ C1([0, T ];L2(Ω)), the mild
solution (ṽ, w̃) of (3.11), defined by (3.12), is the strict solution of (3.11) with

(ṽ, w̃) ∈ C1
(
[0, T ];L2(Ω)×H1

0 (Ω)
)
∩ C

(
[0, T ];H1

0 (Ω)×
{
H2(Ω) ∩H1

0 (Ω)
})
.
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4 Properties of the Solution Operator to the Hyperbolic Equa-
tion

Theorem 4.1. Let T0 be given by Theorem 3.3 and T ∈ (0, T0). Then a solution operator W1,

W1 : C ([0, T ];BH2 (ũ0, r)) → Z(T ), ũ 7→W1(ũ) = (ṽ, w̃) = (ṽ(ũ), w̃(ũ)) ,

where

[W1(ũ)](t) = T (t)

(
ṽ0
w̃0

)
+

∫ t

0

{
T (t− s)

(
[G(w̃)](s) + βpũ(s)

0

)}
ds, t ∈ [0, T ],

satisfies Lipschitz continuity, i.e.

sup
t∈[0,T ]

∥[W1(ũ1)](t)− [W1(ũ2)](t)∥L2(Ω)×H1(Ω) ≤ LW sup
t∈[0,T ]

∥ũ1(t)− ũ2(t)∥H2(Ω). (4.1)

Here r ∈
(
0, κ

2C

)
; Z(T ) and G(w̃) are defined by (1.9) and (A.9) respectively; LW is a Lipschitz

constant depending on T0, M0 = supt∈[0,∞) ∥T (t)∥B(L2(Ω)×H1
0 (Ω)), κ, ∥w0∥H1(Ω), Ω, βp and βF .

Furthermore, define

W2 : C ([0, T ];BH2 (ũ0, r)) → C
(
[0, T ];L2(Ω)

)
, ũ 7→ ṽ

w̃ + θ2
.

Then W2(ũ) also depends Lipschitz-continuously on ũ ∈ C ([0, T ];BH2 (ũ0, r)), i.e.

sup
t∈[0,T ]

∥[W2(ũ1)](t)− [W2(ũ2)](t)∥L2(Ω) ≤ LW2
sup

t∈[0,T ]

∥ũ1(t)− ũ2(t)∥H2(Ω). (4.2)

Here LW2
is a Lipschitz constant depending on the above LW and ∥ṽ0∥L2(Ω).

Proof. Let T ∈ (0, T0), ũ1, ũ2 ∈ C ([0, T ];BH2 (ũ0, r)) be such that W1(ũ1) = (ṽ1, w̃1) ∈ Z(T ) and
W1(ũ2) = (ṽ2, w̃2) ∈ Z(T ), then [G(w̃1)](t)− [G(w̃2)](t)+βp [ũ1(t)− ũ2(t)] ∈ H1(Ω) for all t ∈ [0, T ],
and it follows that

∥[W1(ũ1)](t)− [W1(ũ2)](t)∥L2(Ω)×H1(Ω)

=

∥∥∥∥∫ t

0

T (t− s)

(
[G(ũ1, w̃1)](s)− [G(ũ2, w̃2)](s)

0

)
ds

∥∥∥∥
L2(Ω)×H1(Ω)

≤M0

∫ t

0

∥[G(w̃1)](s)− [G(w̃2)](s) + βp [ũ1(s)− ũ2(s)]∥L2(Ω) ds

≤M0

∫ t

0

∥[G(w̃1)](s)− [G(w̃2)](s) + βp [ũ1(s)− ũ2(s)]∥H1(Ω) ds, (4.3)

where M0 = supt∈[0,∞) ∥T (t)∥B(L2(Ω)×H1
0 (Ω)). Since the estimate (A.11) of G from Lemma A.4 and

∥w̃1(t)− w̃2(t)∥H1(Ω) ≤
∥∥∥∥( ṽ1(t)− ṽ2(t)
w̃1(t)− w̃2(t)

)∥∥∥∥
L2(Ω)×H1(Ω)

= ∥[W1(ũ1)](t)− [W1(ũ2)](t)∥L2(Ω)×H1(Ω),

where t ∈ [0, T ], we find

∥[G(w̃1)](s)− [G(w̃2)](s) + βp [ũ1(s)− ũ2(s)]∥H1(Ω)

≤LG∥[W1(ũ1)](s)− [W1(ũ2)](s)∥L2(Ω)×H1(Ω) + βp ∥ũ1(s)− ũ2(s)∥H2(Ω) , ∀ 0 ≤ s ≤ t ≤ T.

Thus

∥[W1(ũ1)](t)− [W1(ũ2)](t)∥L2(Ω)×H1(Ω)

≤T0M0βp sup
t∈[0,T ]

∥ũ1(t)− ũ2(t)∥H2(Ω) +M0LG

∫ t

0

∥[W1(ũ1)](s)− [W1(ũ2)](s)∥L2(Ω)×H1(Ω)ds.

10



According to Gronwall’s inequality, we obtain

sup
t∈[0,T ]

∥ [W1(ũ1)] (t)− [W1(ũ2)] (t)∥L2(Ω)×H1(Ω) ≤ T0M0βpe
M0LGT0 sup

t∈[0,T ]

∥ũ1(t)− ũ2(t)∥H2(Ω).

As a result we conclude (4.1) with LW = T0M0βpe
M0LGT0 . Because LG, as a Lipschitz constant,

depends on κ, ∥w0∥H1(Ω), Ω and the coefficient βF , LW depends on T0, M0, κ, ∥w0∥H1(Ω), Ω and
the coefficients βp and βF , that is

LW = LW

(
T0, M0, κ, ∥w0∥H1(Ω), Ω, βp, βF

)
.

From the conclusion (A.5) from Lemma A.3, we get that there exists a constant C = C(Ω) > 0, such
that for all r ∈

(
0, κ

2C

)
,

w̃1(t) + θ2 ≥ κ

2
, w̃2(t) + θ2 ≥ κ

2
,

for all t ∈ [0, T ]. Then for the above constant C = C(Ω) and all t ∈ [0, T ], it follows that

∥∥∥∥ ṽ1(t)− ṽ2(t)

w̃1(t) + θ2

∥∥∥∥
L2(Ω)

=

[∫
Ω

∣∣∣∣ ṽ1(t)− ṽ2(t)

w̃1(t) + θ2

∣∣∣∣2 dx
] 1

2

≤ 2

κ
∥ṽ1(t)− ṽ2(t)∥L2(Ω) ,

and thus ∥∥∥∥ ṽ2(t)

w̃1(t) + θ2
− ṽ2(t)

w̃2(t) + θ2

∥∥∥∥2
L2(Ω)

=

∫
Ω

|ṽ2(t)|2
∣∣∣∣ 1

w̃1(t) + θ2
− 1

w̃2(t) + θ2

∣∣∣∣2 dx
=

∫
Ω

|ṽ2(t)|2
|w̃1(t)− w̃2(t)|2

|w̃1(t) + θ2|2 |w̃2(t) + θ2|2
dx

≤ 24

κ4

∫
Ω

|ṽ2(t)|2 |w̃1(t)− w̃2(t)|2 dx

≤ 24

κ4
∥w̃1(t)− w̃2(t)∥2L∞(Ω)

∫
Ω

|ṽ2(t)|2 dx

≤ 24C2

κ4
∥w̃1(t)− w̃2(t)∥2H1(Ω)

∫
Ω

|ṽ2(t)|2 dx.

We conclude that

∥[W2(ũ1)](t)− [W2(ũ2)](t)∥L2(Ω))

≤
∥∥∥∥ ṽ1(t)− ṽ2(t)

w̃1(t) + θ2

∥∥∥∥
L2(Ω)

+

∥∥∥∥ ṽ2(t)

w̃1(t) + θ2
− ṽ2(t)

w̃2(t) + θ2

∥∥∥∥
L2(Ω)

≤ 2

κ
∥ṽ1(t)− ṽ2(t)∥L2(Ω) +

4C

κ2
∥w̃1(t)− w̃2(t)∥H1(Ω) ∥ṽ2(t)∥L2(Ω)

≤ 2

κ
∥ṽ1(t)− ṽ2(t)∥L2(Ω) +

4C

κ2
∥w̃1(t)− w̃2(t)∥H1(Ω)

(
∥ṽ0∥L2(Ω) + r

)
≤ 2

κ
∥ṽ1(t)− ṽ2(t)∥L2(Ω) +

4C

κ2
∥w̃1(t)− w̃2(t)∥H1(Ω)

(
∥ṽ0∥L2(Ω) +

κ

2C

)
. (4.4)

Setting LW2
= LW ·max

{
2κ−1, 4Cκ−2

(
∥ṽ0∥L2(Ω) + κ(2C)−1

)}
, where LW2

depends on the above

LW and ∥ṽ0∥L2(Ω), and using the estimates (4.1) and (4.4), (4.2) is obtained.

Analysis of Fréchet derivative

Recall that u = ũ + θ1, v = ṽ, w = w̃ + θ2. For T ∈ (0, T0) a solution operator to the integral
formulation (3.12) is given by

W : C ([0, T ];BH2(u0, r)) → C ([0, T ];BL2(v0, r)×BH1(w0, r)) ,

u 7→W (u) = (v, w) = (v(u), w(u)) ,
(4.5a)
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where

[W (u)] (t) =

(
0
θ2

)
+ T (t)

(
v0

w0 − θ2

)
+

∫ t

0

{
T (t− s)

(
[G(w − θ2)](s) + βp(u(s)− θ1)

0

)}
ds. (4.5b)

We recall that W satisfies the Lipschitz estimate

sup
t∈[0,T ]

∥[W (u1)](t)− [W (u2)](t)∥L2(Ω)×H1(Ω) ≤ LW sup
t∈[0,T ]

∥u1(t)− u2(t)∥H2(Ω), (4.6)

where LW is a Lipschitz constant depending on T0, M0, κ, ∥w0∥H2(Ω), Ω, βp, βF .
Let h ∈ R be small such that u+hq ∈ C ([0, T ];BH2(u0, r)) for all q ∈ C([0, T0);H

2(Ω)∩H1
0 (Ω)),

then from the definition of the Fréchet derivative W ′(u) of W (u) on u,

W ′(u)q = lim
h→0

1

h
[W (u+ hq)−W (u)] , (4.7)

W ′(u) is an operator defined by

W ′(u) : C([0, T ];H2(Ω) ∩H1
0 (Ω)) → C([0, T ];L2(Ω)×H1

0 (Ω)), (4.8a)

with
q 7→W ′(u)q = (v′(u)q, w′(u)q) . (4.8b)

Inequality (4.6) implies the Fréchet derivative W ′(u) of W (u) on u uniformly exists and

sup
t∈[0,T ]

∥[W ′(u)q](t)∥L2(Ω)×H1(Ω) ≤ LW sup
t∈[0,T ]

∥q(t)∥H2(Ω) , (4.9a)

sup
t∈[0,T ]

∥[W ′(u)q](t)∥L2(Ω)×H1(Ω) ≤ LW , ∀ q ∈ C ([0, T ];BH2(0, 1)) . (4.9b)

Corollary 4.2. Fix T ∈ (0, T0). For any q ∈ C ([0, T ];BH2(0, 1)) and u1, u2 ∈ C ([0, T ];BH2(u0, r)),
the Fréchet derivative W ′(u) of W (u) satisfies

sup
t∈[0,T ]

∥[W ′(u1)q](t)− [W ′(u2)q](t)∥L2(Ω)×H1(Ω) ≤ LF sup
t∈[0,T ]

∥u1(t)− u2(t)∥H2(Ω) , (4.10)

where LF is a Lipschitz constant depending on T0, Ω, βp, βF , M0, κ, ∥w0∥H1(Ω) and ∥v0∥L2(Ω).

Proof. According to Lemma 3.2, the linear operator A generates a C0-semigroup{
T (t) =

(
T11(t) T12(t)
T21(t) T22(t)

)
∈ B

(
L2(Ω)×H1

0 (Ω)
)
: t ∈ [0,∞)

}
.

As [G(w − θ2)](s) + βp(u(s) − θ1) = −βF [w(s)]−2 + βp(u(s) − 1), the integral formulation (4.5b)
implies the second component w of vector function W (u) = (v, w) = (v(u), w(u)) can be given by

w(t) = [w(u)] (t)

=θ2 + T21(t)v0 + T22(t) (w0 − θ2) +

∫ t

0

T21(t− s)

(
βp(u(s)− 1)− βF

[w(u)]2(s)

)
ds.

Using this equality and the definitions (4.7)-(4.8) of the Fréchet derivative W ′(u) = (v′(u), w′(u)),
the Fréchet derivative w′(u) of w(u) on u, the second component of the Fréchet derivative W ′(u),
satisfies

w′(u) : C
(
[0, T ];H2(Ω) ∩H1

0 (Ω)
)
→ C

(
[0, T ];H2(Ω) ∩H1

0 (Ω)
)
, (4.11a)

with

[w′(u)q](t) =

∫ t

0

T21(t− s)

{
βpq(s) + 2βF

[w′(u)q](s)

[w(u)]3(s)

}
ds. (4.11b)

We shall show that there exists a positive Lipschitz constant LF2
, which depends on T0, M0, κ,

∥w0∥H1(Ω), Ω, βp, and βF , such that

sup
t∈[0,T ]

∥[w′(u1)q](t)− [w′(u2)q](t)∥H1(Ω) ≤ LF2
sup

t∈[0,T ]

∥u1(t)− u2(t)∥H2(Ω). (4.12)
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We let u1, u2 ∈ C ([0, T ];BH2(u0, r)) be such that the functions (v1, w1) = (v(u1), w(u1)) and
(v2, w2) = (v(u2), w(u2)) belong to C ([0, T ];BL2(v0, r)×BH1(w0, r)). From the definitions (4.7)
and (4.8) of Fréchet derivative W

′
(u),

W ′(u1)q = (v′(u1)q, w
′(u1)q) ∈ C

(
[0, T ];L2(Ω)×H1

0 (Ω)
)
,

W ′(u2)q = (v′(u2)q, w
′(u2)q) ∈ C

(
[0, T ];L2(Ω)×H1

0 (Ω)
)
.

Hence, by using

wI(t) = [w′(u1)q](t) ∈ H1
0 (Ω), wJ(t) = [w′(u2)q](t) ∈ H1

0 (Ω), ∀ t ∈ [0, T ],

one obtains

[w′(u1)q](t)

[w(u1)]3(t)
− [w′(u2)q](t)

[w(u2)]3(t)
=

wI(t)

[w1(t)]3
− wJ(t)

[w2(t)]3
∈ H1

0 (Ω), ∀ t ∈ [0, T ].

Due to the inequality (4.9),

sup
t∈[0,T ]

∥wI(t)∥H1(Ω) = sup
t∈[0,T ]

∥[w′(u1)q](t)∥H1(Ω) ≤ LW .

From the Lipschitz continuity estimate (4.6), one can have

∥w1(t)− w2(t)∥H1(Ω) = ∥[w(u1)](t)− [w(u2)](t)∥H1(Ω) ≤ LW ∥u1(t)− u2(t)∥H2(Ω) . (4.13)

Using the algebraic property of H1(Ω), i.e. Lemma A.1, the estimates (A.6), (A.7) from Lemma A.3,
and (4.13), it follows that∥∥∥∥ wI(t)

[w1(t)]3
− wJ(t)

[w2(t)]3

∥∥∥∥
H1(Ω)

≤∥wI(t)∥H1(Ω) ·
∥∥∥∥ 1

[w1(t)]3
− 1

[w2(t)]3

∥∥∥∥
H1(Ω)

+ ∥wI(t)− wJ(t)∥H1(Ω) ·
∥∥∥∥ 1

[w2(t)]3

∥∥∥∥
H1(Ω)

≤LWC3 ∥w1(t)− w2(t)∥H1(Ω) + C3
1 ∥wI(t)− wJ(t)∥H1(Ω)

≤L2
WC3 ∥u1(t)− u2(t)∥H2(Ω) + C3

1 ∥wI(t)− wJ(t)∥H1(Ω) . (4.14)

Equation (4.14) and the formulation (4.11) of the Fréchet derivative w′(u)q of w(u) on u imply

∥wI(t)− wJ(t)∥H1(Ω) =

∥∥∥∥2βF ∫ t

0

T21(t− s)

(
wI(s)

[w1(s)]3
− wJ(s)

[w2(s)]3

)
ds

∥∥∥∥
H1(Ω)

≤2βF

∫ t

0

sup
0≤s≤t

∥T21(t− s)∥B(L2(Ω),H1
0 (Ω))

∥∥∥∥ wI(s)

[w1(s)]3
− wJ(s)

[w2(s)]3

∥∥∥∥
L2(Ω)

ds

≤2βFM0

∫ t

0

∥∥∥∥ wI(s)

[w1(s)]3
− wJ(s)

[w2(s)]3

∥∥∥∥
H1(Ω)

ds

≤2βFM0

(
L2
WC3T0∥u1(t)− u2(t)∥H2(Ω) + C3

1

∫ t

0

∥wI(s)− wJ(s)∥H1(Ω) ds

)
.

Gronwall’s inequality then gives

∥wI(t)− wJ(t)∥H1(Ω) ≤ 2βFM0L
2
WC3T0e

2βFM0C
3
1T0∥u1(t)− u2(t)∥H2(Ω).

Thus we obtain the estimate (4.12) by setting

LF2
= 2βFM0L

2
WC3T0e

2βFM0C
3
1T0 .

Similarly, there exists a positive Lipschitz constant LF1 = LF1

(
LF2 , ∥v0∥L2(Ω)

)
such that the Frechét

derivative v′(u) of the first component v(u) of W (u) on u, defined via

[v′(u)q](t) =

∫ t

0

T11(t− s)

{
βpq(s) + 2βF

[w′(u)q](s)

[w(u)]3(s)

}
ds, (4.15)
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is a map t→ [v′(u)](t) from [0, T ] to C
(
[0, T ];B

(
H1

0 (Ω), L
2(Ω)

))
and satisfies

sup
t∈[0,T ]

∥[v′(u1)q](t)− [v′(u2)q](t)∥L2(Ω) ≤ LF1
sup

t∈[0,T ]

∥u1(t)− u2(t)∥H2(Ω) (4.16)

for all q ∈ C
(
[0, T ];H1

0 (Ω)
)
. Letting LF = max {LF1

, LF2
}, (4.12) and (4.16) imply the assertion

(4.10).

Corollary 4.3. Fix T ∈ (0, T0), r ∈
(
0, κ

2C

)
with κ = infx∈Ω w0(x) and positive constant C = C(Ω).

If u ∈ Cα([0, T ];BH2(u0, r)), then there exists a positive Lipschitz constant LM depending on α, M0,
T0, Ω, ∥v0∥L2(Ω), ∥w0∥H1(Ω), κ, βF , βp, such that

sup
0≤t<t+h≤T

∥[W ′(u)q](t+ h)− [W ′(u)q](t)∥L2(Ω)×H1(Ω) ≤h
αLM sup

t∈[0,T ]

∥q(t)∥H2(Ω)

+hαTLM ∥q∥Cα([0,T ];H2(Ω))

(4.17)

holds for all q ∈ Cα([0, T ];BH2(ũ0, r)), where ũ0 = u0 − θ1 ∈ H2+σ(Ω) ∩H1
0 (Ω) and u0 ∈ H2+σ(Ω)

with u|∂Ω = θ1 and σ ∈ (0, 12 ).

Proof. For T ∈ (0, T0) u ∈ Cα([0, T ];BH2(u0, r)), Theorem 3.3 and Corollary 3.5 imply that w(u) ∈
Cα([0, T ];BH2(w0, r)) is a unique mild solution of the semilinear hyperbolic equation (1.1b) and w(u)
satisfies

[w(u)] (t) = θ2 + T21(t)v0 + T22(t) (w0 − θ2) +

∫ t

0

T21(t− s)

(
βp(u− 1)− βF

[w(u)]2(s)

)
ds.

The definitions (4.7) and (4.8) of the Fréchet derivative W ′(u) imply the Fréchet derivative w′(u) of
w(u) on u satisfies

[w′(u)q](t) =

∫ t

0

T21(t− s)

{
βpq(s) + 2βF

[w′(u)q](s)

[w(u)]3(s)

}
ds. (4.18)

We aim to show that there is a constant LM1 > 0, such that

∥[w′(u)q](t+ h)− [w′(u)q](t)∥H1(Ω) ≤ LM1
hα

(
sup

t∈[0,T ]

∥q(t)∥H2(Ω) + T ∥q∥Cα([0,T ];H2(Ω))

)
(4.19)

holds for all 0 ≤ t < t+ h ≤ T, h ∈ (0, T ]. Notice that

[w′(u)q](t+ h)− [w′(u)q](t) =

∫ h

0

T21(t+ h− s)

{
βpq(s) + 2βF

[w′(u)q](s)

[w(u)]3(s)

}
ds

+

∫ t

0

T21(t− s)βp[q(s+ h)− q(s)]ds

+

∫ t

0

T21(t− s)2βF

{
[w′(u)q](s+ h)

[w(u)]3(s+ h)
− [w′(u)q](s)

[w(u)]3(s)

}
ds.

(4.20)

Having q(t) ∈ H2(Ω) ∩H1
0 (Ω), the definition (4.5) of W (u) and the definition (4.7) of W ′(u) imply

βpq(t) + 2βF
[w′(u)q](t)

[w(u)]3(t)
∈ H1

0 (Ω).

Combining (A.6) of Lemma A.3 with (4.9) gives

sup
t∈[0,T ]

∥∥∥∥ [w′(u)q](t)

[w(u)]3(t)

∥∥∥∥
H1(Ω)

≤ sup
t∈[0,T ]

{∥∥∥∥ 1

[w(u)]3(t)

∥∥∥∥
H1(Ω)

∥[w′(u)q](t)∥H1(Ω)

}
≤ C3

1LW sup
t∈[0,T ]

∥q(t)∥H2(Ω) .
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Therefore ∥∥∥∥∥
∫ h

0

T21(t+ h− s)

{
βpq(s) + 2βF

[w′(u)q](s)

[w(u)]3(s)

}
ds

∥∥∥∥∥
H1(Ω)

≤hM0

{
βp sup

t∈[0,T ]

∥q(t)∥H2(Ω) + sup
t∈[0,T ]

∥∥∥∥ [w′(u)q](t)

[w(u)]3(t)

∥∥∥∥
H1(Ω)

}
≤hM0

(
βp + C3

1LW

)
sup

t∈[0,T ]

∥q(t)∥H2(Ω) . (4.21)

Now q ∈ Cα([0, T ];BH2(ũ0, r)) implies∥∥∥∥∫ t

0

T21(t− s)βp[q(s+ h)− q(s)]ds

∥∥∥∥
H1(Ω)

≤TM0βp sup
0≤t<t+h≤T

∥q(t+ h)− q(t)∥H1(Ω)

≤hαTM0βp∥q∥Cα([0,T ];H2(Ω)). (4.22)

The triangle inequality and the algebraic property of H1(Ω) (i.e. Lemma A.1) imply∥∥∥∥ [w′(u)q](t+ h)

[w(u)]3(t+ h)
− [w′(u)q](t)

[w(u)]3(t)

∥∥∥∥
H1(Ω)

≤
∥∥∥∥ [w′(u)q](t+ h)

[w(u)]3(t+ h)
− [w′(u)q](t+ h)

[w(u)]3(t)

∥∥∥∥
H1(Ω)

+

∥∥∥∥ [w′(u)q](t+ h)

[w(u)]3(t)
− [w′(u)q](t)

[w(u)]3(t)

∥∥∥∥
H1(Ω)

≤∥[w′(u)q](t+ h)∥H1(Ω)

∥∥∥∥ 1

[w(u)]3(t+ h)
− 1

[w(u)]3(t)

∥∥∥∥
H1(Ω)

+ ∥[w′(u)q](t+ h)− [w′(u)q](t)∥H1(Ω)

∥∥∥∥ 1

[w(u)]3(t)

∥∥∥∥
H1(Ω)

. (4.23)

Since w(u) ∈ Cα ([0, T ];BH1(w0, r)) is a mild solution of the semilinear hyperbolic equation (1.1b),
then from estimate (A.7) of Lemma A.3 and the estimate (3.14) of Corollary 3.5, it follows that∥∥∥∥ 1

[w(u)]3(t+ h)
− 1

[w(u)]3(t)

∥∥∥∥
H1(Ω)

≤C3 ∥[w(u)](t+ h)− [w(u)](t)∥H1(Ω) ≤ C3LUh
α. (4.24)

Hence, estimates (A.6), (4.9), (4.23) and (4.24) imply∥∥∥∥ [w′(u)q](t+ h)

[w(u)]3(t+ h)
− [w′(u)q](t)

[w(u)]3(t)

∥∥∥∥
H1(Ω)

≤LW sup
t∈[0,T ]

∥q(t)∥H1(Ω) C3LUh
α

+ ∥[w′(u)q](t+ h)− [w′(u)q](t)∥H1(Ω) C
3
1 .

Therefore,∥∥∥∥∫ t

0

T21(t− s)2βF

{
[w′(u)q](s+ h)

[w(u)]3(s+ h)
− [w′(u)q](s)

[w(u0)]3(s)

}
ds

∥∥∥∥
H1(Ω)

≤2βFM0

(
T0LW sup

t∈[0,T ]

∥q(t)∥H2(Ω) C3LUh
α + C3

1

∫ t

0

∥[w′(u)q](s+ h)− [w′(u)q](s)∥H1(Ω) ds

)
. (4.25)

Consequently, (4.20), (4.21), (4.22) and (4.25) imply

∥[w′(u)q](t+ h)− [w′(u)q](t)∥H1(Ω) ≤h
αT 1−α

0 M0

[
βp + C3

1LW

]
sup

t∈[0,T ]

∥q(t)∥H2(Ω)

+hαTM0βp∥q∥Cα([0,T ];H2(Ω))

+hα2βFM0T0LWC3LU sup
t∈[0,T ]

∥q(t)∥H2(Ω)

+2βFM0C
3
1

∫ t

0

∥[w′(u)q](s+ h)− [w′(u)q](s)∥H1(Ω) ds.
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Set R1 = M0T
1−α
0

[
βp + C3

1LW

]
, R2 = 2βFM0T0LWC3LU , R3 = M0βp and R4 = 2βFM0C

3
1 .

Gronwall’s inequality implies ∀ 0 ≤ t < t+ h ≤ T ,

∥[w′(u)q](t+ h)− [w′(u)q](t)∥H1(Ω) ≤h
αeR4T0(R1 +R2) sup

t∈[0,T ]

∥q(t)∥H2(Ω)

+hαTeR4T0R3∥q∥Cα([0,T ];H2(Ω)).

Eqn. (4.19) holds by setting LM1
= (R1 + R2 + R3)e

R4T0 , where LM1
depends on α, M0, T0, Ω,

∥w0∥H1(Ω), κ, βF , βp.
Similarly, there exists a Lipschitz constant LM2 > 0 depending on LM1 and ∥v0∥L2(Ω), such that

the Frechét derivative v′(u) of the first component v(u) of W (u), defined via

[v′(u)q](t) =

∫ t

0

T11(t− s)

{
βpq(s) + 2βF

[w′(u)q](s)

[w(u)]3(s)

}
ds,

satisfies

∥[v′(u)q](t+ h)− [v′(u)q](t)∥L2(Ω) ≤ LM2h
α

(
sup

t∈[0,T ]

∥q(t)∥H2(Ω) + T ∥q∥Cα([0,T ];H2(Ω))

)
. (4.26)

Setting LM = max {LM1
, LM2

}, the assertion (4.17) follows from (4.19) and (4.26).

5 Well-posedness of the Coupled System

In this section we prove the main result of this article, Theorem 1.1. First, recall the formulation
(2.3) of the coupled system (1.1) in the open bounded subset Ω ⊂ R:

∂u

∂t
=

1

w

∂

∂x

(
w3u

∂u

∂x

)
− v

w
u, x ∈ Ω, t ≥ 0; (5.1a)

∂v

∂t
=
∂2w

∂x2
− βF
w2

+ βp(u− 1), x ∈ Ω, t ≥ 0; (5.1b)

∂w

∂t
= v, x ∈ Ω, t ≥ 0. (5.1c)

Here, the initial values are denoted by u(x, 0) = u0(x) ∈ H2+σ(Ω) (σ ∈ (0, 12 )), v(x, 0) = v0(x) ∈
H1

0 (Ω), w(x, 0) = w0(x) ∈ H2(Ω). We assume that u0 ≥ ϵ1 and w0 ≥ κ, for given constants
ϵ1, κ > 0. The boundary values are given by u|∂Ω = θ1 > 0, w|∂Ω = θ2 > 0. Note that ũ0 = u0−θ1 ∈
H2+σ(Ω) ∩H1

0 (Ω).

Abstract Formulation

We study the existence and uniqueness of a strict solution for the initial-boundary value problem for
this parabolic-hyperbolic coupled system by writing it in the following, equivalent abstract quasilinear
parabolic equation with coefficients involving v(u) and w(u):

∂u

∂t
=

1

w(u)

∂

∂x

(
[w(u)]3u

∂u

∂x

)
− v(u)

w(u)
u, (x, t) ∈ Ω× (0, T ), (5.2a)

u(x, 0) = u0(x), x ∈ Ω, u(x, t) = θ1, (x, t) ∈ ∂Ω× [0, T ]. (5.2b)

Here u = u(x, t) is an unknown function, v(u) = [v(u)](x, t) and w(u) = [w(u)](x, t) are given as
functions depending on u by the integral formulation(

v(t)
w(t)

)
=

(
0
θ2

)
+ T (t)

(
v0

w0 − θ2

)
+

∫ t

0

{
T (t− s)

(
−βF [w(s)]−2 + βp (u(s)− 1)

0

)}
ds,

where {T (t) : t ≥ 0} is the strongly continuous semigroup from Lemma 3.2.
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Let ũ = u− θ1 be restricted in C
(
[0, T ];H2(Ω) ∩H1

0 (Ω)
)
temporarily, then from the existence of

the mild solution of the semilinear evolution equation (3.11), i.e. Theorem 3.3, the functions v and
w satisfy the definition (4.5) of solution operator W of u and the mapping property:

v : C
(
[0, T ];H2(Ω) ∩H1

0 (Ω)
)
→ C

(
[0, T ];L2(Ω)

)
, ũ 7→ v(ũ+ θ1);

w : C
(
[0, T ];H2(Ω) ∩H1

0 (Ω)
)
→ C

(
[0, T ];H1(Ω)

)
, ũ 7→ w(ũ+ θ1).

Hence
ũ 7→ F (ũ) : C

(
[0, T ];H2(Ω) ∩H1

0 (Ω)
)
→ C

(
[0, T ];L2(Ω)

)
, (5.3a)

where

F (ũ) =
1

w(ũ+ θ1)

∂

∂x

(
[w(ũ+ θ1)]

3
(ũ+ θ1)

∂ũ

∂x

)
− v(ũ+ θ1)

w(ũ+ θ1)
(ũ+ θ1). (5.3b)

The linearisation of F (ũ) is defined by

q 7→ F ′(ũ0)q : C
(
[0, T ];H2(Ω) ∩H1

0 (Ω)
)
→ C

(
[0, T ];L2(Ω)

)
. (5.4)

Here, F ′(ũ0)q is the Fréchet derivative of F (ũ) on ũ at ũ0, F
′(ũ0)q at t is given as:

[F ′(ũ0)q] (t) =
1

[w(u0)](t)

∂

∂x

{
[w(u0)]

3(t)u0
∂q(t)

∂x
+ [w(u0)]

3(t)q(t)
∂u0
∂x

}
+

1

[w(u0)](t)

∂

∂x

{
3[w(u0)]

2(t)[w′(u0)q](t)u0
∂u0
∂x

}
− [w′(u0)q](t)

[w(u0)]2(t)

∂

∂x

(
[w(u0)]

3(t)u0
∂u0
∂x

)
− [v(u0)](t)

[w(u0)](t)
q(t)

− [w(u0)](t)[v
′(u0)q](t)− [v(u0)](t)[w

′(u0)q](t)

[w(u0)]2(t)
u0,

(5.5)

where the functions v(u0) and w(u0) satisfy the definition (4.5) of solution operator W with u = u0.
Equivalently, (ṽ, w̃) = (v(u0), w(u0)−θ2) is a unique mild solution of the semilinear evolution equation
(3.11) with ũ = u0 − θ1, and ([v(u0)](0), [w(u0)](0)) = (v0, w0).

Well-posedness of Linearised Formulation

Essentially, we aim to define an operator P∗ by the expression

P∗q(t) =
1

w0

∂

∂x

{
w3

0u0
∂q(t)

∂x
+ w3

0q(t)
∂u0
∂x

}
+

1

w0

∂

∂x

{
3w2

0[w
′(u0)q](0)u0

∂u0
∂x

}
− [w′(u0)q](0)

w2
0

∂

∂x

(
w3

0u0
∂u0
∂x

)
− v0
w0
q(t)− w0[v

′(u0)q](0)− v0[w
′(u0)q](0)

w2
0

u0.

(5.6)

Note that the definition of the Fréchet derivative w′(u) of w(u) on u at u = u0 and t = 0 is by

[w′(u0)q](0) = lim
h→0

1

h
{[w(u0 + hq)](0)− [w(u0)](0)} .

Here h ∈ R is small such that u0 + hq ∈ C ([0, T ];BH2(u0, r)) for all q ∈ C
(
[0, T ];H2(Ω) ∩H1

0 (Ω)
)
.

Since (ṽh, w̃h) = (v(u0 + hq), w(u0 + hq) − θ2) is a unique mild solution of the semilinear evolution
equation (3.11) with ũ = u0+hq−θ1, then it follows that ([v(u0+hq)](0), [w(u0+hq)](0)) = (v0, w0).
As ([v(u0)](0), [w(u0)](0)) = (v0, w0), we have [w′(u0)q](0) = 0, analogously [v′(u0)q](0) = 0, and
then (5.6) is simplified to

P∗q(t) =
1

w0

∂

∂x

{
w3

0u0
∂q(t)

∂x
+ w3

0q(t)
∂u0
∂x

}
− v0
w0
q(t).

We therefore define P∗ as the linear operator

P∗ : D (P∗) ⊆ H2(Ω) ∩H1
0 (Ω) → L2(Ω), P∗ψ =

1

w0

∂

∂x

{
w3

0u0
∂ψ

∂x
+

(
w3

0

∂u0
∂x

)
ψ

}
− v0
w0
ψ, (5.7)
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defined for smooth functions satsifying homogeneous Dirichlet boundary conditions. It is a Dirichlet
realisation of the differential expression in (5.2a). Using P∗, we rewrite (5.2) as an equation for the
unknown function ũ:

ũ′(t) = P∗ũ(t) + [F (ũ)](t)− P∗ũ(t), t ∈ [0, T ], ũ(0) = ũ0. (5.8)

The next lemma gives an elliptic estimate for the quadratic form associated to P∗, with a standard
proof.

Lemma 5.1. There exist positive constants K and Ko depending on u0, w0, such that for all t ∈
[0, T ], the following elliptic estimate is satisfied:∣∣∣∣∫

Ω

q(t)

w0

[
w3

0u0
∂q(t)

∂x

]
dx

∣∣∣∣ ≥ K

∫
Ω

∣∣∣∣∂q(t)∂x

∣∣∣∣2 dx−Ko

∫
Ω

|q(t)|2dx, ∀ q(t) ∈ D (P∗) (5.9)

Proof. For t ∈ [0, T ] and q(t) ∈ D (P∗), the highest order derivative term of P∗q(t) is

P∗
hq(t) =

1

w0

∂

∂x

{
w3

0u0
∂q(t)

∂x

}
Integrating by parts, we obtain∫

Ω

q(t)

w0

∂

∂x

{
w3

0u0
∂q(t)

∂x

}
dx =

{
w2

0u0q(t)
∂q(t)

∂x

}
∂Ω

−
∫
Ω

{
∂

∂x

(
q(t)

w0

)}{
w3

0u0
∂q(t)

∂x

}
dx. (5.10)

As q(t) ∈ D (P∗) ⊆ H2(Ω) ∩ H1
0 (Ω), [q(t)](x) = q(x, t) = 0 for all (x, t) ∈ ∂Ω × [0, T ] and hence

w2
0u0q(t)

∂q(t)
∂x = 0 on ∂Ω. Using that u0(x) ≥ ϵ1 > 0 for a given constant ϵ1 and that κ = infx∈Ω w0(x)

from (5.10), we find∣∣∣∣∫
Ω

q(t)

w0

∂

∂x

{
w3

0u0
∂q(t)

∂x

}
dx

∣∣∣∣ = ∣∣∣∣∫
Ω

{
∂

∂x

(
q(t)

w0

)}{
w3

0u0
∂q(t)

∂x

}
dx

∣∣∣∣
≥

∣∣∣∣∣
∫
Ω

u0w
2
0

∣∣∣∣∂q(t)∂x

∣∣∣∣2 dx
∣∣∣∣∣−
∣∣∣∣∫

Ω

u0w0
∂w0

∂x

{
q(t)

∂q(t)

∂x

}
dx

∣∣∣∣
≥ϵ1κ2

∫
Ω

∣∣∣∣∂q(t)∂x

∣∣∣∣2 dx−
∣∣∣∣∫

Ω

u0w0
∂w0

∂x

{
q(t)

∂q(t)

∂x

}
dx

∣∣∣∣ .
As w0 ∈ H2(Ω) and u0 ∈ H2+σ(Ω) with σ ∈ (0, 12 ), writing C = C(Ω) a positive constant, we have∣∣∣∣∫

Ω

u0w0
∂w0

∂x

{
q(t)

∂q(t)

∂x

}
dx

∣∣∣∣ ≤ ∥∥∥∥u0w0
∂w0

∂x

∥∥∥∥
L∞(Ω)

∣∣∣∣∫
Ω

q(t)
∂q(t)

∂x
dx

∣∣∣∣
≤C

∥∥∥∥u0w0
∂w0

∂x

∥∥∥∥
H1(Ω)

∣∣∣∣∫
Ω

q(t)
∂q(t)

∂x
dx

∣∣∣∣
≤C ∥u0∥H1(Ω) ∥w0∥H1(Ω)

∥∥∥∥∂w0

∂x

∥∥∥∥
H1(Ω)

∣∣∣∣∫
Ω

q(t)
∂q(t)

∂x
dx

∣∣∣∣
≤C ∥u0∥H1(Ω) ∥w0∥2H2(Ω)

∣∣∣∣∫
Ω

q(t)
∂q(t)

∂x
dx

∣∣∣∣
With K2 = C ∥u0∥H1(Ω) ∥w0∥2H2(Ω) and Young’s inequality, it follows that∣∣∣∣∫

Ω

q(t)

w0

∂

∂x

{
w3

0u0
∂q(t)

∂x

}
dx

∣∣∣∣ ≥(ϵ1κ
2 − ε2K2)

∫
Ω

∣∣∣∣∂q(t)∂x

∣∣∣∣2 dx− K2

4ε2

∫
Ω

|q(t)|2dx. (5.11)

The assertion (5.9) follows for ε sufficiently small.

Corollary 5.2. P∗, defined by (5.7), is a sectorial operator which generates an analytic semigroup{
etP

∗
: t ≥ 0

}
on H1

0 (Ω).
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Proof. Using the Corollary 12.19 and Corollary 12.21 from [21], we conclude that the operator P∗

defined in Lemma 5.1 satisfies the elliptic estimate (5.9) and the estimate (5.12) in the resolvent set

ρ(P∗) ⊃ SΘ,ω =
{
λ ∈ C : λ ̸= ω, | arg(λ− ω)| < Θ, ω ∈ R,Θ ∈

(π
2
, π
)}

. (5.12)

The estimate for the resolvent operator (λ − P∗)−1 follows (see e.g. Proposition 1.22, Proposition
1.51 and Theorem 1.52 in [39]):

∥(λ− P∗)−1∥B(L2(Ω),H1
0 (Ω)) ≤

M

|λ− ω|
(5.13)

for ω ∈ R, M > 0 and λ ∈ SΘ,ω. We conclude that P∗ is a sectorial operator which generates an
analytic semigroup {etP∗

: t ≥ 0} on H1
0 (Ω).

If the domain D(P∗) of P∗ is endowed with the graph norm of P∗, ∥g∥D(P∗) = ∥g∥L2(Ω) +
∥P∗g∥L2(Ω), then there exists a constant γ0 ≥ 1, such that

γ0
−1
(
∥g∥L2(Ω) + ∥P∗g∥L2(Ω)

)
≤ ∥g∥H2(Ω) ≤ γ0

(
∥g∥L2(Ω) + ∥P∗g∥L2(Ω)

)
. (5.14)

In fact, as
{
H2(Ω) ∩H1

0 (Ω)
}
↪→ L2(Ω), P∗ ∈ B

(
H2(Ω) ∩H1

0 (Ω), L
2(Ω)

)
, B
(
H2(Ω) ∩H1

0 (Ω), L
2(Ω)

)
is a set of linear operators from H2(Ω) ∩H1

0 (Ω) to L
2(Ω), there exists a constant c0 > 0 such that

∥g∥L2(Ω) + ∥P∗g∥L2(Ω) ≤ c0∥g∥H2(Ω), ∀ g ∈ H2(Ω) ∩H1
0 (Ω), i.e.

{
H2(Ω) ∩H1

0 (Ω)
}
↪→ D(P∗).

The properties (5.12) and (5.13) imply that P∗ extends to a closed operator, which we again denote
by P∗, and then D(P∗) is a complete Banach space. We conclude D (P∗) = H2(Ω) ∩H1

0 (Ω), which
is assertion (5.14).

Since H2(Ω)∩H1
0 (Ω) is dense in L

2(Ω), hence P∗ is densely defined in L2(Ω) and D (P∗) = L2(Ω).

If t > 0 and φ ∈ L2(Ω) then etP
∗
φ ∈ D

(
(P∗)

k
)
for each k ∈ N. Moreover, there exist constants

M0, M1, M2 > 0 (depending on Θ in (5.12) and M in (5.13)), such that∥∥∥tk (P∗)
k
etP

∗
∥∥∥
B(L2(Ω))

≤Mk, s > 0, k = 0, 1, 2, t ∈ [0, T0). (5.15)

Theorem 5.3. Let P∗ : D(P∗) → L2(Ω) be a sectorial operator and generate an analytic semigroup
etP

∗
, D (P∗) ∼= H2(Ω) ∩H1

0 (Ω) and D (P∗) = L2(Ω). Given α ∈ (0, 1), T ∈ (0, T0),

ũ0 ∈ D(P∗), F(0) + P∗ũ0 ∈ D (P∗), F ∈ Cα
(
[0, T ];L2(Ω)

)
,

the function

φ(t) = etP
∗
ũ0 +

∫ t

0

e(t−s)P∗
F(s)ds (5.16)

is the unique solution in C1
(
[0, T ];L2(Ω)

)
∩ C ([0, T ];D(P∗)) of the problem

φ′(t) = P∗φ(t) + F(t), t ∈ [0, T ], φ(0) = ũ0. (5.17)

Moreover, the following maximal regularity property holds:

F ∈ Cα([0, T ];L2(Ω)), P∗ũ0 + F(0) ∈ DP∗(α,∞) →

φ ∈ Cα+1([0, T ];L2(Ω)) ∩ Cα
(
[0, T ];H2(Ω) ∩H1

0 (Ω)
)
, φ′(t) ∈ DP∗(α,∞), ∀ t ∈ [0, T ],

and there exists a continuous and increasing function I : R+ → R+ (depending on M0, M1, M2 and
α) such that

∥φ∥Cα([0,T ];D(P∗)) ≤ I(T )
[
∥F∥Cα([0,T ];L2(Ω)) + ∥P∗ũ0 + F(0)∥DP∗ (α,∞) + ∥ũ0∥L2(Ω)

]
. (5.18)

Theorem 5.3 is a maximal regularity result for linear autonomous evolution equations of parabolic
type and its proof is identical to the proof of Theorem 4.5 in [41].
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Estimates of Linearisation Error

We are going to use Theorem 5.3 to prove the existence of a strict solution to the coupled system,
which is Theorem 5.5. Before proving Theorem 5.5, we require certain estimates for the error of the
linearisation F , which are given in Lemma 5.4.

Lemma 5.4. Let F (ũ) and P∗ be defined by (5.3) and (5.7) respectively and fix T ∈ (0, T0). If ũ,
q ∈ Cα([0, T ];BH2(ũ0, r)), with u0 = ũ0 + θ1, then there exist constants LA = LA (u0, v0, w0,Ω) > 0
and LB = LB (u0, v0, w0,Ω, α, T0, LU , LW , LM ) > 0, such that for 0 ≤ t < t+ h ≤ T ,

∥[F (ũ)] (t+ h)− [F (ũ)] (t)∥L2(Ω) ≤
{
[ũ+ θ1]Cα([0,T ];H2(Ω)) + LU

}
LAh

α, (5.19)

and

∥[F ′(ũ)q] (t+ h)− [F ′(ũ)q] (t)− P∗ [q(t+ h)− q(t)]∥L2(Ω)

≤hαTαLB ∥q∥Cα([0,T ];H2(Ω)) + hαTαLB ∥ũ+ θ1∥Cα([0,T ];H2(Ω)) ∥q∥Cα([0,T ];H2(Ω))

+hαLB sup
t∈[0,T ]

∥q(t)∥H2(Ω) + hαLB ∥ũ+ θ1∥Cα([0,T ];H2(Ω)) sup
t∈[0,T ]

∥q(t)∥H2(Ω) .

(5.20)

Here LU , LW and LM are given by Corollary 3.5, Theorem 4.1 and Corollary 4.3 respectively.

Proof. Let T ∈ (0, T0). According to Theorem 3.3 and Corollary 3.5, the semilinear evolution
equation (3.11) exists a unique mild solution (ṽ, w̃) ∈ Z(T ) ∩ Cα

(
[0, T ] ;L2(Ω)×H1

0 (Ω)
)
provided

ũ ∈ Cα ([0, T ];BH2(ũ0, r)) for all r ∈
(
0, κ

2C

)
. Here κ = infx∈Ω w̃0 + θ2 and C = C(Ω) is a constant

depending on Ω. Recall that u0 = ũ0 + θ1, v0 = ṽ0, w0 = w̃0 + θ2, u = ũ+ θ1, v = ṽ, w = w̃ + θ2. It
follows that the solution operators u 7→ v and u 7→ w have the following properties:

u 7→ v : Cα ([0, T ];BH2(u0, r)) → Cα ([0, T ];BL2(v0, r)) ,

u 7→ w : Cα ([0, T ];BH2(u0, r)) → Cα ([0, T ];BH1(w0, r)) ,

∥v(t+ h)− v(t)∥L2(Ω) ≤ LUh
α, ∥w(t+ h)− w(t)∥H1(Ω) ≤ LUh

α.

(5.21)

Hence

F (ũ) =
1

w

∂

∂x

(
w3(ũ+ θ1)

∂ũ

∂x

)
− v

w
(ũ+ θ1) ∈ Cα

(
[0, T ];L2(Ω)

)
.

We next prove assertion (5.19) of Lemma 5.4.
Let h ∈ (0, T ] be such that 0 ≤ t < t + h ≤ T . As ∥u(s)∥H2(Ω) ≤ C̃1, , ∥v(s)∥L2(Ω) ≤ C̃2 and

∥w(s)∥H1(Ω) ≤ C̃ for all s ∈ [0, T ], where C̃ = ∥w0∥H1(Ω) + κ/(2C), C̃1 = ∥u0∥H2(Ω) + κ/(2C),

C̃2 = ∥v0∥L2(Ω) + κ/(2C). Because H1(Ω) is an algebra, estimate (A.6) of Lemma A.3, estimate

(3.14) from Corollary 3.5 and estimate in (5.21), we obtain∥∥[w(t+ h)]−1 − [w(t)]−1
∥∥
H1(Ω)

≤ C2
1LUh

α,
∥∥[w(t+ h)]3 − [w(t)]3

∥∥
H1(Ω)

≤3C̃2LUh
α. (5.22)

Similarly, for u ∈ Cα ([0, T ];BH2(u0, r)), we get∥∥[u(t+ h)]2 − [u(t)]2
∥∥
H2(Ω)

≤ 2C̃1 [u]Cα([0,T ];H2(Ω)) h
α. (5.23)

The arguments of the proof of Lemma A.5 give that (5.19) of Lemma 5.4 holds by

∥[F (ũ)] (t+ h)− [F (ũ)] (t)∥L2(Ω) ≤ LALUh
α + LA[u]Cα([0,T ];H2(Ω))h

α. (5.24)

Here LA is a constant depending on C, C1, C̃, C̃1 and C̃2.
We next prove the assertion (5.20) of Lemma 5.4. For q ∈ Cα([0, T ];BH2(ũ0, r)) and t ∈ [0, T ],

we note w(t) = [w(u)](t), v(t) = [v(u)](t). From the definition (5.5) of the Frechét derivative of F (ũ)
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on ũ at t and the definition (5.7) of P∗q(t), we have, for h ∈ (0, T ] such that t+ h ∈ (0, T ],

[F ′(ũ)q] (t+ h)− [F ′(ũ)q] (t)− P∗ (q(t+ h)− q(t))

=
1

w(t+ h)

∂

∂x

{
[w(t+ h)]3u(t+ h)

∂q(t+ h)

∂x
+ [w(t+ h)]3

∂u(t+ h)

∂x
q(t+ h)

}
− 1

w(t)

∂

∂x

{
[w(t)]3u(t)

∂q(t)

∂x
+ [w(t)]3

∂u(t)

∂x
q(t)

}
+

3

2w(t+ h)

∂

∂x

{
∂[u(t+ h)]2

∂x
[w(t+ h)]2[w′(u)q](t+ h)

}
− 3

2w(t)

∂

∂x

{
∂[u(t)]2

∂x
[w(t)]2[w′(u)q](t)

}
− [w′(u)q](t+ h)

2[w(t+ h)]2
∂

∂x

(
[w(t+ h)]3

∂[u(t+ h)]2

∂x

)
− v(t+ h)

w(t+ h)
q(t+ h)

+
[w′(u)q](t)

2[w(t)]2
∂

∂x

(
[w(t)]3

∂[u(t)]2

∂x

)
+
v(t)

w(t)
q(t)

−w(t+ h)[v′(u)q](t+ h)− v(t+ h)[w′(u)q](t+ h)

[w(t+ h)]2
u(t+ h)

+
w(t)[v′(u)q](t)− v(t)[w′(u)q](t)

[w(t)]2
u(t)− 1

w0

∂

∂x

{
w3

0u0
∂q(t+ h)

∂x
+ w3

0

∂u0
∂x

q(t+ h)

}
− v0
w0
q(t+ h) +

1

w0

∂

∂x

{
w3

0u0
∂q(t)

∂x
+ w3

0

∂u0
∂x

q(t)

}
+
v0
w0
q(t).

(5.25)

Observe that∥∥[w(t+ h)]3u(t+ h)− [w(t)]3u(t)
∥∥
H1(Ω)

≤
∥∥[w(t+ h)]3 − [w(t)]3

∥∥
H1(Ω)

∥u(t+ h)∥H1(Ω)

+
∥∥[w(t)]3∥∥

H1(Ω)
∥u(t+ h)− u(t)∥H1(Ω)

≤hα3LU C̃
2C̃1 + hαC̃3 ∥u∥Cα([0,T ];H2(Ω)) , (5.26)

with this, the algebraic properties of H1(Ω), i.e. Lemma A.1, inequalities (A.2), (A.3) of Lemma A.2
and the assertion (A.6) of Lemma A.3 imply that∥∥∥∥( 1

w(t+ h)
− 1

w(t)

)
∂

∂x

{
[w(t+ h)]3u(t+ h)

∂q(t+ h)

∂x

}∥∥∥∥
L2(Ω)

≤C
∥∥[w(t+ h)]−1 − [w(t)]−1

∥∥
H1(Ω)

∥∥w(t+ h)3
∥∥
H1(Ω)

∥u(t+ h)∥H2(Ω) ∥q(t+ h)∥H2(Ω)

≤hαCC2
1LU C̃

3C̃1 sup
t∈[0,T ]

∥q(t)∥H2(Ω) , (5.27)

∥∥∥∥ 1

w(t)

∂

∂x

{(
[w(t+ h)]3u(t+ h)− [w(t)]3u(t)

) ∂q(t+ h)

∂x

}∥∥∥∥
L2(Ω)

≤C
∥∥[w(t)]−1

∥∥
H1(Ω)

∥∥[w(t+ h)]3u(t+ h)− [w(t)]3u(t)
∥∥
H1(Ω)

∥q(t+ h)∥H1(Ω)

≤hα3CC1LU C̃
2C̃1 sup

t∈[0,T ]

∥q(t)∥H2(Ω) + hαCC1C̃
3 ∥u∥Cα([0,T ];H2(Ω)) sup

t∈[0,T ]

∥q(t)∥H2(Ω) . (5.28)

Hence, we deduce the estimates∥∥∥∥ 1

w(t+ h)

∂

∂x

{
[w(t+ h)]3u(t+ h)

∂q(t+ h)

∂x

}
− 1

w(t)

∂

∂x

{
[w(t)]3u(t)

∂q(t+ h)

∂x

}∥∥∥∥
L2(Ω)

≤
∥∥∥∥( 1

w(t+ h)
− 1

w(t)

)
∂

∂x

{
[w(t+ h)]3u(t+ h)

∂q(t+ h)

∂x

}∥∥∥∥
L2(Ω)

+

∥∥∥∥ 1

w(t)

∂

∂x

{(
[w(t+ h)]3u(t+ h)− [w(t)]3u(t)

) ∂q(t+ h)

∂x

}∥∥∥∥
L2(Ω)

≤hαC
[
C2

1LU C̃
3C̃1 + 3C1LU C̃

2C̃1 + C1C̃
3 ∥u∥Cα([0,T ];H2(Ω))

]
sup

t∈[0,T ]

∥q(t)∥H2(Ω) , (5.29)
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and ∥∥∥∥ 1

w(t)

∂

∂x

(
[w(t)]3u(t)

∂

∂x
[q(t+ h)− q(t)]

)
− 1

w0

∂

∂x

(
w3

0u0
∂

∂x
[q(t+ h)− q(t)]

)∥∥∥∥
L2(Ω)

≤
∥∥∥∥ 1

w(t)

∂

∂x

({
[w(t)]3u(t)− w3

0u0
} ∂

∂x
[q(t+ h)− q(t)]

)∥∥∥∥
L2(Ω)

+

∥∥∥∥( 1

w(t)
− 1

w0

)
∂

∂x

(
w3

0u0
∂

∂x
[q(t+ h)− q(t)]

)∥∥∥∥
L2(Ω)

≤C
∥∥[w(t)]−1

∥∥
H1(Ω)

∥∥[w(t)]3u(t)− w3
0u0
∥∥
H1(Ω)

∥q(t+ h)− q(t)∥H2(Ω)

+C
∥∥[w(t)]−1 − [w0]

−1
∥∥
H1(Ω)

∥w0∥3H1(Ω) ∥u0∥H2(Ω) ∥q(t+ h)− q(t)∥H2(Ω)

≤hαTαCC1

(
3LU C̃

2C̃1 + C̃3 ∥u∥Cα([0,T ];H2(Ω))

)
∥q∥Cα([0,T ];H2(Ω))

+hαTαC1LU C̃
3C̃1 ∥q∥Cα([0,T ];H2(Ω)) . (5.30)

Therefore, the triangle inequality, (5.29) and (5.30) imply, with a constant V1 which depends on C,
C1, C̃, C̃1, and LU :∥∥∥∥ 1

w(t+ h)

∂

∂x

{
[w(t+ h)]3u(t+ h)

∂q(t+ h)

∂x

}
− 1

w(t)

∂

∂x

{
[w(t)]3u(t)

∂q(t)

∂x

}
− 1

w0

∂

∂x

{
w3

0u0
∂q(t+ h)

∂x

}
+

1

w0

∂

∂x

{
w3

0u0
∂q(t)

∂x

}∥∥∥∥
L2(Ω)

≤hαV1 sup
t∈[0,T ]

∥q(t)∥H2(Ω) + hαV1 ∥u∥Cα([0,T ];H2(Ω)) sup
t∈[0,T ]

∥q(t)∥H2(Ω)

+hαTαV1 ∥u∥Cα([0,T ];H2(Ω)) ∥q∥Cα([0,T ];H2(Ω)) + hαTαV1 ∥q∥Cα([0,T ];H2(Ω)) . (5.31)

Similarly, ∥∥∥∥ 1

w(t+ h)

∂

∂x

{
[w(t+ h)]3q(t+ h)

∂u(t+ h)

∂x

}
− 1

w(t)

∂

∂x

{
[w(t)]3q(t)

∂u(t)

∂x

}
− 1

w0

∂

∂x

{
w3

0q(t+ h)
∂u0
∂x

}
+

1

w0

∂

∂x

{
w3

0q(t)
∂u0
∂x

}∥∥∥∥
L2(Ω)

≤hαV1 sup
t∈[0,T ]

∥q(t)∥H2(Ω) + hαV1 ∥u∥Cα([0,T ];H2(Ω)) sup
t∈[0,T ]

∥q(t)∥H2(Ω)

+hαTαV1 ∥q∥Cα([0,T ];H2(Ω)) + hαTαV1 ∥u∥Cα([0,T ];H2(Ω)) ∥q∥Cα([0,T ];H2(Ω)) . (5.32)

Set C̃3 = C
[
C1LU + C̃2C

2
1LU

]
, C̃4 = CC1

[
LU + ∥v0∥L2(Ω)

∥∥w−1
0

∥∥
H2(Ω)

]
. The triangle inequality,

algebraic properties of Sobolev spaces, i.e. (A.1) of Lemma A.2, (A.6) of Lemma A.3, and the assertion
(3.14) of Corollary 3.5 imply the estimate∥∥∥∥− v(t+ h)

w(t+ h)
q(t+ h) +

v(t)

w(t)
q(t)− v0

w0
q(t+ h) +

v0
w0
q(t)

∥∥∥∥
L2(Ω)

≤hαC̃3 sup
t∈[0,T ]

∥q(t)∥H2(Ω)

+hαTαC̃4 ∥q∥C([0,T ];H2(Ω)) .

We now combine (4.9), (4.17) in Corollary 4.3, (3.14) in Corollary 3.5 with the above arguments for
estimate (5.31). With a constant V2 which depends on C, C1 C2, C̃, C̃1, C̃2, LU , LW , LM and T 1−α

0 ,
we deduce

3

2

∥∥∥∥ 1

w(t+ h)

∂

∂x

{
[w(t+ h)]2[w′(u)q](t+ h)

∂[u(t+ h)]2

∂x

}
− 1

w(t)

∂

∂x

{
[w(t)]2[w′(u)q](t)

∂[u(t)]2

∂x

}∥∥∥∥
L2(Ω)

≤hαTαV2 ∥q∥Cα([0,T ];H2(Ω)) + hαV2

(
1 + ∥u∥Cα([0,T ];H2(Ω))

)
sup

t∈[0,T ]

∥q(t)∥H2(Ω) ,
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∥∥∥∥ [w′(u)q](t+ h)

2[w(t+ h)]2
∂

∂x

{
[w(t+ h)]3

∂[u(t+ h)]2

∂x

}
− [w′(u)q](t)

2[w(t)]2
∂

∂x

{
[w(t)]3

∂[u(t)]2

∂x

}∥∥∥∥
L2(Ω)

≤hαV2
(
1 + ∥u∥Cα([0,T ];H2(Ω))

)
sup

t∈[0,T ]

∥q(t)∥H2(Ω) + hαTαV2 ∥q∥Cα([0,T ];H2(Ω)) ,

∥∥∥∥− w(t+ h)[v′(u)q](t+ h)− v(t+ h)[w′(u)q](t+ h)

[w(t+ h)]2
u(t+ h)

+
w(t)[v′(u)q](t)− v(t)[w′(u)q](t)

[w(t)]2
u(t)

∥∥∥∥
L2(Ω)

≤hαV2
(
1 + ∥u∥Cα([0,T ];H2(Ω))

)
sup

t∈[0,T ]

∥q(t)∥H2(Ω) + hαTαV2 ∥q∥Cα([0,T ];H2(Ω)) .

Consequently, by setting LB = V1 + V2 + C̃3 + C̃4, we obtain

∥[F ′(ũ)q] (t+ h)− [F ′(ũ)q] (t)− P∗ [q(t+ h)− q(t)]∥L2(Ω)

≤hαLB sup
t∈[0,T ]

∥q(t)∥H2(Ω) + hαLB ∥u∥Cα([0,T ];H2(Ω)) sup
t∈[0,T ]

∥q(t)∥H2(Ω)

+hαTαLB ∥q∥Cα([0,T ];H2(Ω)) + hαTαLB ∥u∥Cα([0,T ];H) ∥q∥Cα([0,T ];H2(Ω)) .

Hereby, (5.20) is proved and this concludes the proof of Lemma 5.4.

Proof of Theorem 1.1

Theorem 5.5. Assume that the initial value u0 ∈
{
ψ ∈ H2+σ(Ω) : ψ(x) = θ1, x ∈ ∂Ω

}
is given for

σ ∈
(
0, 12

)
such that the compatibility condition

1

w0

∂

∂x

(
w3

0u0
∂u0
∂x

)
∈ Hσ(Ω) ⊆ DP∗(α,∞)

holds for α ∈
(
0, σ2

)
and ũ0 = u0 − θ1 ∈ H2+σ(Ω) ∩H1

0 (Ω).
Then there exists T1 > 0, such that the nonlinear problem (5.8) has a unique strict solution

ũ ∈ Cα
(
[0, T1);H

2(Ω) ∩H1
0 (Ω)

)
∩ Cα+1

(
[0, T1);L

2(Ω)
)
and ũ′(t) ∈ DP∗(α,∞) for all t ∈ [0, T1).

Proof. Let σ ∈
(
0, 12

)
, α ∈

(
0, σ2

)
. We divide the proof into three parts.

Hölder Continuity. Let us first state Hölder continuity results for the solution operators ũ →
v(ũ + θ1) and ũ → w(ũ + θ1) in the Section 4 which will be used below. Take T ∈ (0, T0) to be
specified later. The estimate (3.14) in Corollary 3.5 implies that the solution operators ũ→ v(ũ+θ1)
and ũ→ w(ũ+ θ1) satisfy the mapping properties

ũ 7→ v(ũ+ θ1) : Cα ([0, T ];BH2(ũ0, r)) → Cα ([0, T ];BL2(v0, r)) ,

ũ 7→ w(ũ+ θ1) : Cα ([0, T ];BH2(ũ0, r)) → Cα ([0, T ];BH1(w0, r)) .

Thus, from inequality (5.19) in Lemma 5.4, the nonlinearity F (ũ) from (5.3) satisfies

F (ũ) ∈ Cα
(
[0, T ];L2(Ω)

)
.

Due to Theorem 4.1 and its following discussion of the Fréchet derivative, together with the estimate
(4.10) of Corollary 4.2, we obtain that the Fréchet derivative (v′(ũ+ θ1)q, w

′(ũ+ θ1)q) of the func-
tion (v(ũ+ θ1), w(ũ+ θ1)) on ũ ∈ C

(
[0, T ];H2(Ω) ∩H1

0 (Ω)
)
exists in C

(
[0, T ];L2(Ω)×H1

0 (Ω)
)
and

depends Lipschitz continuously on ũ ∈ C
(
[0, T ];H2(Ω) ∩H1

0 (Ω)
)
for q ∈ C

(
[0, T ];H2(Ω) ∩H1

0 (Ω)
)
.

If ũ ∈ Cα ([0, T ];BH2(ũ0, r)), then inequality (4.17) in Corollary 4.3 implies that

(v′(ũ+ θ1)q, w
′(ũ+ θ1)q) ∈ Cα

(
[0, T ];L2(Ω)×H1

0 (Ω)
)

for all q ∈ Cα
(
[0, T ];H2(Ω) ∩H1

0 (Ω)
)
. Thus, following (5.20) in Lemma 5.4, the Fréchet derivative

F ′(ũ)q of F (ũ) and P∗q (defined by (5.5) and (5.7), respectively) satisfy

F ′(ũ)q − P∗q ∈ Cα
(
[0, T ];L2(Ω)

)
, ∀ q ∈ Cα

(
[0, T ];H2(Ω) ∩H1

0 (Ω)
)
.
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Now v0 ∈ H1
0 (Ω), w0 ∈ H2(Ω) with w0|∂Ω = θ2 and the compatibility assumption of Theorem 5.5

imply

[F (ũ)](0) =
1

w0

∂

∂x

[
w3

0u0
∂u0
∂x

]
− v0
w0
u0 ∈ Hσ(Ω) ⊆ DP∗(α,∞), ũ0 ∈ D(P∗).

From the definition (5.7) of P∗ and equation (5.14), we conclude

D(P∗) = H2(Ω) ∩H1
0 (Ω), D(P∗) = L2(Ω), Cα

(
[0, T ];H2(Ω) ∩H1

0 (Ω)
)
= Cα ([0, T ];D(P∗)) .

Equivalence. We now study the nonlinear problem

ũ′(t) = P∗ũ(t) + [F (ũ)](t)− P∗ũ(t), t ∈ [0, T ], ũ(0) = ũ0. (5.33)

in its integral formulation

ũ(t) = etP
∗
ũ0 +

∫ t

0

e(t−s)P∗
{[F (ũ)](s)− P∗ũ(s)} ds, t ∈ [0, T ]. (5.34)

We will prove that if ũ ∈ Cα
(
[0, T ];H2(Ω) ∩H1

0 (Ω)
)
satisfies (5.34), ũ(t) ∈ BH2(ũ0, r) for all t ∈

[0, T ], r ∈
(
0, κ

2C

)
for κ = infx∈Ω w0(x) and C = C(Ω) > 0 is a constant, then ũ ∈ Cα+1

(
[0, T ];L2(Ω)

)
,

ũ′(t) ∈ DP∗(α,∞) for all t ∈ [0, T ], and ũ satisfies the equation (5.33).
To prove this assertion, set

[F(ũ)](t) = [F (ũ)](t)− P∗ũ(t), ∀ t ∈ [0, T ], (5.35)

for ũ ∈ Cα ([0, T ];BH2(ũ0, r)). We will show that

F(ũ) ∈ Cα
(
[0, T ];L2(Ω)

)
. (5.36)

In fact, let 0 ≤ t < t+ h ≤ T . Using (5.19) in Lemma 5.4, we observe

∥[F(ũ)](t+ h)− [F(ũ)](t)∥L2(Ω) ≤∥[F (ũ)](t+ h)− [F (ũ)](t)∥L2(Ω) + ∥P∗ũ(t+ h)− P∗ũ(t)∥L2(Ω)

≤
(
LA + ∥P∗∥B(H2(Ω),L2(Ω))

)
∥ũ(t+ h)− ũ(t)∥H2(Ω) ,

because ũ ∈ Cα
(
[0, T ];H2(Ω) ∩H1

0 (Ω)
)
, we get (5.36).

In addition, as ũ(0) = ũ0 ∈
{
H2(Ω) ∩H1

0 (Ω)
}
= D(P∗) and [F (ũ)](0) ∈ DP∗(α,∞), we get

P∗ũ0 + [F(ũ)](0) = [F (ũ)](0) ∈ DP∗(α,∞).

Therefore, using Theorem 5.3 and Theorem 1.2 of [37], we obtain that if ũ ∈ Cα ([0, T ];BH2(ũ0, r))
is a solution of (5.34), then there exist ũ′ ∈ Cα

(
[0, T ];L2(Ω)

)
, ũ′(t) ∈ DP∗(α,∞) for all t ∈ [0, T ],

and ũ satisfies (5.33).
Conversely, let ũ ∈ Cα ([0, T ];BH2(ũ0, r)) ∩ Cα+1

(
[0, T ];L2(Ω)

)
satisfy (5.33), i.e.

ũ′(t) = P∗ũ(t) + [F(ũ)](t), t ∈ [0, T ], ũ(0) = ũ0.

As we have proved that F(ũ) ∈ Cα
(
[0, T ];L2(Ω)

)
, we can apply Theorem 5.3 again and obtain that

ũ is a solution of the integral equation (5.34).
In conclusion, it is sufficient to solve (5.34) in the space Cα ([0, T ];BH2(ũ0, r)). To do so, we let

T ∈ (0, T0) to be specified later and find a fixed point for the mapping

Γ : Y → Y, [Γũ](t) = etP
∗
ũ0 +

∫ t

0

e(t−s)P∗
{[F (ũ)](s)− P∗ũ(s)} ds, t ∈ [0, T ], (5.37)

on the space

Y =
{
ũ ∈ Cα

(
[0, T ];H2(Ω) ∩H1

0 (Ω)
)
: ũ(0) = ũ0, ∥ũ(·)− ũ0∥Cα([0,T ];H2(Ω)) ≤ r

}
, ∀ r ∈

(
0,

κ

2C

)
.

Contraction Mapping. The space Y is a metric space in the metric defined from the norm of
Cα
(
[0, T ];H2(Ω)

)
. We will show that Γ is a contractive mapping of Y into itself provided T is

sufficiently small.
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Following the preceding results and proceeding as in the proof of Theorem 4.3.1 in Lunardi’s work
[36], we obtain that Γu ∈ Cα

(
[0, T ];H2(Ω) ∩H1

0 (Ω)
)
if ũ ∈ Y , as Y ⊂ Cα ([0, T ];BH2(ũ0, r)). We

will show that when T is sufficiently small we have

∥Γũ1 − Γũ2∥Cα([0,T ];H2(Ω)) ≤
1

2
∥ũ1 − ũ2∥Cα([0,T ];H2(Ω)) , ∀ ũ1, ũ2 ∈ Y. (5.38)

From (5.35) and (5.37), we get

[Γũ1](t)− [Γũ2](t) =

∫ t

0

e(t−s)P∗
{[F(ũ1)](s)− [F(ũ2)](s)} ds, t ∈ [0, T ],

hence, by using (5.14) and applying (5.18) from Theorem 5.3, we obtain

∥Γũ1 − Γũ2∥Cα([0,T ];H2(Ω)) ≤γ0I(T ) ∥F(ũ1)−F(ũ2)∥Cα([0,T ];L2(Ω))

≤γ0I(T0) ∥F(ũ1)−F(ũ2)∥Cα([0,T ];L2(Ω)) . (5.39)

Here I(·) is a continuous and increasing function given by Theorem 5.3 when applied to P∗ which is
defined by (5.7) and satisfies Lemma 5.1 and Corollary 5.2. As ũ1(t) and ũ2(t) belong to BH2(ũ0, r)
for t ∈ [0, T ], we can use inequality (A.17) in Lemma A.5 to estimate the right hand side, obtaining
for t ∈ [0, T ],

∥[F(ũ1)](t)− [F(ũ2)](t)∥L2(Ω) ≤∥[F (ũ1)](t)− [F (ũ2)](t)∥L2(Ω) + ∥P∗ũ1(t)− P∗ũ2(t)∥L2(Ω)

≤
(
Le + ∥P∗∥B(H2(Ω),L2(Ω))

)
∥ũ1(t)− ũ2(t)∥H2(Ω) .

As ũ1(0) = ũ2(0) = ũ0 ∈
{
H2(Ω) ∩H1

0 (Ω)
}
= D(P∗), then we have

sup
t∈[0,T ]

∥ũ1(t)− ũ2(t)∥H2(Ω) ≤ Tα ∥ũ1 − ũ2∥Cα([0,T ];H2(Ω)) (5.40)

and so

∥F(ũ1)−F(ũ2)∥C([0,T ];L2(Ω)) ≤
[
Le + ∥P∗∥B(H2(Ω),L2(Ω))

]
Tα ∥ũ1 − ũ2∥Cα([0,T ];H2(Ω)) (5.41)

On the other hand, for 0 ≤ t < t+ h ≤ T , by using(5.20) in Lemma 5.4 and (5.40), we get

∥[F(ũ1)](t+ h)− [F(ũ2)](t+ h)− [F(ũ1)](t) + [F(ũ2)](t)∥L2(Ω)

=

∥∥∥∥∫ 1

0

[F ′(γũ1 + (1− γ)ũ2)(ũ1 − ũ2)](t+ h)− [F ′(γũ1 + (1− γ)ũ2)(ũ1 − ũ2)](t)

−P∗ [ũ1(t+ h)− ũ2(t+ h)− ũ1(t) + ũ2(t)] dγ

∥∥∥∥
L2(Ω)

≤2hαTαLB ∥ũ1 − ũ2∥Cα([0,T ];H2(Ω))

+2hαTαLB ∥γũ1 + (1− γ)ũ2 + θ1∥Cα([0,T ];H2(Ω)) ∥ũ1 − ũ2∥Cα([0,T ];H2(Ω))

≤2hαTαLB

(
1 + ∥u0∥H2(Ω) + κ(2C)−1

)
∥ũ1 − ũ2∥Cα([0,T ];H2(Ω)) , (5.42)

and

[F(ũ1)−F(ũ2)]Cα([0,T ];L2(Ω))

= sup
0≤t<t+h≤T

1

hα
{
∥[F(ũ1)](t+ h)− [F(ũ2)](t+ h)− [F(ũ1)](t) + [F(ũ2)](t)∥L2(Ω)

}
≤2TαLB

(
1 + ∥u0∥H2(Ω) + κ(2C)−1

)
∥ũ1 − ũ2∥Cα([0,T ];H2(Ω)) . (5.43)

Thus we can deduce from (5.39), (5.41) and (5.43):

∥Γũ1 − Γũ2∥Cα([0,T ];H2(Ω))

≤γ0I(T0) ∥F(ũ1)−F(ũ2)∥Cα([0,T ];L2(Ω))

≤γ0I(T0)
(
∥F(ũ1)−F(ũ2)∥C([0,T ];L2(Ω)) + [F(ũ1)−F(ũ2)]Cα([0,T ];L2(Ω))

)
≤γ0I(T0)

[
Le + ∥P∗∥B(H2(Ω),L2(Ω)) + 2LB

(
1 + ∥u0∥H2(Ω) + κ(2C)−1

)]
Tα

· ∥ũ1 − ũ2∥Cα([0,T ];H2(Ω)) . (5.44)
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Set

T ∗
0 :=

[
2γ0I(T0)

(
Le + ∥P∗∥B(H2(Ω),L2(Ω)) + 2LB

(
1 + ∥u0∥H2(Ω) + κ(2C)−1

))]− 1
α

. (5.45)

If 0 < T ≤ min{T0, T ∗
0 }, then Γ satisfies the contraction property (5.38) by using (5.44).

To prove that Γ(Y ) ⊆ Y , it remains to check that

∥Γũ− ũ0∥Cα([0,T ];H2(Ω)) ≤ r, ∀ ũ ∈ Y. (5.46)

Let us observe that if 0 < T < min{T0, T ∗
0 }, then from (5.38), we get

∥Γũ− ũ0∥Cα([0,T ];H2(Ω)) ≤∥Γũ− Γũ0∥Cα([0,T ];H2(Ω)) + ∥Γũ0 − ũ0∥Cα([0,T ];H2(Ω))

≤1

2
∥ũ− ũ0∥Cα([0,T ];H2(Ω)) + ∥Γũ0 − ũ0∥Cα([0,T ];H2(Ω))

≤r
2
+ ∥Γũ0 − ũ0∥Cα([0,T ];H2(Ω)) .

Now Γũ0− ũ0 ∈ Cα
(
[0, T ];H2(Ω) ∩H1

0 (Ω)
)
and it vanishes at t = 0, so there exists a δ∗ = δ∗(r) > 0

such that, if 0 < T ≤ δ∗, then

∥Γũ0 − ũ0∥Cα([0,T ];H2(Ω)) ≤
r

2
,

and consequently (5.46) is true by choosing 0 < T ≤ min{T0, T ∗
0 , δ

∗}. Because r is controlled by
C = C(Ω) and κ, we also note δ∗ = δ∗(κ,Ω).

Summing up, set
T1 := min {T0, T ∗

0 , δ
∗} , (5.47)

Γ, defined by (5.37), is a contractive mapping of Y into itself provided

0 < T < T1.

Hence, Γ has a unique fixed point ũ in Y , ũ ∈ Cα
(
[0, T1);H

2(Ω) ∩H1
0 (Ω)

)
is a unique solution

of the integral equation (5.34), and ũ ∈ Cα
(
[0, T1);H

2(Ω) ∩H1
0 (Ω)

)
∩ Cα+1

(
[0, T1);L

2(Ω)
)
is a

unique strict solution of the differential equation (5.33), due to the preceding results in Equivalence,
Theorem 5.3, Theorem 1.2 of [37] and Theorem 4.5 of [41].

Recall that [F (ũ)](0) ∈ DP∗(α,∞), ũ0 ∈
{
H2(Ω) ∩H1

0 (Ω)
}
= D(P∗), F (ũ) ∈ Cα

(
[0, T1);L

2(Ω)
)

with L2(Ω) = D(P∗), as P∗ũ0 + [F(ũ)](0) = [F (ũ)](0) = ũ′(0), Theorem 1.2 of [37] as well as
Theorem 5.3 state in particular if ũ′(t) ∈ DP∗(α,∞) for t = 0, then the same is true for t > 0,
i.e. ũ′(t) ∈ DP∗(α,∞) for all t ∈ [0, T1), provided

F(ũ) = F (ũ)− P∗ũ ∈ Cα
(
[0, T1);L

2(Ω)
)
.

Meanwhile, [F (ũ)](t) ∈ DP∗(α,∞) because ũ′(t) = [F (ũ)](t) and ũ′(t) ∈ DP∗(α,∞) for all t ∈ [0, T1).
Because of Theorem 3.6 and u = ũ + θ1, the initial-boundary value problem (1.1) has a unique

strict solution (u,w) with the regularity

u ∈ Cα
(
[0, T1);H

2(Ω)
)
∩ Cα+1

(
[0, T1);L

2(Ω)
)
,

w ∈ C
(
[0, T1);H

2(Ω)
)
∩ C1

(
[0, T1);H

1(Ω)
)
∩ C2

(
[0, T1);L

2(Ω)
)
.

This concludes the proof of Theorem 5.5.

The well-posedness of the coupled system, Theorem 1.1, is a direct consequence of Theorem 5.5.

A Auxiliary Estimates

In this appendix, we formulate and prove some estimates which are repeatedly used in the proof of
the main results. They follow from well-known properties of the Sobolev spaces Hk(Ω) with k > 0.
In particular, we recall the following well-known algebra property, see [45] for a proof:
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Lemma A.1. Hk(Ω) is an algebra when k > n
2 . In particular, H1(Ω) is an algebra if Ω ⊂ R and

H2(Ω) is an algebra if Ω ⊂ Rn, n = 1, 2.

We formulate a direct consequence of Lemma A.1, which is used throughout this article.

Lemma A.2. Let Ω ⊂ R be an open and bounded subset and C = C(Ω) be a positive constant. If
f1 ∈ H1(Ω) and f2 ∈ L2(Ω), then

∥f1f2∥L2(Ω) ≤ C ∥f1∥H1(Ω) ∥f2∥L2(Ω) . (A.1)

If g1, g2 ∈ H1(Ω), g3 ∈ H2(Ω), then∥∥∥∥g1 ∂∂x
(
g2
∂g3
∂x

)∥∥∥∥
L2(Ω)

≤ C ∥g1∥H1(Ω) ∥g2∥H1(Ω) ∥g3∥H2(Ω) . (A.2)

If g1, g2 ∈ H1(Ω), g3, g4 ∈ H2(Ω), then∥∥∥∥g1 ∂∂x
(
g2g3

∂g4
∂x

)∥∥∥∥
L2(Ω)

≤ C ∥g1∥H1(Ω) ∥g2∥H1(Ω) ∥g3∥H2(Ω) ∥g4∥H2(Ω) . (A.3)

Proof.

∥f1f2∥L2(Ω) ≤ ∥f1∥L∞(Ω) ∥f2∥L2(Ω) ≤ C ∥f1∥H1(Ω) ∥f2∥L2(Ω) .

∥∥∥∥g1 ∂∂x
(
g2
∂g3
∂x

)∥∥∥∥
L2(Ω)

≤ C ∥g1∥H1(Ω)

∥∥∥∥g2 ∂g3∂x
∥∥∥∥
H1(Ω)

≤ C ∥g1∥H1(Ω) ∥g2∥H1(Ω)

∥∥∥∥∂g3∂x
∥∥∥∥
H1(Ω)

≤ C ∥g1∥H1(Ω) ∥g2∥H1(Ω) ∥g3∥H2(Ω) .

∥∥∥∥g1 ∂∂x
(
g2g3

∂g4
∂x

)∥∥∥∥
L2(Ω)

≤C ∥g1∥H1(Ω) ∥g2g3∥H1(Ω) ∥g4∥H2(Ω)

≤C ∥g1∥H1(Ω) ∥g2∥H1(Ω) ∥g3∥H2(Ω) ∥g4∥H2(Ω) .

We now formulate and prove three technical estimates used in the main body of this article, which
repeatedly use these algebra properties.

Lemma A.3. Let T ∈ (0,∞), κ = infx∈Ω w0(x) > 0 and w0 ∈ H2(Ω). Then there exists a constant
C = C(Ω) > 0, such that for all

r ∈
(
0,

κ

2C

)
, (A.4)

the function w ∈ C ([0, T ];BH1 (w0, r)) has the lower bound:

w(t) ≥ κ

2
, ∀ t ∈ [0, T ]. (A.5)

Moreover, for all w1, w2 ∈ C ([0, T ];BH1(w0, r)), there exist positive constants Ck, k = 1, 2, 3,
which depend on Ω, κ and ∥w0∥H1(Ω), such that

sup
t∈[0,T ]

∥∥∥∥ 1

[w1(t)]k

∥∥∥∥
H1(Ω)

≤ Ck
1 , k = 1, 2, 3. (A.6)

sup
t∈[0,T ]

∥∥∥∥ 1

[w1(t)]k
− 1

[w2(t)]k

∥∥∥∥
H1(Ω)

≤ Ck sup
t∈[0,T ]

∥w1(t)− w2(t)∥H1(Ω) , k = 2, 3. (A.7)
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Proof. We first prove assertion (A.5).
Since w ∈ C ([0, T ];BH2 (w0, r)), then ∥w(t)− w0∥H1(Ω) ≤ r holds for all t ∈ [0, T ].
The triangle inequality and the Sobolev embedding theorem imply there exists a positive constant

C = C(Ω), such that for all r ∈
(
0, κ

2C

)
, it follows that

w(t) = w0 + w(t)− w0 ≥ κ− ∥w(t)− w0∥L∞(Ω) ≥ κ− C ∥w(t)− w0∥H1(Ω) ≥ κ− Cr ≥ κ

2
, (A.8a)

∥w(t)∥H1(Ω) ≤ C̃, (A.8b)

for all t ∈ [0, T ]. Here, C̃ = κ
2C + ∥w0∥H1(Ω). Hence we have proved assertion (A.5).

Since (A.8) and r ∈
(
0, κ

2C

)
, we find

sup
t∈[0,T ]

∥∥∥∥ 1

w(t)

∥∥∥∥2
H1(Ω)

= sup
t∈[0,T ]

∫
Ω

∣∣∣∣ 1

w(t)

∣∣∣∣2 + ∣∣∣∣ ∂∂x
[

1

w(t)

]∣∣∣∣2 dx ≤ 4C

κ2
+ sup

t∈[0,T ]

∫
Ω

1

|w(t)|4

∣∣∣∣∂w(t)∂x

∣∣∣∣2 dx
≤4C

κ2
+

16

κ4
sup

t∈[0,T ]

∫
Ω

∣∣∣∣∂w(t)∂x

∣∣∣∣2 dx ≤ 4C

κ2
+

16

κ4
sup

t∈[0,T ]

∥w(t)∥2H1(Ω) ≤
4C

κ2
+

16

κ4
C̃2.

We set C2
1 = 4C

κ2 + 16
κ4 C̃

2 such that C1 is a positive constant depending on Ω, κ, and ∥w0∥H1(Ω).

Using the algebra property of H1(Ω), see Lemma A.1, the assertion (A.6) holds for t ∈ [0, T ]. We
can now proceed to show (A.7). For w1, w2 ∈ C ([0, T ];BH2(w̃0, r)), (A.6), the algebraic property of
H1(Ω) from Lemma A.1 and triangle inequality imply

sup
t∈[0,T ]

∥∥∥∥ [w1(t) + w2(t)]

[w1(t)]2[w2(t)]2

∥∥∥∥
H1(Ω)

≤ 2C3
1 , sup

t∈[0,T ]

∥∥∥∥ [w1(t)]
2 + [w2(t)]

2 + w1(t)w2(t)

[w1(t)]3[w2(t)]3

∥∥∥∥
H1(Ω)

≤ 3C4
1 .

Hence, setting C2 = 2C3
1 and C3 = 3C4

1 implies (A.7).
This concludes the proof of Lemma A.3.

Lemma A.4. Let w̃0 = w0− θ2 ∈ H2(Ω)∩H1
0 (Ω) and r ∈

(
0, κ

2C

)
. Then the nonlinear operator G,

G : C ([0, T ];BH1 (w̃0, r)) −→ C([0, T ];H1(Ω)), w̃ 7−→ G(w̃) (A.9a)

[G(w̃)](t) = G(w̃(t)) = − βF
(w̃(t) + θ2)2

+ βp(θ1 − 1), (A.9b)

satisfies

sup
0≤t<t+h≤T

∥[G(w̃)](t+ h)− [G(w̃)](t)∥H1(Ω) ≤ LG sup
0≤t<t+h≤T

∥w̃(t+ h)− w̃(t)∥H1(Ω) , (A.10)

for all h ∈ (0, T ], w̃ ∈ C ([0, T ];BH1(w̃0, r)). Here LG = LG

(
Ω, κ, ∥w0∥H1(Ω), βF

)
is a constant.

Moreover, G is locally Lipschitz continuous with respect to w̃ ∈ C ([0, T ];BH1 (w̃0, r)), i.e.

sup
t∈[0,T ]

∥[G(w̃1)](t)− [G(w̃2)](t)∥H1(Ω) ≤ LG sup
t∈[0,T ]

∥w̃1(t)− w̃2(t)∥H1(Ω) (A.11)

for all w̃1, w̃2 ∈ C ([0, T ];BH1 (w̃0, r)). In particular,

sup
t∈[0,T ]

∥[G(w̃1)](t)−G(w̃0)∥H1(Ω) ≤ LGr. (A.12)

Furthermore, the Fréchet derivative G′(w̃) of G(w̃) on w̃ ∈ C ([0, T ];BH1 (w̃0, r)), defined by

G′ (w̃) : C
(
[0, T ];H1

0 (Ω)
)
−→ C

(
[0, T ];H1

0 (Ω)
)
, q 7−→ G′ (w̃) q (A.13a)

[G′ (w̃) q](t) = [G′(w̃(t))]q(t) =
2βF

(w̃(t) + θ2)
3 q(t), (A.13b)

satisfies
sup

t∈[0,T ]

∥[G′ (w̃) q] (t)∥H1(Ω) ≤ LG sup
t∈[0,T ]

∥q(t)∥H1(Ω) , (A.14)

and G′(w̃(t)) : H1
0 (Ω) −→ H1

0 (Ω) satisfies

lim
h→0

sup
0≤t≤t+h≤T

0≤τ≤1

∥G′(w̃(t) + τ [w̃(t+ h)− w̃(t)])−G′(w̃(t))∥B(H1
0 (Ω)) = 0. (A.15)
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Proof. We recall that r ∈
(
0, κ

2C

)
, κ = infx∈Ω w0 > 0, w0 = w̃0 + θ2, w̃ ∈ C ([0, T ];BH1(w̃0, r)),

w = w̃ + θ2. For small h ∈ (0, T ) such that t+ h ∈ (0, T ], ∥w̃(t+ h)− w̃(t)∥H1(Ω) ≤ r, Thus, (A.10)

and (A.11) of Lemma A.4 are valid by using (A.6), (A.7), respectively, in Lemma A.3 and setting
LG = βFC2.

In particular, for w̃1 ∈ C ([0, T ];BH1 (w̃0, r)), set w̃2(t) = w̃0, t ∈ [0, T ], then [G(w̃2)](t) = G(w̃0).
Hence (A.12) of Lemma A.4 is valid because of (A.11) in Lemma A.4.

We consider w̃2 = w̃ ∈ C ([0, T ];BH1 (w̃0, r)) and choose small λ ∈ R such that w̃1 = w̃ + λq is
in C ([0, T ];BH1 (w̃0, r)) for all q ∈ C

(
[0, T ];H1

0 (Ω)
)
. Then the Fréchet derivative G′ (w̃) q of G with

respect to w̃ ∈ C ([0, T ];BH1 (w̃0, r)) exists as a linear operator given by

G′(w̃) : C
(
[0, T ];H1

0 (Ω)
)
→ C

(
[0, T ];H1

0 (Ω)
)
, G′ (w̃) q = lim

λ→0

1

λ
[G (w̃ + λq)−G (w̃)] =

2βF

(w̃ + θ2)
3 q,

[G′ (w̃) q](t) = [G′ (w̃(t))]q(t) =
2βF

(w̃(t) + θ2)
3 q(t).

According to (A.11) of Lemma A.4, the inequality (A.14) of Lemma A.4 holds by the following
computation:

sup
t∈[0,T ]

∥[G′ (w̃) q] (t)∥H1(Ω) = sup
t∈[0,T ]

∥∥∥∥ limλ→0

[G (w̃ + λq)](t)− [G (w̃)](t)

λ

∥∥∥∥
H1(Ω)

= lim
λ→0

1

λ
sup

t∈[0,T ]

∥[G (w̃1)](t)− [G (w̃2)](t)∥H1(Ω)

≤ lim
λ→0

1

λ
LG sup

t∈[0,T ]

∥w̃1(t)− w̃2(t)∥H1(Ω) = LG sup
t∈[0,T ]

∥q(t)∥H1(Ω) .

For all t ∈ [0, T ], we choose small h ∈ (0, T ) and τ ∈ [0, 1] such that t+ h ∈ (0, T ], then we obtain

∥w̃(t) + τ [w̃(t+ h)− w̃(t)]− w̃0∥H1(Ω) ≤ r,

then for ψ ∈ H1
0 (Ω) with ∥ψ∥H1(Ω) ≤ 1, we find G′(w̃(t)) : H1

0 (Ω) −→ H1
0 (Ω) with ψ 7−→ [G(w̃(t))]ψ.

By the algebraic properties of H1(Ω), together with (A.6) and (A.7) in Lemma A.3, we have

∥G′ (w̃(t) + τ [w̃(t+ h)− w̃(t)])−G′(w̃(t))∥B(H1
0 (Ω))

= ∥[G′ (w̃(t) + τ [w̃(t+ h)− w̃(t)])]ψ − [G′(w̃(t))]ψ∥H1(Ω)

≤2βF sup
0≤t<t+h≤T

0≤τ≤1

∥∥∥∥ 1

(w̃(t) + τ [w̃(t+ h)− w̃(t)] + θ2)3
− 1

[w̃(t) + θ2]3

∥∥∥∥
H1(Ω)

∥ψ∥H1(Ω)

≤2βFC3 sup
0≤t<t+h≤T

∥w̃(t+ h)− w̃(t)∥H1(Ω). (A.16)

Since w̃ ∈ C([0, T ];H1
0 (Ω)), w̃ is uniformly continuous with respect to t ∈ [0, T ], hence the assertion

(A.15) of Lemma A.4 is proved by

lim
h→0+

sup
0≤t<t+h≤T

∥w̃(t+ τh)− w̃(t)∥H1(Ω) = 0.

This concludes the proof of Lemma A.4.

Lemma A.5. Let u0 ∈ H2+σ(Ω) with σ ∈ (0, 1/2) and assume the operators u 7−→ v(u), u 7−→ w(u)
given by, respectively,

u 7−→ v(u) : C ([0, T ];BH2 (u0, r)) −→ C ([0, T ];BL2 (v0, r)) ,

u 7−→ w(u) : C ([0, T ];BH2 (u0, r)) −→ C ([0, T ];BH1 (w0, r)) ,

satisfy, for all u1, u2 ∈ C ([0, T ];BH2 (u0, r)),

sup
t∈[0,T ]

∥[v(u1)](t)− [v(u2)](t)∥L2(Ω) ≤ LW sup
t∈[0,T ]

∥u1(t)− u2(t)∥H2(Ω),
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sup
t∈[0,T ]

∥[w(u1)](t)− [w(u2)](t)∥H1(Ω) ≤ LW sup
t∈[0,T ]

∥u1(t)− u2(t)∥H2(Ω).

Then f(u), defined by

u 7−→ f(u) : C([0, T ];H2(Ω)) −→ C([0, T ];L2(Ω)), f(u) =
1

w(u)

∂

∂x

(
[w(u)]3u

∂u

∂x

)
− v(u)

w(u)
u,

is Lipschitz continuous in u,

sup
t∈[0,T ]

∥[f(u1)](t)− [f(u2)](t)∥L2(Ω) ≤ Le sup
t∈[0,T ]

∥u1(t)− u2(t)∥H2(Ω). (A.17)

Here LW and Le are Lipschitz constants, and Le depends on LW , Ω, κ, ∥u0∥H2(Ω), ∥v0∥L2(Ω) and

∥w0∥H1(Ω).

Proof. Let u1, u2 ∈ C ([0, T ];BH2(u0, r)), the definitions of the operators u 7−→ v(u) and u 7−→ w(u)
imply that (v1, w1) = (v(u1), w(u1)), (v2, w2) = (v(u2), w(u2)) ∈ C ([0, T ];BL2(v0, r)×BH1(w0, r)).
Set C̃ = ∥w0∥H1(Ω) +

κ
2C , C̃1 = ∥u0∥H2(Ω) +

κ
2C , C̃2 = ∥v0∥L2(Ω) +

κ
2C . Thus for all t ∈ [0, T ], we

get ∥u1(t)∥H2(Ω) ≤ C̃1, ∥u2(t)∥H2(Ω) ≤ C̃1, ∥v1(t)∥L2(Ω) ≤ C̃2, ∥v2(t)∥L2(Ω) ≤ C̃2, ∥w1(t)∥H1(Ω) ≤ C̃,

∥w2(t)∥H1(Ω) ≤ C̃.

Because of estimate ∥w1(t)− w2(t)∥H1(Ω) ≤ LW ∥u1(t)− u2(t)∥H2(Ω) for all t ∈ [0, T ] and H1(Ω)

is an algebra for Ω ⊂ R, (A.6) and (A.7) in Lemma A.3, we obtain similar bounds for the functions
[w1(t)]

−1 − [w2(t)]
−1 and [w1(t)]

3 − [w2(t)]
3:∥∥[w1(t)]

−1 − [w2(t)]
−1
∥∥
H1(Ω)

≤ C2
1LW ∥u1(t)− u2(t)∥H2(Ω) , (A.18)∥∥[w1(t)]

3 − [w2(t)]
3
∥∥
H1(Ω)

≤ 3C̃2LW ∥u1(t)− u2(t)∥H2(Ω) . (A.19)

Similarly, the algebraic property of H2(Ω), i.e. Lemma A.1, implies∥∥[u1(t)]2 − [u2(t)]
2
∥∥
H2(Ω)

≤2C̃1 ∥u1(t)− u2(t)∥H2(Ω) . (A.20)

The algebraic properties of H1(Ω), i.e. Lemma A.1, (A.2) of Lemma A.2 imply

1

2

∥∥∥∥[ 1

w1(t)
− 1

w2(t)

]
∂

∂x

{
[w1(t)]

3 ∂[u1(t)]
2

∂x

}∥∥∥∥
L2(Ω)

≤C
∥∥[w1(t)]

−1 − [w2(t)]
−1
∥∥
H2(Ω)

∥∥[w1(t)]
3
∥∥
H2(Ω)

∥∥[u1(t)]2∥∥H2(Ω)

≤CC2
1 C̃

3C̃2
1LW ∥u1(t)− u2(t)∥H2(Ω) .

Similarly, setting Ĉ1 = 3CC1(C̃C̃1)
2LW and Ĉ2 = 2CC1C̃

3C̃1, it follows that

1

2

∥∥∥∥ 1

w2(t)

∂

∂x

{(
[w1(t)]

3 − [w2(t)]
3
) ∂[u1(t)]2

∂x

}∥∥∥∥
L2(Ω)

≤ Ĉ1 ∥u1(t)− u2(t)∥H2(Ω) ,

1

2

∥∥∥∥ 1

w2(t)

∂

∂x

{
[w2(t)]

3 ∂

∂x

(
[u1(t)]

2 − [u2(t)]
2
)}∥∥∥∥

L2(Ω)

≤ Ĉ2 ∥u1(t)− u2(t)∥H2(Ω) .

Because of (A.18), ∥v1(t)− v2(t)∥H1(Ω) ≤ LW ∥u1(t)− u2(t)∥H2(Ω), H
1(Ω) being an algebra and

(A.1) in Lemma A.2, setting Ĉ3 = CC̃2C1 + CC̃1C1LW + CC̃1C̃2C
2
1LW , we obtain∥∥∥∥ v1(t)w1(t)

u1(t)−
v2(t)

w2(t)
u2(t)

∥∥∥∥
L2(Ω)

≤∥v1(t)∥L2(Ω)

∥∥[w1(t)]
−1
∥∥
H1(Ω)

∥u1(t)− u2(t)∥H2(Ω)

+ ∥u2(t)∥H2(Ω)

∥∥[w1(t)]
−1
∥∥
H1(Ω)

∥v1(t)− v2(t)∥L2(Ω)

+ ∥u2(t)∥H2(Ω) ∥v2(t)∥L2(Ω)

∥∥[w1(t)]
−1 − [w2(t)]

−1
∥∥
H1(Ω)

≤Ĉ3 ∥u1(t)− u2(t)∥H2(Ω) .
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Consequently, (A.17) holds by setting Le = CC2
1 C̃

3C̃2
1LW + Ĉ1 + Ĉ2 + Ĉ3 and computing

∥[f(u1)](t)− [f(u2)](t)∥L2(Ω) ≤
1

2

∥∥∥∥[ 1

w1(t)
− 1

w2(t)

]
∂

∂x

{
[w1(t)]

3 ∂[u1(t)]
2

∂x

}∥∥∥∥
L2(Ω)

+
1

2

∥∥∥∥ 1

w2(t)

∂

∂x

{(
[w1(t)]

3 − [w2(t)]
3
) ∂[u1(t)]2

∂x

}∥∥∥∥
L2(Ω)

+
1

2

∥∥∥∥ 1

w2(t)

∂

∂x

{
[w2(t)]

3 ∂

∂x

(
[u1(t)]

2 − [u2(t)]
2
)}∥∥∥∥

L2(Ω)

+

∥∥∥∥ v1(t)w1(t)
u1(t)−

v2(t)

w2(t)
u2(t)

∥∥∥∥
L2(Ω)

≤ Le ∥u1(t)− u2(t)∥H2(Ω) .

This concludes the proof of Lemma A.5.

B Proofs of Results in Section 3

B.1 Proof of Lemma 3.1

Proof. The proof follows closely the proof of Lemma 6.10 in the reference [27]. We here describe the
necessary adaptations.

Let w̃ ∈ C2([0, T ];L2(Ω)) ∩ C1([0, T ];H1
0 (Ω)) ∩ C([0, T ];H2(Ω) ∩ H1

0 (Ω)) solve the semilinear
hyperbolic equation (3.7). Then Φ := (w̃′, w̃) ∈ C1([0, T ];X), Φ(t) = (w̃′(t), w̃(t)) ∈ D(A) for all
t ∈ [0, T ], Φ ∈ C([0, T ];D(A)) and

Φ′(t) =

(
w̃

′′
(t)

w̃′(t)

)
=

(
∆Dw̃(t)− βF

(w̃(t)+θ2)2
+ βp(ũ(t) + θ1 − 1)

w̃′(t)

)
= AΦ(t) + [G(Φ)](t)

for all t ∈ [0, T ]. Moreover, Φ(0) = (w̃′(0), w̃(0)) = (ṽ0, w̃0) = Φ0.
Therefore, Φ ∈ C([0, T ];D(A)) ∩ C1([0, T ];X) solves the equation (3.10).
Conversely, let Φ = (φ1, φ2) ∈ C1([0, T ];X) ∩ C([0, T ];D(A)) solve the semilinear evolution

equation (3.10). We set w̃ := φ2, obtaining w̃ ∈ C1([0, T ];H1
0 (Ω)), w̃(t) ∈ H2(Ω)∩H1

0 (Ω), ∀ t ∈ [0, T ],
and w̃ ∈ C([0, T ];H2(Ω) ∩H1

0 (Ω)). It further follows,(
φ′
1(t)
w̃′(t)

)
= A

(
φ1(t)
w̃(t)

)
+ [G(Φ)](t) =

(
∆Dw̃(t)− βF

(w̃(t)+θ2)2
+ βp(ũ(t) + θ1 − 1)

φ1(t)

)
, ∀ t ∈ [0, T ].

As a result, w̃′ = φ1 ∈ C1([0, T ];L2(Ω)) and Φ = (w̃′, w̃), so that w̃ ∈ C2([0, T ];L2(Ω)) as well as
(w̃′(0), w̃(0)) = (ṽ0, w̃0). So w̃ ∈ C2([0, T ];L2(Ω)) ∩ C1([0, T ];H1

0 (Ω)) ∩ C([0, T ];H2(Ω) ∩ H1
0 (Ω))

solves the semilinear hyperbolic equation (3.7).
This equivalence also yields that solutions to the semilinear evolution equation (3.10) are unique

if and only if solutions to the semilinear equation (3.7) are unique.

B.2 Proof of Lemma 3.2

Proof. We aim to show that A, defined by (3.4), is skew adjoint on the Hilbert space X defined by
(3.1), and thus generates a strongly continuous semigroup (C0-semigroup) on X by using Stone’s
Lemma (see Theorem 3.24, Section 3, Chapter II, [9]).

The following proof is analogous to the discussion from Section 5 (Example 5.13) of reference [27].
From the definition (3.4) of A, A is densely defined in X, i.e. D(A) = X, then A is skew

symmetric (i.e. iA is symmetric) for any two (ϕ1, ϕ2) ∈ D(A) and (ψ1, ψ2) ∈ D(A) by the following
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computations:〈
A
(
ϕ1
ϕ2

)
,

(
ψ1

ψ2

)〉
X

=

〈(
∆Dϕ2
ϕ1

)
,

(
ψ1

ψ2

)〉
X

=

∫
Ω

(∆Dϕ2) · ψ1 +∇ϕ1 · ∇ψ2dx

=

∫
Ω

−∇ϕ2 · ∇ψ1 +∇ϕ1 · ∇ψ2dx = −
(∫

Ω

∇ϕ2 · ∇ψ1 −∇ϕ1 · ∇ψ2dx

)
= −

(∫
Ω

∇ϕ2 · ∇ψ1 + ϕ1 · (∆Dψ2)dx

)
= −

〈(
ϕ1
ϕ2

)
,

(
∆Dψ2

ψ1

)〉
X

= −
〈(

ϕ1
ϕ2

)
,A
(
ψ1

ψ2

)〉
X

.

Furthermore, Re

〈
A
(
ψ
ϕ

)
,

(
ψ
ϕ

)〉
X

= 0 for all (ψ, ϕ) ∈ D(A), so A is dissipative. By using the

Lax-Milgram Theorem (Theorem 1, Section 6.2, [11]), we have the inverse ∆−1
D of ∆D exists, thus

we define an operator

R =

(
0 1

∆−1
D 0

)
.

Then

RX ⊂ D(A), AR = I, RA
(
ψ
ϕ

)
=

(
ψ
ϕ

)
, ∀ (ψ, ϕ) ∈ D(A).

Therefore, iA is invertible and the resolvent set ρ(iA) of iA satisfies ρ(iA)∩R ̸= ∅, so the spectrum
σ(iA) ⊆ R, consequently, iA is selfadjoint, as a result, A is skew adjoint. According to Stone’s
Lemma, we have the linear operator A generates a C0-semigroup {T (t) ∈ B(X) : t ∈ [0,∞)}.

B.3 Proof of Theorem 3.3

Proof. We let T ∈ (0,∞) be taken to be specified below and define a complete metric space Z(T )
for the metric induced by the norm supt∈[0,T ] ∥(ṽ(t), w̃(t))∥L2(Ω)×H1(Ω) as follows:

Z(T ) :=

{(
ṽ
w̃

)
∈ C([0, T ];L2(Ω)×H1

0 (Ω)) :

(
ṽ(0)
w̃(0)

)
=

(
ṽ0
w̃0

)
, sup
t∈[0,T ]

∥∥∥∥( ṽ(t)− ṽ0
w̃(t)− w̃0

)∥∥∥∥
L2×H1(Ω)

≤ r

}
.

Because A generates a strongly continuous semigroup
{
T (t) ∈ B

(
L2(Ω)×H1

0 (Ω)
)
: t ∈ [0,∞)

}
and

[G (w̃)](t) = −βF [w̃(t) + θ2]
−2 + βp(θ1 − 1), we introduce a nonlinear operator Φ on Z(T ) by

[Φ(ṽ, w̃)] (t) := T (t)

(
ṽ0
w̃0

)
+

∫ t

0

{
T (t− s)

(
[G(w̃)](s) + βpũ(s)

0

)}
ds, ∀ t ∈ [0, T ].

We observe that

[Φ(ṽ, w̃)] (0) = T (0)

(
ṽ0
w̃0

)
=

(
ṽ0
w̃0

)
∈ D(A).

According to Lemma 1.3 of Chapter II in reference [9],

T (t)

(
ṽ0
w̃0

)
∈ D(A), ∀ t ∈ [0, T ].

Since (ṽ, w̃) ∈ Z(T ), ũ ∈ C ([0, T ];BH2 (ũ0, r)) such that G(w̃) + βpũ ∈ C([0, T ];H1(Ω)), hence(
[G(w̃)](t) + βpũ(t)

0

)
,

∫ t

0

{
T (t− s)

(
[G(w̃)](s) + βpũ(s)

0

)}
ds ∈ L2(Ω)×H1

0 (Ω).

Therefore, Φ is a nonlinear operator which maps Z(T ) into C
(
[0, T ];L2(Ω)×H1

0 (Ω)
)
:

Φ : Z(T ) −→ C
(
[0, T ];L2(Ω)×H1

0 (Ω)
)
.

We next show that there exists a unique mild solution (ṽ, w̃) ∈ Z(T ) of the semilinear evolution
equation (3.11) which is a fixed point of Φ on Z(T ).
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We write M0 = supt∈[0,∞) ∥T (t)∥B(L2(Ω)×H1
0 (Ω)) an operator norm of {T (t)}0≤t<∞ on the space

L2(Ω)×H1
0 (Ω). For given ũ ∈ C ([0, T ];BH2(ũ0, r)), if (ṽ1, w̃1), (ṽ2, w̃2) ∈ Z(T ), then

[G(w̃1)](t)− [G(w̃2)](t) ∈ H1(Ω), ∀ t ∈ [0, T ].

By using the estimate (A.11) of Lemma A.3, we obtain

sup
t∈[0,T ]

∥[Φ(ṽ1, w̃1)](t)− [Φ(ṽ2, w̃2)](t)∥L2(Ω)×H1(Ω)

= sup
t∈[0,T ]

∥∥∥∥∫ t

0

T (t− s)

(
[G(w̃1)](s) + βpũ(s)− [G(w̃2)](s)− βpũ(s)

0

)
ds

∥∥∥∥
L2(Ω)×H1(Ω)

≤TM0 sup
t∈[0,T ]

∥[G(w̃1)](t)− [G(w̃2)](t)∥L2(Ω) ≤ TM0 sup
t∈[0,T ]

∥[G(w̃1)](t)− [G(w̃2)](t)∥H1(Ω)

≤TM0LG sup
t∈[0,T ]

∥w̃1(t)− w̃2(t)∥H1(Ω) ≤ TM0LG sup
t∈[0,T ]

∥∥∥∥( ṽ1(t)− ṽ2(t)
w̃1(t)− w̃2(t)

)∥∥∥∥
L2(Ω)×H1(Ω)

. (B.1)

Because {T (t) ∈ B
(
L2(Ω)×H1

0 (Ω)
)
: t ≥ 0} is a strongly continuous semigroup, according to the

definition of strong continuity, for (ṽ0, w̃0) ∈ D(A) and given constant r ∈
(
0, κ

2C

)
, there exists

δo = δo(r) > 0, such that if 0 < t ≤ δo, then

0 <

∥∥∥∥T (t)( ṽ0w̃0

)
−
(
ṽ0
w̃0

)∥∥∥∥
L2(Ω)×H1(Ω)

≤ r

2
. (B.2)

Since r ∈
(
0, κ

2C

)
and C = C(Ω) is a constant, δo depends on κ and Ω, i.e. δo = δo(κ,Ω).

ũ ∈ C ([0, T ];BH2 (ũ0, r)) and (ṽ1, w̃1) ∈ Z(T ) imply that ṽ1(t) ∈ L2(Ω), w̃1(t) ∈ H1
0 (Ω) and

ũ(t) ∈ H2(Ω)∩H1
0 (Ω) with ∥ũ(t)− ũ0∥H2(Ω) ≤ r, thus [G(w̃1)](t)+βpũ(t) ∈ H1(Ω) for all t ∈ [0, T ].

Because G0 = G(w̃0) + βpũ0 ∈ H1(Ω), the inequality (A.12) of Lemma A.3 implies

sup
t∈[0,T ]

∥∥∥∥[Φ(ṽ1, w̃1)] (t)−
(
ṽ0
w̃0

)∥∥∥∥
L2(Ω)×H1(Ω)

= sup
t∈[0,T ]

∥∥∥∥T (t)( ṽ0w̃0

)
−
(
ṽ0
w̃0

)
+

∫ t

0

{
T (t− s)

(
[G(w̃1)](s) + βpũ(s)

0

)}
ds

∥∥∥∥
L2(Ω)×H1(Ω)

≤ sup
t∈[0,T ]

∥∥∥∥T (t)( ṽ0w̃0

)
−
(
ṽ0
w̃0

)∥∥∥∥
L2(Ω)×H1(Ω)

+ TM0 ∥G0∥L2(Ω)

+TM0 sup
t∈[0,T ]

∥[G(w̃1)](t)−G(w̃0)∥L2(Ω) + TM0 sup
t∈[0,T ]

∥ũ(t)− ũ0∥L2(Ω)

≤ sup
t∈[0,T ]

∥∥∥∥T (t)( ṽ0w̃0

)
−
(
ṽ0
w̃0

)∥∥∥∥
L2(Ω)×H1(Ω)

+ TM0 ∥G0∥H1(Ω)

+TM0 sup
t∈[0,T ]

∥[G(w̃1)](t)−G(w̃0)∥H1(Ω) + TM0 sup
t∈[0,T ]

∥ũ(t)− ũ0∥H1(Ω)

≤ sup
t∈[0,T ]

∥∥∥∥T (t)( ṽ0w̃0

)
−
(
ṽ0
w̃0

)∥∥∥∥
L2(Ω)×H1(Ω)

+ TM0

(
∥G0∥H1(Ω) + (LG + 1) r

)
. (B.3)

For fixed small r given in (0, κ/(2C)), there exists a number T0 > 0,

T0 = min

{
δo,

1

2M0LG
,

κ

2M0

[
(LG + 1)κ+ 2C ∥G0∥H1(Ω)

]−1
}
, (B.4)

such that for every T ∈ (0, T0), it follows that

sup
t∈[0,T ]

∥∥∥∥[Φ(ṽ1, w̃1)] (t)−
(
ṽ0
w̃0

)∥∥∥∥
L2(Ω)×H1(Ω)

≤ r,

sup
t∈[0,T ]

∥[Φ(ṽ1, w̃1)](t)− [Φ(ṽ2, w̃2)](t)∥L2(Ω)×H1(Ω) ≤
1

2
sup

t∈[0,T ]

∥∥∥∥( ṽ1(t)− ṽ2(t)
w̃1(t)− w̃2(t)

)∥∥∥∥
L2(Ω)×H1(Ω)

.
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Thus Φ(ṽ1, w̃1) ∈ z(T ) for (ṽ1, w̃1) ∈ Z(T ), Φ(ṽ, w̃) is Lipschitz continuous on the bounded set Z(T )
with Lipschitz constant smaller than or equal to 1/2, and Φ(ṽ, w̃) is a contraction map which maps
Z(T ) into itself.

According to the Banach fixed point theorem, for each T ∈ (0, T0), there exists a unique fixed
point (ṽT , w̃T ) ∈ Z(T ), such that (ṽT , w̃T ) = Φ(ṽT , w̃T ) for given ũ ∈ C ([0, T ];BH2 (ũ0, r)).

Hence, (ṽT , w̃T ) ∈ Z(T ) is the unique mild solution of the semilinear evolution equation (3.11)
on [0, T ], and (ṽT , w̃T ) satisfies the integral formulation (3.12). Due to the uniqueness of the fixed
point, we set (ṽ, w̃) = (ṽT , w̃T ) and note that (ṽT , w̃T ) is the restriction (ṽ|[0,T ], w̃|[0,T ]) ∈ Z(T ) of
(ṽ, w̃). As a result, Theorem 3.3 is proved.

B.4 Proof of Corollary 3.4

Proof. Take 0 ≤ t < t+ h ≤ T . Equation (3.12) leads to(
ṽ(t+ h)− ṽ(t)
w̃(t+ h)− w̃(t)

)
=T (t)

[
T (h)

(
ṽ0
w̃0

)
−
(
ṽ0
w̃0

)]
+

∫ h

0

T (t+ h− s)

(
[G(w̃)](s) + βpũ(s)

0

)
ds

+

∫ t

0

T (t− s)

(
[G(w̃)](s+ h)− [G(w̃)](s) + βp[ũ(s+ h)− ũ(s)]

0

)
ds

=

∫ h

0

T (t+ s)A
(
ṽ0
w̃0

)
ds+

∫ h

0

T (t+ h− s)

(
[G(w̃)](s) + βpũ(s)

0

)
ds

+

∫ t

0

T (t− s)

(
[G(w̃)](s+ h)− [G(w̃)](s) + βp[ũ(s+ h)− ũ(s)]

0

)
ds. (B.5)

Recall that X = L2(Ω)×H1
0 (Ω) and observe that

M0 = sup
t∈[0,∞)

∥T (t)∥B(X) ,

∥∥∥∥A( ṽ0w̃0

)∥∥∥∥
L2(Ω)×H1(Ω)

≤ ∥(ṽ0, w̃0)∥D(A) . (B.6)

Fixing T ∈ (0, T0) and ũ ∈ C ([0, T ];BH2 (ũ0, r)), the semilinear evolution equation (3.11) has a
unique mild solution (ṽ, w̃) ∈ Z(T ), and by using (A.12) in Lemma A.4, we have

sup
t∈[0,T ]

∥∥∥∥([G(w̃)](t) + βpũ(t)
0

)∥∥∥∥
L2(Ω)×H1(Ω)

≤ sup
t∈[0,T ]

∥[G(w̃)](t) + βpũ(t)∥H1(Ω)

≤ sup
t∈[0,T ]

∥[G(w̃)](t)−G(w̃0)∥H1(Ω)

+ βp sup
t∈[0,T ]

∥ũ(t)− ũ0∥H1(Ω) + ∥G0∥H1(Ω)

≤ (LG + 1) r + ∥G0∥H1(Ω)

≤ κ (LG + 1)

2C
+ ∥G0∥H1(Ω) . (B.7)

Here LG is given by Lemma A.4 and G0 = G(w̃0) + βpũ0 ∈ H1(Ω).
Moreover, ũ(s + h), ũ(s) ∈ H2(Ω) ∩H1

0 (Ω), w̃(s + h), w̃(s) ∈ H1
0 (Ω), ∀ 0 ≤ s < s + h ≤ t ≤ T ,

therefore, [G(w̃)](s+ h) + βpũ(s+ h)− [G(w̃)](s)− βpũ(s) ∈ H1(Ω).
Since ũ ∈ C1([0, T0);L

2(Ω)), then, for all T ∈ (0, T0), we find

sup
t∈[0,T ]

∫ t

0

∥ũ(s+ h)− ũ(s)∥L2(Ω) ds ≤T0 sup
0≤s≤T,

0≤s+σh≤T

h

∫ 1

0

∥ũ′(s+ σh)∥L2(Ω) dσ

≤T0h ∥ũ∥C1([0,T0);L2(Ω)) .
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According to inequality (A.10) of Lemma A.4, we have∥∥∥∥∫ t

0

T (t− s)

(
[G(w̃)](s+ h)− [G(w̃)](s) + βp[ũ(s+ h)− ũ(s)]

0

)
ds

∥∥∥∥
L2(Ω)×H1(Ω)

=M0

∫ t

0

∥[G(w̃)](s+ h)− [G(w̃)](s) + βp[ũ(s+ h)− ũ(s)]∥L2(Ω) ds

≤M0

∫ t

0

βp ∥ũ(s+ h)− ũ(s)∥L2(Ω) + ∥[G(w̃)](s+ h)− [G(w̃)](s)∥H1(Ω) ds

≤hM0βpT0 ∥ũ∥C1([0,T0);L2(Ω)) +M0LG

∫ t

0

∥∥∥∥( ṽ(s+ h)− ṽ(s)
w̃(s+ h)− w̃(s)

)∥∥∥∥
L2(Ω)×H1(Ω)

ds. (B.8)

Combining (B.5), (B.6), (B.7) and (B.8) gives∥∥∥∥( ṽ(t+ h)− ṽ(t)
w̃(t+ h)− w̃(t)

)∥∥∥∥
L2(Ω)×H1(Ω)

≤ hM0 ∥(ṽ0, w̃0)∥D(A) + hM0

(
κ (LG + 1)

2C
+ ∥G0∥H1(Ω)

)
+ hM0βpT0 ∥ũ∥C1([0,T0);L2(Ω))

+M0LG

∫ t

0

∥∥∥∥( ṽ(s+ h)− ṽ(s)
w̃(s+ h)− w̃(s)

)∥∥∥∥
L2(Ω)×H1(Ω)

ds.

Set Vo = ∥(ṽ0, w̃0)∥D(A) +
(

κ(LG+1)
2C + ∥G0∥H1(Ω)

)
+ βpT0 ∥ũ∥C1([0,T0);L2(Ω)).

Gronwall’s inequality then implies that∥∥∥∥( ṽ(t+ h)− ṽ(t)
w̃(t+ h)− w̃(t)

)∥∥∥∥
L2(Ω)×H1(Ω)

≤M0Vo
(
eM0LGT0

)
h.

Therefore, (3.13) holds for all h ∈ (0, T ] by setting LV =M0Vo
(
eM0LGT0

)
.

B.5 Proof of Corollary 3.5

Proof. Observe that

sup
t∈[0,T ]

∫ t

0

∥ũ(s+ h)− ũ(s)∥L2(Ω) ds ≤T0 sup
0≤s<s+h≤T

∥ũ(s+ h)− ũ(s)∥L2(Ω)

≤T0 sup
0≤s<s+h≤T

∥ũ(s+ h)− ũ(s)∥H2(Ω)

≤T0hα [ũ]Cα([0,T0);H2(Ω)) . (B.9)

According to (B.5), (B.6), (B.7), (B.8) and (B.9), for 0 ≤ t < t + h ≤ T , with h ∈ (0, T ], it follows
that ∥∥∥∥( ṽ(t+ h)− ṽ(t)

w̃(t+ h)− w̃(t)

)∥∥∥∥
L2(Ω)×H1(Ω)

≤ hM0 ∥(ṽ0, w̃0)∥D(A) + hαM0βpT0 [ũ]Cα([0,T0);H2(Ω))

+ hM0

(
κ (LG + 1)

2C
+ ∥G(w̃0) + βpũ0∥H1(Ω)

)
+M0LG

∫ t

0

∥∥∥∥( ṽ(s+ h)− ṽ(s)
w̃(s+ h)− w̃(s)

)∥∥∥∥
L2(Ω)×H1(Ω)

ds.

Set P0 = κ(LG+1)
2C + ∥G(w̃0) + βpũ0∥H1(Ω). Gronwall’s inequality then implies that∥∥∥∥( ṽ(t+ h)− ṽ(t)
w̃(t+ h)− w̃(t)

)∥∥∥∥
L2(Ω)×H1(Ω)

≤
(
eM0LGT0

)
M0

{
∥(ṽ0, w̃0)∥D(A) + P0

}
h

+
(
eM0LGT0

)
M0βpT0 [ũ]Cα([0,T0);H2

o(Ω)) h
α.
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Notice that(
eM0LGT0

)
M0

{
∥(ṽ0, w̃0)∥D(A) + P0

}
h ≤

(
eM0LGT0

)
M0

{
∥(ṽ0, w̃0)∥D(A) + P0

}
T 1−α
0 hα,

(
eM0LGT0

)
M0βpT0 [ũ]Cα([0,T0);H2

o(Ω)) ≤
(
eM0LGT0

)
M0βpT0 ∥ũ∥Cα([0,T0);H2

o(Ω))

≤
(
eM0LGT0

)
M0βpT0

(
r + ∥ũ0∥H2(Ω)

)
≤
(
eM0LGT0

)
M0βpT0

( κ

2C
+ ∥ũ0∥H2(Ω)

)
.

Setting LU =
(
eM0LGT0

)
M0

{
∥(ṽ0, w̃0)∥D(A) + P0

}
T 1−α
0 +

(
eM0LGT0

)
M0βpT0

(
κ
2C + ∥ũ0∥H2(Ω)

)
,

and LU is a Lipschitz constant depending on

α, T0, κ, Ω, βp, βF , M0 = sup
t∈[0,∞)

∥T (t)∥B(X) , ∥(ṽ0, w̃0)∥D(A) , ∥ũ0∥H2(Ω) , ∥w̃0∥H1(Ω) .

Therefore, (3.14) holds for all h ∈ (0, T ] and this concludes the proof of Corollary 3.5.

B.6 Proof of Theorem 3.6

Proof. Let T ∈ (0, T0), G0 = G (w̃0)+βpũ0 and (ṽ, w̃) be the mild solution of the semilinear evolution
equation (3.11) defined via (3.12). Take ũ ∈ C ([0, T ];BH2 (ũ0, r))∩C1([0, T ];L2(Ω)) to be given such
that ũ′(t) ∈ L2(Ω) is uniformly continuous for all t ∈ [0, T ].

We first prove the linear non-autonomous problem(
p̃(t)
q̃(t)

)
= T (t)

((
G0

0

)
+A

(
ṽ0
w̃0

))
+

∫ t

0

T (t− s)

(
[H(q̃)](s) + βpũ

′(s)
0

)
ds, (B.10)

can be solved for t ∈ [0, T ]. Here

[H(q̃)](s) =
2βF q̃(s)

[w̃(s) + θ2]
3 = [G′(w̃)q](s), s ∈ [0, t]. (B.11)

We define a nonlinear operator Ψ by

Ψ : C
(
[0, T ];L2(Ω)×H1

0 (Ω)
)
−→ C

(
[0, T ];L2(Ω)×H1

0 (Ω)
)

[Ψ (p̃, q̃)] (t) = T (t)

((
G0

0

)
+A

(
ṽ0
w̃0

))
+

∫ t

0

T (t− s)

(
[H(q̃)](s) + βpũ

′(s)
0

)
ds.

For any (p̃1, q̃1), (p̃2, q̃2) ∈ C
(
[0, T ];L2(Ω)×H1

0 (Ω)
)
and w̃ ∈ C

(
[0, T ];H1

0 (Ω)
)
. It follows that

H(q̃1)−H(q̃2) =
2βF

[w̃ + θ2]
3 [q̃1 − q̃2] = G′(w̃)(q1 − q2) ∈ C

(
[0, T ];H1

0 (Ω)
)
.

Hence, according to the estimate (A.14) of Fréchet derivative G′ (w̃) q from Lemma A.4, Ψ is a
contraction map on C

(
[0, T ];L2(Ω)×H1

0 (Ω)
)
for all T ∈ (0, T0) since

∥[Ψ (p̃1, q̃1)] (t)− [Ψ (p̃2, q̃2)] (t)∥L2(Ω)×H1(Ω)

=

∥∥∥∥∫ t

0

T (t− s)

(
[H(q̃1)](s)−H(q̃2)](s)

0

)
ds

∥∥∥∥
L2(Ω)×H1(Ω)

≤T sup
0≤s≤t≤T

∥T (t− s)∥B(X) sup
t∈[0,T ]

∥[H(q̃1)](t)− [H(q̃2)](t)∥L2(Ω)

≤TM0LG sup
t∈[0,T ]

∥q̃1(t)− q̃2(t)∥H1(Ω) ≤
1

2
sup

t∈[0,T ]

∥∥∥∥(p̃1(t)− p̃2(t)
q̃1(t)− q̃2(t)

)∥∥∥∥
L2(Ω)×H1(Ω)

.

According to the Banach fixed point theorem, for given ũ ∈ C ([0, T ];BH2 (ũ0, r))∩C1
(
[0, T ];L2(Ω)

)
,

there exists a unique fixed point (p̃, q̃) ∈ C
(
[0, T ];L2(Ω)×H1

0 (Ω)
)
, such that (p̃, q̃) = Ψ(p̃, q̃). Hence

the R-linear non-autonomous problem (B.10) can be solved for t ∈ [0, T ].
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We next prove that (p̃, q̃) is the time derivative of the mild solution (ṽ, w̃).
Let 0 ≤ t < t+ h ≤ T for some h ∈ (0, T ], equations (3.12) and (B.10) imply that

E(h, t) :=
1

h

(
ṽ(t+ h)− ṽ(t)
w̃(t+ h)− w̃(t)

)
−
(
p̃(t)
q̃(t)

)
= T (t)

1

h
(T (h)− I)

(
ṽ0
w̃0

)
− T (t)A

(
ṽ0
w̃0

)
+

1

h

∫ h

0

{
T (t+ h− s)

(
[G(w̃)](s) + βpũ(s)

0

)}
ds− T (t)

(
G0

0

)
+

∫ t

0

T (t− s)

(
1
h {[G(w̃)](s+ h)− [G(w̃)](s)} − [H(q̃)](s)

0

)
ds

+

∫ t

0

T (t− s)

(
βp
[
1
h {ũ(s+ h)− ũ(s)} − ũ′(s)

]
0

)
ds.

Let

E(1)(h, t) := T (t)
1

h
(T (h)− I)

(
ṽ0
w̃0

)
− T (t)A

(
ṽ0
w̃0

)
,

E(2)(h, t) :=
1

h

∫ h

0

{
T (t+ h− s)

(
[G(w̃)](s) + βpũ(s)

0

)}
ds− T (t)

(
G0

0

)
,

E(3)(h, t) :=

∫ t

0

T (t− s)

(
1
h {[G(w̃)](s+ h)− [G(w̃)](s)} − [H(q̃)](s)

0

)
ds

+

∫ t

0

T (t− s)

(
βp
[
1
h {ũ(s+ h)− ũ(s)} − ũ′(s)

]
0

)
ds.

We initially observe that

lim
h→0

∥∥∥E(1)(h, t)
∥∥∥
L2(Ω)×H1(Ω)

≤ lim
h→0

M0

∥∥∥∥ 1h (T (h)− I)

(
ṽ0
w̃0

)
−A

(
ṽ0
w̃0

)∥∥∥∥
L2(Ω)×H1(Ω)

:= lim
h→0

Λ1(h) = 0,

lim
h→0

1

h

∫ h

0

{
T (h− s)

(
G0

0

)}
ds =

(
G0

0

)
.

Because G(w̃) ∈ C([0, T ];H1(Ω)) and ũ ∈ C
(
[0, T ];H2(Ω) ∩H1

0 (Ω)
)
,

lim
h→0

sup
s∈[0,h]

∥[G(w̃)](s)− [G(w̃)](0) + βp[ũ(s)− ũ(0)]∥H1(Ω) = 0,

hence

lim
h→0

∥∥∥E(2)(h, t)
∥∥∥
L2(Ω)×H1(Ω)

= lim
h→0

∥∥∥∥∥ 1h
∫ h

0

{
T (t+ h− s)

(
[G(w̃)](s) + βpũ(s)

0

)}
ds− T (t)

(
G0

0

)∥∥∥∥∥
L2(Ω)×H1(Ω)

= lim
h→0

∥∥∥∥∥T (t) 1h
∫ h

0

{
T (h− s)

(
[G(w̃)](s)−G(w̃0) + βp(ũ(s)− ũ0)

0

)}
ds

∥∥∥∥∥
L2(Ω)×H1(Ω)

≤ lim
h→0

M0

∥∥∥∥∥ 1h
∫ h

0

{
T (h− s)

(
[G(w̃)](s)−G(w̃0) + βp(ũ(s)− ũ0)

0

)}
ds

∥∥∥∥∥
L2(Ω)×H1(Ω)

≤ lim
h→0

M2
0

h

h
sup

s∈[0,h]

∥[G(w̃)](s)−G(w̃0) + βp(ũ(s)− ũ0)∥L2(Ω)

= lim
h→0

M2
0 sup

s∈[0,h]

∥[G(w̃)](s)− [G(w̃)](0) + βp(ũ(s)− ũ(0))∥H1(Ω) := lim
h→0

Λ2(h) = 0.
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Define GD(t, h) := [G(w̃)] (t+ h)− [G(w̃)] (t)− [G′(w̃)] (t) · [w̃(t+ h)− w̃(t)],

E
(3)
1 (h, t) :=

∫ t

0

T (t− s)

(
1
hGD(s, h)

0

)
ds,

E
(3)
2 (h, t) :=

∫ t

0

T (t− s)

(
[G′(w̃)](s)

{
1
h{w̃(s+ h)− w̃(s)} − q̃(s)

}
0

)
ds,

E
(3)
3 (h, t) :=

∫ t

0

T (t− s)

(
βp
{

1
h [ũ(s+ h)− ũ(s)]− ũ′(s)

}
0

)
ds.

We then write
E(3)(h, t) = E

(3)
1 (h, t) + E

(3)
2 (h, t) + E

(3)
3 (h, t).

As ũ ∈ C ([0, T ];BH2 (ũ0, r))∩C1
(
[0, T ];L2(Ω)

)
is given such that the time derivative ũ′(t) ∈ L2(Ω)

is uniformly continuous for all t ∈ [0, T ], we obtain∥∥∥E(3)
3 (h, t)

∥∥∥
L2(Ω)×H1(Ω)

=

∥∥∥∥∫ t

0

T (t− s)

(
βp
{

1
h [ũ(s+ h)− ũ(s)]− ũ′(s)

}
0

)
ds

∥∥∥∥
L2(Ω)×H1(Ω)

≤T0M0βp sup
0≤t<t+h≤T

∥∥∥∥ ũ(t+ h)− ũ(t)

h
− ũ′(t)

∥∥∥∥
L2(Ω)

=T0M0βp sup
0≤t≤t+σh≤T

0≤σ≤1

∥∥∥∥ 1h
∫ 1

0

d

dσ
[ũ′(t+ σh)] dσ − ũ′(t)

∥∥∥∥
L2(Ω)

=T0M0βp sup
0≤t≤t+σh≤T

0≤σ≤1

∥ũ′(t+ σh)− ũ′(t)∥L2(Ω) := Λ3(h) → 0, as h→ 0.

The bound (A.14) of Fréchet derivative G′ (w̃) from Lemma A.4 implies∥∥∥E(3)
2 (h, t)

∥∥∥
L2(Ω)×H1(Ω)

≤M0LG

∫ t

0

∥E(h, s)∥L2(Ω)×H1(Ω) ds.

Notice that GD(t, h) ∈ H1(Ω). By the estimate (3.13) of Corollary 3.4 and the inequality (A.15) of
Lemma A.4, the function w̃ is Lipschitz continuous with respect to t ∈ [0, T ] and G′(w̃) is uniformly
continuous with respect to t ∈ [0, T ]. Employing these facts gives∥∥∥E(3)

1 (h, t)
∥∥∥
L2(Ω)×H1(Ω)

=T0M0 sup
0≤t≤t+τh≤T

0≤τ≤1

1

h

∥∥∥∥∫ 1

0

[G′(w̃)] (t+ τh)− [G′(w̃)] (t)dτ · [w̃(t+ h)− w̃(t)]

∥∥∥∥
H1(Ω)

≤T0M0
LV h

h
sup

0≤t≤t+τh≤T
0≤τ≤1

∥∥∥∥∫ 1

0

[G′(w̃)] (t+ τh)− [G′(w̃)] (t)dτ

∥∥∥∥
B(H1

0 (Ω))

=T0M0LV sup
0≤t≤t+τh≤T

0≤τ≤1

∥[G′(w̃)] (t+ τh)− [G′(w̃)] (t)∥B(H1
0 (Ω)) := Λ4(h) → 0, as h→ 0.

Summing up, we have shown

∥E(h, t)∥L2(Ω)×H1(Ω) ≤ Λ1(h) + Λ2(h) + Λ3(h) + Λ4(h) +M0LG

∫ t

0

∥E(h, s)∥L2(Ω)×H1(Ω) ds.

Gronwall’s inequality thus implies the inequality

∥E(h, t)∥L2(Ω)×H2(Ω) ≤ (Λ1(h) + Λ2(h) + Λ3(h) + Λ4(h)) e
tM0LG

for t ∈ [0, T ]. Letting h → 0+, we then deduce that the (ṽ, w̃) is differentiable from the right
and the right derivative of (ṽ, w̃) coincides with (p̃, q̃). Because (p̃, q̃) is continuous on [0, T ], by
using Lemma 2.3, we conclude (ṽ, w̃) ∈ C1

(
[0, T ];L2(Ω)×H1

0 (Ω)
)
. Since the function ũ is given
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in C ([0, T ];BH2 (ũ0, r)) ∩ C1([0, T ];L2(Ω)), then (G (w̃) + βpũ, 0) ∈ C1
(
[0, T ];L2(Ω)×H1

0 (Ω)
)
. By

Lemma 2.2, the mild solution (ṽ, w̃), defined by (3.12), uniquely solves the semilinear evolution
equation (3.11) on [0, T ]; (ṽ, w̃) is a unique strict solution of (3.11) with

(ṽ, w̃) ∈ C
(
[0, T ];H1

0 (Ω)×
{
H2(Ω) ∩H1

0 (Ω)
})

∩ C1
(
[0, T ];L2(Ω)×H1

0 (Ω)
)

for all T ∈ (0, T0).
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