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Abstract

Solutions to the Dirichlet problem for the fractional Laplacian in a polygonal, two-dimensional
domain exhibit singularities at edges and corners. This article considers their approximation
by hp versions of the finite element method. On geometrically graded meshes the error in
the energy norm is shown to converge exponentially fast with increasing number of degrees of
freedom. Quasi-optimal convergence rates are obtained on quasi-uniform meshes. Numerical
experiments confirm the theoretical results. They illustrate the expected convergence rates
for the hp version on quasi-uniform meshes and the exponential convergence on geometrically
graded meshes.

1 Introduction

Solutions to elliptic differential boundary value problems in polyhedral domains exhibit sin-
gularities in a neighborhood of the corners and edges. Numerical approximations by finite or
boundary element methods take into account the nonsmooth behavior with local mesh refine-
ments or higher polynomial degrees to recover optimal convergence rates. The resulting h, p
and hp methods have been studied for several decades, see e.g. [43] for finite elements and [33]
for boundary elements.

Nonlocal boundary value problems for fractional Laplacians [10, 31] and their numerical
approximations [2, 1, 9, 4, 7, 21, 30] have attracted much recent interest. Applications of the
integral fractional Laplacian (—A)® arise from the pricing of stock options [50], image pro-
cessing [25] and continuum mechanics [16] to the movement of biological organisms [19, 20]
and the design of swarm robotic systems [17, 18].

In this article we consider the model fractional Dirichlet problem in a polygonal domain
Q CR?for s € (0,1),
(=AYu=f inQ,

N (1)
u=0 nQ°=R"\N

with s € (0,1). For s = 1 one recovers the classical Dirichlet problem for the Laplacian in €,
for s = 1 the hypersingular integral equation on the flat screen Q x {0} C R? [30].
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The singularities of the solution of (1) at non-smooth boundary points of the domain 2
reduce the order of convergence for the h and p versions of the finite element method. Graded
meshes and hp versions are known to lead to efficient approximations for elliptic differential
boundary value problems.

We exploit recent regularity results for the solution of (1) from [21] and [28] for an error
analysis of the hp version on quasi-uniform and on geometrically graded meshes. Using that
the solution to (1) belongs to the countably normed space Bj(f?) (introduced by Babuska
and Guo [32]), see Definition 4.3, we obtain exponential convergence for the approximation
on geometrically graded meshes:

Theorem A. Let s € (0,1), u € H*(Q) be a solution to (1) with right hand side f € C>(Q)
and uny be the hp finite element approzimation on a geometrically graded mesh. Assume that
for somed>1 and all k >0

> 0% fllzagy < AR

|| =k

Then u € Bé (Q) and

)

_ 1/4
||u - uthf[s(Q) Se oN

where C' is independent of number of degrees of freedom N .

See [23] for related estimates on a certain class of triangular meshes, without numerical
examples. We also obtain quasi-optimal convergence rates on quasi-uniform meshes:

Theorem B. Let s € (0,1), u € ﬁé(Q) be a solution to (1) with [ sufficiently smooth, and
Upyp be the hp finite element approzimation on a quasi-uniform mesh. Then there exists 5 € Ny
such that

_ —1\\B
[ = unpll s () < Cn2p~" (1 +log(ph™))".

The assertion of Theorem A may be found in Proposition 4.5 and Corollary 4.6 below,
Theorem B as Corollary 4.2.

Extensive numerical experiments in Section 8 for the h, p and hp versions confirm these the-
oretical results. They illustrate the exponential convergence on geometrically graded meshes
and also obtain the predicted convergence rates on quasi-uniform meshes.

The p and hp approximations of elliptic equations in polyhedral domains and their op-
timal rates of convergence have been studied for several decades for finite element methods
[6, 5, 14, 15] and boundary element methods [45, 44, 8, 35, 27, 43]. Related to this work ex-
ponential convergence of the hp version for boundary element methods has been investigated
in [36, 34, 37]. For the fractional Laplacian, recent works develop the theory in 1D [3] and hp
methods for the spectral and integral fractional Laplacians [7, 21, 22, 24, 39].

The article is organized as follows: After introducing the Dirichlet problem for the fractional
Laplacian in Section 2, we report in Section 3 from [26, 28] detailed regularity results describing
the behavior of the solution near corners and edges. In Section 4 we present our approxima-
tion results for the hp version on quasi-uniform (Subsection 4.1) and on geometrically graded
meshes (Subsection 4.2). The results in Section 3 are used to show the convergence estimates
for the hp version on quasi-uniform meshes in Section 5. To obtain exponentially fast con-
vergence for the hp version on geometrically graded meshes we use the recent results by [21]
together with the framework of the countably normed space B}3 [32]. In Section 6 we present
our proof of the exponential convergence based on separate treatment of the corner element,
the edge elements and the elements away from the boundary on a tensor product mesh. In
Section 7 the implementation of the methods is described, and in Section 8 numerical results



are presented.

Notation: We write f < g provided there exists a constant C' such that f < Cg. If the
constant C' is allowed to depend on a parameter o, we write f <, g.

2 Setup

We recall basic definitions and properties related to Sobolev spaces of non-integer order and
to the fractional Laplacian. For further details we refer to [13].

Let Q@ C R™ be a bounded Lipschitz domain, and for s € Ny, H*(Q) the Sobolev space of
functions in L?(Q) whose distributional derivatives of order s belong to L?(£2). For s € (0, c0),
we write m = |s] and o = s —m and define the Sobolev space H*(f2) as

H*(Q) ={ve H™(Q) : |0%|ge () <00 Y]a| =m} .

Here | - |go () is the Aronszajn-Slobodeckij seminorm

(v))?
V%o dy dz.
| |H Q) = //QXQ |:c— |n+20

H*(Q) is a Hilbert space endowed with the norm

||U||%1s(n) = HU”%IM(Q) + Z |3av|§16(9)-

|a]=m
Particularly relevant for this article is the space
H*(Q) = {ve H*(R") : supp v C O}

of distributions whose extension by 0 belongs to H*(R™).

We recall that when Q is Lipschitz and 1 # s € (0,1), H H* () coincides with the space
H§(€2), which is the closure of C§°(92) with respect to the H*® norm. Moreover, for s € (0, 1),
Hs(Q) = H(Q) = H§(Q). All three spaces differ when s = 3.

For negative s the Sobolev spaces are defined by duality.

The following result will be useful to obtain estimates in €2 from estimates on subdomains.
It is stated in Theorem A.10 in [46] and originally in [41].

_ ko __
Lemma 2.1. Let Q, Q; (j = 1,...,k) be Lipschitz domains with Q = |J Q;. Then for all
i=1
€ [-1,1] and all v € H*(Q)

x>

ol q) < Z lvl%. q, (2)

For s € (0,1), we define the fractional Laplacian of a Schwartz function v on R™ by

<_A)su($> =cp,s P.V. M dy = cp,s lim Mufg) dy, (3)
ge [T —y["+2s =0+ Jre\B. (2) |T — Y[

where P.V. denotes the Cauchy principal value and B.(z) the n-dimensional ball of radius
€ > 0 centered at X. The normalization constant ¢, s is defined in terms of I' functions:

2s +2

’ w2l (1 —s)
Equivalently, the fractional Laplacian may be defined in terms of the Fourier transform on
R™ as F((—A)%u) = |£|?*Fu. This expression extends (—A)® to an unbounded operator on

L?(R™). It also shows that (—A)* is an operator of order 2s and that for s = 1 one recovers
the ordinary Laplace operator.



2.1 Dirichlet problem for fractional Laplacian in a domain

In this subsection we recall the fractional Laplace problem with Dirichlet boundary conditions
and the corresponding weak formulation. Let Q C R™ be a bounded Lipschitz domain and
f € L*(Q) . The weak formulation of the Dirichlet problem for the fractional Laplacian (1)

involves the bilinear form a on H*(Q),

o= ] LA !

where D = (R x Q) U (2 x R™).
Note that formally

a(u,v) = ((—=A)°u,v) gs(mny — //QCXQC (@) —|7;(y);(|:i$2)s —v(v) dy dx,

when u, v € H*(R™), and the second term vanishes on H*(€2). The weak form of (1) therefore
reads as follows:

Find u € H*(Q) such that
a(u,v) = (f,v) (5)
for all v e H5().
One verifies that a is continuous and elliptic in ﬁs(ﬂ): There exist C,, a > 0 with
a(u,0) < Cillul o gy ol ey 3(0,w) = alfuly. g

By Lax-Milgram, the weak form (5) admits a unique solution, and the solution operator f — u
extends to an isomorphism from H~%(Q2) to H*(1).

3 Regularity theory

CLla>

Figure 1: Geometry of the extension problem in the upper half space.

X eRn

In this section we summarize the conclusions from [26, 28]: The solution to the fractional
Laplace equation with Dirichlet boundary conditions near the boundary admits a decomposi-
tion into edge, corner and edge-corner singularities, plus a remainder which is smooth. Such
a decomposition allows us to derive quasi-optimal convergence rates for the hp version on
quasi-uniform meshes.

Following [10] for R™, resp. [26] for 2, we introduce a boundary value problem for a
degenerate partial differential operator in the half space R™ x R :; which is equivalent to (1):

LU(X, 1) = oV - (°VU(X, 1)) = U + - 28,0 + Axu, (©)




X e R

Figure 2: Model geometry for straight boundary.

with o = 1 — 2s. Here (X,t) € R” x R;. Including the boundary conditions the model
problem (1) is equivalent to:

LU(z,y,t) =0 inR" xRy
U(z,y,00=0 in Q¢ x {0} (7)
— lim t*0U(x,y,t) = f inQ x {0}.
t—0+
See Figure 1 for a depiction of the geometry of this boundary value problem when n = 2.
We first consider the behaviour of v near a point on an edge of 02 away from any corner.
The model problem for edge singularities is given by the half space @ = R, x R"~! with
coordinates X = (x,y), depicted in Figure 2. For the behaviour of solutions near a general
smooth boundary see for example [26, 31]. For s = 1/2 see also [48].
We introduce cylindrical coordinates (z,y,t) = (psin(f),y, pcos(f)) in the half-space R™ x
R . Near a point on 912, the solution U to the extended problem (7) then admits an expansion
of the form

Ul(p,0,y) ZPVJUEJ 0,y), (8)

up to a smooth remainder [26, 28]. Here for every y, . ;(0,y) is a generalized eigenfunction
for a spectral problem for the operator

P, =05 + (1 —2s) cot(0) 9y

on the halfcircle S} ~ (0, 7). The spectral problem is given by

Pop = —A2p for6 € (0, ),
elg(r)l 0%0gp =0 for6 =0, (9)
=0 forf =,

where the singular exponents v and the eigenvalues —\? are related by \? = 12 + (1 — 2s)v.
One can explicitly compute . ;(0,y) = c(y) P (cos(9)) sin®(w), where P; denotes the associ-
ated Legendre function of the first kind, and one obtains v; = s + j.

Similarly, the model geometry to describe the solution U to the extended problem (7) near
a corner point with opening angle x is given by Q = {(r,¢,0 = ) : 7 > 0,9 € (0,x)}, see
Figure 3. The solution admits an expansion in spherical coordinates (r,6, ) of the form

7“ 0390 ZZT g 10g uc,jk(07@)7 (10)

j k=0

up to a smooth remainder. Here 4. ;i are the generalized eigenfunctions for a spectral problem
for the operator
Dy U = AQ’LPU — (1 —2s) tan(@)an. (11)
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Figure 3: Model geometry for a corner with the opening angle .

on 53_ with mixed boundary conditions:
Dypti=—p’dt inS*NR% =53

1—2s
lim (g _ 9) Byt =0, forp e (0,y), (12)

e
0—%

=0 fore¢ (0,x), 0 =m/2.
The relation between the eigenvalues p and the corner exponents A is given by

1 =22+ (2 - 2s)\. (13)
The eigenfunctions . j of (12) are not smooth, but exhibit singularities as 6 — 7,
because of the mixed boundary conditions and the singular behavior of the first-order term
(1—2s) tan(#)dp in the operator Dy ,. We first discuss the local behavior near (0, ) = (7,0),
where the boundary conditions jump. The discussion equally applies to the local behavior
near (0,¢) = (5,x). For ¢ € {0, x}, the trace of @; on the equator § = 7 is smooth, and the
corresponding singularities of the solution U to the extended problem (7) are not relevant to

the solution w of the fractional boundary value problem.
To understand the behavior around (6, ¢) = (%,0), we introduce polar coordinates (g,w),

T

5 0 = psin(w), ¢ = gcos(w) , (14)
The operator Ag , coincides with the operator L, in the half-space from (6) to leading order,
i.e. up to terms which vanish at 9o = 0 and do not affect the singular exponents, see Figure 4 for
illustration. Lower-order terms are due to the curvature of Si. We conclude that near o =0

also the eigenfunctions 4. ji of Dy, admit an expansion with the exponents u,i\/[ ¥ =54k, so
that
Qe ji ~ Zac,jk,lmg”l log(0)™ Pf(cos(w)) sin® (w) . (15)

lm
The solution to the original fractional problem (1) is given by the trace of the solution U

to (7) at 0 = T, u(r,p) = U(r, 5,¢). When ¢ is strictly between 0 and ¥, the trace of the

eigenfunction 4., jx (5, ) is smooth, and the asymptotic expansion (10) takes the form

N
U(T’ 4,0) ~ ZZT)\j 10g<7‘)kﬁc7jk(g,@)7 (16)

j k=0

with A; from (13). We now translate back from (r,¢) to (z,y) in this region, using r =
Va2 +9y? and ¢ = tan~!(y/x), the latter of which is here a smooth function of x and .
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Figure 4: Model geometry near the change of boundary conditions. Highlighted region near
(0,¢) = (7/2,0) (left) and zoomed in (right) with local polar coordinates (p,w).

Therefore with Uc’jk(x, y) obtained from 1. ;i by change of coordinates,

N;
u(@,y) ~ S5 Uil y) (@ + 42 2 log(a? + y*)F . (17)
i k=0

The behavior at the boundaries ¢ = 0 and ¢ = x is analogous, and we only discuss the
edge-vertex singularities for ¢ = 0. There

M,
dojk ~ Y Y dijrimeo™ ' log (o)™ Py (cos(w)) sin® (w) .

I m=1

The trace u at § = Z corresponds to ¢ ~ ¢ and w = 0 (see Figure 4), so that

2
~ M, ~
UC,jk(ga ‘/7) ~ Zl Zml:1 Ujk,lm</7$+l 10g(§0)m

near ¢ = 0. Here the @ are the expansion coefficients of . ;x(5, ¢) at ¢ = 0. Therefore
in this region

u(r, @) ~ > Tk umr™ log(r)F ot log ()™ . (18)
jiedom

Translating from spherical coordinates (r, ¢, ) at @ = 7 back to (x,y) = (r cos(y) sin(), r cos() cos(6)),
we expand sin(y) and cos(yp) into a Taylor series at ¢ = 0 to see

(7]‘)Z 2i+1 (71)1 21
y~w+rz(7<p LT~y e

i |
i>0 20 + 1>' i>0

or up to higher order terms
re~x, p~y/lx.

We conclude that in Cartesian coordinates near ¢ = 0, i.e. y = 0, u has an expansion of the
form

w@,y) ~ > Vjkama™ Ty log(a)* log(y)™ . (19)
.k, l,m



Analogously, we can proceed for edge singularities. We summarize this discussion in the follow-
ing theorem, which is shown in [28]. Related results for the weakly singular or hypersingular
operators can be found in [42, 40].

Theorem 3.1 ([28]). Let u € H*(Q) be the solution to (1) for f € C=(Q) in a polygonal
domain Q C R2. Then in polar coordinates in a neighborhood of each vertez of Q

u(r,p) ~vo+ > Ujkamr™ log(r)F o log(p)™ (20)
7,k,l,m

where vy is a sufficiently smooth remainder, UWj i, from (18) and \; as in (13). In Cartesian
coordinates, this corresponds to a vertex singularity

Nj
w(y) ~vo+ 303 Uinle,y) (@2 + 52/ og(a® + y?)* (21)
j k=0

away from the edge p =0, i.e. y =0, where vg is a sufficiently smooth remainder.
The edge-vertex singularity near ¢ =0, i.e. y = 0, is of the form

u(x,y) ~ vo + Z Vit ima ™ 5y log (x)F log ()™, (22)
Jik,bm

where vy is a sufficiently smooth remainder and vji 1 from (19).
Away from the vertex, in a neighborhood of the edge at o =0, i.e. y =0,

U/(‘r7 y) ~ vy + Z ’ajk(x)yg-‘rj IOg(y)k ) (23)
7.k

where vy is a sufficiently smooth remainder and u;j, is obtained from (8).

The logarithms in the expansions only occur for integer singular exponents or for sin-
gular exponents corresponding to multiple eigenvalues. Note that the smooth remainder v,
represents a different function in each of the expansions.

The explicit asymptotics in Theorem 3.1 provide a detailed description of the solution near
edges and corners, going beyond e.g. the weighted Sobolev estimates available in [21].

The above theorem addressed the local behavior of the solution near an edge or corner
point. The global structure of the solution in a polygonal domain 2 then follows from Theorem
3.1 by combining these local descriptions, yielding Theorem 3.2 below.

To state the result, let V, E denote the sets of vertices and edges, respectively, of Q). Denote
by E(v) the set of edges connected to the vertex v € V.

Theorem 3.2 (|28]). For sufficiently smooth f the solution of (1) has the form:

u:ureg—&—Zue—l—Zu”—i—Z Z u®’, (24)

e€EE veV veV e€E(v)
where using local coordinate systems (ry,0,) and (x.,,T.,) with origin at v, there exists the
following representation:
1. The regular part uyeg € H* for some k > s.
2. The edge singularities u® of the form

me—1 k;
ut = > D05 (zer) log meal© | 223X (wer) X5 (we2) (25)
j=0 \ k=0

where me, k5 are integers. Here, x1,x5 are C™ cut-off functions where x{ = 1 away
from the endpoints and zero at the end points. Furthermore, x5 = 1 for 0 < z., < .
and zero for xc, > 20¢ for dc € (0,1/2). The functions bS5, x7 € H™(e) for arbitrarily
large m.



3. The vertex singularities u* of the form

v
ny 9

v v v k )\1) v
u =X (rv) Z Z By, |10g Tv| Ty Wi ((91,) ) (26)

i=1 k=0

where A, > X! > max{0,s — £} as in (13), n,,q’ > 0 are integers, and B}, are real
numbers. The C* cut-off function x* =1 for 0 <r, <7, and x* =0 for r, > 27, with
Ty € (O, %) The functions wy, € HY(0,w,) for arbitrarily large q. Further w, denotes
the interior angle between the edges at v.

4. The edge-vertex singularities u® of the form
u® = uf’ 4+ us’, (27)

where

Me—1 Ny k; a  k

- A—s—j st
uf' =y DD Bifuo logaa ™ log ol | @it al X (r) X (6)

=0 i=1 \ k=0 t=0 =0

(28)

me—1 k]e‘
ug’ = > "B (ry) log meal" w337 N" (1) X (8) (29)

j=0 k=0

and
k
ev ev l

L (ro) = Y By () log | (30)

=0

Here g7, k5, A7, x" are as above, Bfﬁw are real numbers, and x° is a C* cut-off
unction with x° = 1 for 0 < 0, < B, and X = 0 for 38, < 0, < w, with
2

By € (0, min {w,/2,7/8}]. The functions B, can be chosen so that

B;g (Tv) X" (Tv) X (ev) = Xjo (Te1, $e2) X5 (Te2) 5 (31)

where the extension of x;, by zero on Ri lies in Hm(Ri) for m arbitrarily large.

Figure 5: Diagram of the local coordinates near a vertex v and edge e.

4 Approximation results

For the numerical approximation, without loss of generality we assume that (2 has a polygonal
boundary. Let 7;, be a family of triangulations of  and V, C H*(Q), the associated space of



Figure 6: Examples of quasi—uniform meshes for a square and an L-shaped domain.

continuous piecewise polynomial functions of degree p on 7, vanishing at the boundary, with
p=1
The discretized problem is solved on quasi-uniform triangulations 7; of Q as in Figure 6.
We also consider geometrically graded quadrilateral meshes 9 on 2. To define them on
an interval 2 = [0,2] and with a refinement parameter o € (0,1/2], in the subintervall [0, 1]
we let ¢ = 0,
xy = oV TIH (32)

for k =1,..., N, and we specify corresponding nodes in [1, 2] by symmetry. For the hp version
the polynomial degree p increases linearly from 0Q: p = pk in [zg, 2x41] for a given p > 0.
We denote the corresponding space of piecewise polynomial functions by Sp,. The nodes of
the geometrically graded mesh on a square are again given by (xx, ye), for k,/ =1,..., N, and
by symmetry extended to the whole square.

Examples of geometrically graded meshes with o = 0.5, respectively o = 0.17, are depicted in
Figure 7 for a square and in Figure 8 for an L-shaped domain. For a polygonal domain one
defines a geometrically graded mesh by including a small number of triangles in the interior
and near the edges, but not in the corners, see Figure 9. More precisely, first note that every
polygonal domain can be decomposed into triangles. We divide each of these triangles F' into
three parallelograms and three triangles where each parallelogram lies in a corner of F' and
each triangle lies at an edge of F' away from the corners. By linear transformations we can
transform the parallelograms on a reference square @ = [0,1]? such that the vertices of F
are transformed to (0,0). The triangles can be transformed by a linear transformation ¢; on
the reference triangle Q= {(z,y) € Q|y < x} such that the corner point of the triangle in
the interior of the face F' is transformed to (1,1) of the reference triangle. The geometric
mesh and appropriate polynomial function spaces are defined on the reference element Q.
Analogously the geometric mesh can be defined on the reference triangle Q (see Figure 9).
Via the linear transformations above, the geometric mesh is also defined on the polyhedron.
The approximation on the reference square is the more interesting case because it handles the
corner-edge singularities. Therefore we deal in this paper only with the approximation on the
reference square.

4.1 Approximation results on quasi-uniform meshes

The discretized problem on a quasi-uniform mesh is given in terms of the bilinear form in (4):

Find uy, € gfhp, such that for all vy, € @hp

a(unp, vnp) = (f, vnp)r2(02) -

By coercivity, there exists a unique solution uyy, the Galerkin approximation to u.

10



Figure 7: Examples of geometrically graded meshes with ¢ = 0.5 and 0.17 for the square.

Figure 8: Examples of geometrically graded meshes with ¢ = 0.5 and 0.17 for an L—shaped
domain.

Figure 9: Graded mesh on triangle.
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We adapt the analysis of Bespalov and Heuer [8], for the singular expansion from Theorem
3.2 above. Details are given in Section 5.

Theorem 4.1. Let u € H*(Q) be a solution to (1) and II,pu the best approzimation in @hp
on a quasi-uniform mesh Ty, in the H*(Q) norm. Then there exists 8 € Ng such that

_ —1\\B
lu =Tyt . ) < CHY?p~" (1+log(ph™"))" .
By Cea’s Lemma this theorem implies a corresponding estimate for the error of the finite
element solution:
Corollary 4.2. Let u € H*(Q) be a solution to (1) and Upp € YN/hp the hp finite element
approximation on a quasi-uniform mesh T;,. Then there exists 5 € Ng such that

_ —1\\ B
flu — uhp”f]s(g) < Chl/QP ! (1 + log(ph 1)) .

4.2 Approximation results on geometrically graded meshes

Let Qj be a mesh for , consisting of M rectangular elements 7, and R boundary edges
e, € Q. Let X : Q@ — T, be an affine transformation from a reference element @ = [0, 1]
to the element 7, € Qp and x, : ¢ — e, be an affine transformation from a reference edge
e = [0,1] to the boundary edge e, € 0Qy,. Furthermore, let 31|, (z) := k1 (Xt (z)) and let
p = (p1, P2, ..., pum) be a vector of polynomial pairs p,, = (Pm,zy,> Pm,z,) associated with
an element 7, for all elements in Q. The hp version on a geometrically graded mesh uses
the mesh and degree distribution described at the beginning of this section.

_ The hp version on a geometrically graded mesh Q) then uses the finite element subspace
Shp C H*(2) given by

ghp = {u € H*(Q) : u continuous, ul,, € PPm=1Pme2 Y7, c Ty},

The discretization of the weak formulation of (1) is then given in terms of the bilinear
form in (4):

Find upy € ghp, such that for all vy, € ghp

a(unp, vnp) = (f, vnp)r2(02) -
By coercivity, there exists a unique solution up, € §hp, the Galerkin approximation to u.
In order to state Theorem 4.4 below, we next introduce a scale of weighted Sobolev spaces

and an associated countably normed space. On the reference element @ = [0,1]? the weight
function ®g o1 is given by

-’Lﬁ+a1_1 for a; > 1,as =0
Dg (ar,a0)1 = § 2P Trlyoz 4 poyfroa=l for oy > 1,00 > 1 (33)
yPtez—1 for a; = 0,0 > 1.

Definition 4.3. a) Let k > 1. A function u € L?(2) belongs to the weighted Sobolev space
Hgl(Q) if ®5.4,10% € L*(Q) for all 1 < |a| < k.

b) We say that u belongs to the countably normed space Bj(Q) if u € (5, Hgl(Q) and
there exist C,d > 1 such that for all ¥ > 1 and all |a| = &: B

1@ 5,0,10%l| r2(0) < Cd* ' (k —1)!

12



Theorem 4.4. Let Q) be a polygonal domain, U € B}j(Q) with 8 € (0,1) and I, U € ghp the
best approximation to U with respect to the ﬁS(Q) norm. Then

_ 1/4
U — HhPU”E{S(Q) Se N,

where C' is independent of N.

In the approximation arguments we regularly restrict to a rectangular reference element
Q = [0,1]2, as described in the introduction to this Section 4. From Figure 9, the discretiza-
tion in a general polygonal domain requires additional triangles in the interior and at the
edges, away from the vertices. The corresponding approximation properties in these elements
are easier, as they do not involve the edge-vertex behavior; see the discussion at the beginning
around Figure 9 above.

We use Theorem 2.1 from [21] to show:

Proposition 4.5. Let u € H*(Q) to (1) with right hand side f € C*(Q). Assume that for
somed>1 and all k>0

> 0% fllzai) < AR
|| =k

Then u € BE(9).

Proof. The proof follows by interpreting the results from [21]. Following this reference, we
define e-neighborhoods at an edge e, at a vertex v, respectively at e and v:

wy = {z € Q: dist(x,v) < e and dist(z, 0N) > edist(z,v)},
wye = {x € Q : dist(z,v) < € and dist(z, e) < edist(x,v)},
we = {x € Q: dist(z,e) < £ and dist(z,e) > e V vertices e}.

Estimates near edge: We consider the definitions of HEI(Q) and ®g (4, a,),1 in a strip we at
the z-axis. In w, the weight function @3 (4, a,),1 i equivalent to the local weight function

We

@ﬁ,‘(al,aq),l (SU, y) = yﬁ‘i'otz*l'

We observe by choosing 5 = % —s+e¢, a1 =p), ag =p, that
_ 1
ly"+ 21031 02 ull 12w,y = IlyP* 2 08 0y ull 2 -

Similarly, in an edge-vertex neighborhood w,. the weight function @3 (4, a,),1 is equivalent to
the local weight function
We

(I)ﬁ,(al,ag)yl(xv y) =T

provided a1, as > 1. Now we observe with 5 = % —s+e¢, a1 =p), az = p, that

ay, B+az—1
)

Y

ety ? e o0 Oy ul| 2, = Py 2000 | o, .

Hence the result from [23] implies that in a neighborhood Q of the edges u € Bj (Q) if and only
ifue Hgl(Q) forall k > 1 and [|®g,0,1 D%l 12(5) < Cd*='(k—1D!forall || =k=1,2,...,
where C,d > 1 are constants which are independent of k. This follows from

195,01 D% 22(w,) + 198,01 D%l [2(0,.) < Cd* (k= 1)1 .

Estimates near corner: To describe the solution in the vertex neighborhood w, we use the
weighted Sobolev space Hg’l(Q), which consists of all u € L?(Q) such that || ®g o1 DYul|12(g) <
oo for all 0 < |a| < k. Here D = 9270 and

i)B,a,l = T6+O‘T_1(sin(9) sin(w — g))(6+a9—1)+7
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with (a)4 = max{a,0}. Define Q = [0,w]s x [0, R],. In w, = [01,62]s x [0, R] C Q we define

Dy (a,.ag)1 = r oI

Again we take 8 = § — s+ ¢ and observe for o, = 1, ap = 0 with 9, = 29, + %9, =

cos(0)0,, + sin(0)0, that for ay + ap =1
||7‘ﬁ+ar_18f“839u|\Lz(wv) = ||7"58TuHLz(wv) = ||rﬁ(cos(9)6w +sin(0) 0y )ull 2w, )

< ||7”B+a“_18§1332u||m(%) _ Hrlal—%—sﬂa;xl8;2uHL2(wv)_

Consider now a, = 1, ap = 1 and note that dpu = ﬁl(w)((x—i—y cos(w))0y — (z cos(w) +y) 0z )u.
Then we obtain similarly

I+ (sin(0)) 7077 0 | L2 )

= ||r5+1(cos(9)3z + sin(6)0y) ((z + ycos(w))9y, — (zcos(w) + ¥)0z)ul L2 (w,)

o
sin(w)

< NP1 0,0 ul L2,y = 11T E 2921 002 2

The result follows for all a.., g by induction.

The argument in w,. combines the arguments in w, and we.

Now we observe from [38] that Bj in Cartesian coordinates is equivalent to Bj in polar
coordinates. Hence Theorem 2.1 in [21] gives u € BE(Q) - this is what we need for our
approximation analysis. O

Corollary 4.6. Let Q) be a polygonal domain, u € E[S(Q) be a solution to (1) with right hand

side f € C*>(Q) and Upy € ghp be the finite element approzimation on a geometrically graded
mesh. Assume that for some d > 1 and all k >0

Z 10° fll 2y < d*T1ER.

|| =k

Then »
[l — uthﬁs(Q) Se N,

where C' is independent of number of degrees of freedom N .

In the numerical experiments below we observe that for sufficiently large N the numerical

. . . _CoNV/A

error of the hp version on geometrically graded meshes behaves like ||u7uhp||ﬁs(m e ONTT
as predicted by Corollary 4.6.

5 Proof of approximation results on quasi-uniform meshes

We now discuss the proof of Theorem 4.1 from Subsection 4.1. We use the notation of Theo-
rem 3.2.

Edge-vertex singularities. Let e € E be the edge of Q2 with neighbouring vertices v, w. Let
A, be the union of all elements at the edge e. We denote by ¢, and £,, the edges of 0A, such
that £, Ne = {v} and £, Né = {w}.

Let us consider the cut-off functions x¥ and x*¥ which appear in the expressions for the edge-
vertex singularities u{¥ and u5”. We take the supports of these cut-off functions as follows:

1 1
supp x* C [0, 27,] with 0 < 7, < min {4 dist{v, w}, 2}
(34)

3 . . 1 1 T
supp x¥ C {O, 2,81}} with 0 < 8, < min {200, 3w 8}

14



where 6 is the minimal angle of the triangles 75, in the mesh 7;,. Then u$” and u§" vanish
outside the sector S = {(ry,0,);0 <1, < 27,,0 < 6, < 28, }, in particular, u{’ = u§’ = 0 on
Ly Ul

Lemma 5.1. Let u = u{’ be the edge-vertex singular function as in Theorem 3.2. Then there
exists up, € VP (Q) with p > X\ = AV such that

||’LL - uhp”f]s(g) < Chl/Zp_l (1 + IOg(p/h))ﬂ_'_V ,

where, with the notation from Theorem 3.2,

v 1 ; v __ A€ 1 1
ﬂ{q1+s+2 ifAY =75 — 3 ’V{

ifPZS—Q

1
2
g7 + s otherwise 0  otherwise

The proof is a straight-forward extension of Theorem 5.1 in [8] to Sobolev exponent s,
using the singular functions from the expansion of the solution given in Theorem 3.2. Details
can be found in [47].

Lemma 5.2. Let u = uS§¥ be the edge-vertex singular function as in Theorem 3.2. Then there
exists up, € VP(Q) with p > s — % such that

= wnpll oy < CHY2p™" (1 + Log(p/m)**

where 8 = s{ € Ng, v :% if p= s—% and v = 0 otherwise.

Again the proof is a straight-forward extension of Theorem 5.2 in [8] to Sobolev exponent s,
using the singular functions from the expansion of the solution given in Theorem 3.2. Details
can be found in [47].

Remark 5.3. Note that since the cut—off functions in u$” can be rewritten by using (31), we
can apply Lemma 5.2 to obtain estimates for the edge singular functions u°®.

Vertex singularities. Now we approximate the vertex singularities v” as in Theorem 3.2.
Let v € V be a vertex of Q.

Lemma 5.4, Let u = u” be the vertex singularity function as in Theorem 3.2. Then there
exists up, € VP(Q) with p > X such that

[ = wnpl| oy < CPAMop™2OH=9) (1 4 log(p/h))*+

where A =AY > 0, B = qf € N, VZ% if p= X and v = 0 otherwise.

The proof is a straight-forward extension of Theorem 6.1 in [8] to Sobolev exponent s,
using the singular functions from the expansion of the solution given in Theorem 3.2. Details
can be found in [47].

Edge singularities. As stated in Remark 5.3 estimates for the edge singularities u® can be

derived in the same way as for u$”. Thus we only state the result for the edge singularities
below.

Lemma 5.5. Let u = u® be the edge singular function as in Theorem 3.2. Then there exists
upp € VP(Q) with p > s — % such that

=ty 1oy < CHY2p" (1 + log(p/R)**

where 8 = s{ € Ng, v :% ifp= s—% and v = 0 otherwise.

15



The proof is a straight-forward extension of Theorem 6.2 in [8] to Sobolev exponent s,
using the singular functions from the expansion of the solution given in Theorem 3.2. Details
can be found in [47].

Regular part. We finally review results for the approximation of the regular remainder.
For this it suffices to recall the approximation result for sufficiently smooth functions from [8,
Proposition 4.1].

Lemma 5.6. Let u € H™(Q) N HY(Q) with m > 1. Then there eists Upp € VhP(Q) such
that for s € [0,1]

= wungll oy < CH=*="= [l gy (35)

where = min{m,p + 1} and

1/2 s€[0,1/2)
§=31/24¢ s=1/2 (36)
s s e (1/2,1).

6 Proof of approximation results on geometrically graded
meshes

6.1 Piecewise polynomial approximation in weighted Sobolev spaces

We now discuss the proof of Theorem 4.4 in Subsection 4.2.
We first recall from [12] the spaces H5(Q), 5 € [0,1): u € H§(Q) if u € L,.(Q), for all
laf = [t]
rlel=tgoy e L*(Q),

and, if 7 =t — [t] € (0,1), for all |o| = [t] the function %‘?ﬁ(y) belongs to L?(Q x Q).

We say that u € HL(Q) if rfu € HE(Q), where r denotes the distance to the boundary.
We will need the expression for the norm of Hj(Q):

s ) = 17" Hullzi) + D 10° (0P w)llFaq)-

|a]=1

Lemma 6.1. Let s € (0,1). Then for all u € H_(Q),

lull ooy S Ml @) S Ir*ullpag) + D 7' °0%ullL2(q)-

la]=1

Proof. First note that H*(Q) = H§(Q) by Theorem AA.7 in [12], so that we need to show
lullmg@) < llullm (q)- The inequality [[ull 7. g < lullu; (@) now follows directly from
the dyadic characterization of Hj-norms, Lemma AA.24 in [12], applied to (¢, 3) = (s,0) and
(1,1 —s).

The remaining estimate, [lul/g:

the expression for the norm of H é(Q), when 8 =1 — s, and the triangle inequality. O

@ = lr=ull L2y + Z|a\:1 ||r1_36°‘u||L2(Q), follows from

Approximation near the edge:

Lemma 6.2. Let Q1 = [a1,b1] X [0,h], and u € H;*l(Ql). Define
N
ap(z,y) = u(z, h) — (1 - E) /0 O u(zx, z)dz.
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Then
ly* (u(,y) = an(z. )z S BNl g2,
ly™*0n (ua, ) = i, 9) 22 S 5P ullz g
ly' =8y (u(e,y) = an(e.v) 2@ <0 Pllul g2,

Proof. For the first estimate, note that

[ [t - oy a

-/ s ( / O, 2) — D, z))dz) Cyd

<[ [ [ e -t s ay
B o f )
<t [ () [ o) oo

For a fixed € > 0 sufficiently small, we observe
2

1 b1 h h h B B z 9
—B—¢ +e
ﬁ/ / z/ (/ w w /8qu(x,q)dq dw) dz dx
b1

hl 23—2¢ h 2542 > , 2
o h2 / 1 — 26 26/ ( " aqu(x,Q)dq> dw dz da?7

yielding (with a constant C' depending on ¢)
Iy~ (u(z, y) — @n (2, y))ll72q,) < O3 2ﬁllUlle PRY

The proof of the second estimate in the Lemma is analogous, and we now prove the
remaining, third estimate:

by h
/ / y2=2 (Byu(e, y) — Byan (z, ))?dy da

2
by
/ / <8uxy—/8uxy) )dydx
by ph 1 [h oy 2
:/ / y */ / D2 u(x,w)dw dz | dy dx.
ai 0 h 0 z
Next, we observe

h y 2 p1—28—2¢ h y 2
/ L—Be B / P u(z,w)dw dz | < ———— / 2Pt / Otu(z,w)dw | dz.
0 B 1—-28—2¢ J, ;

Furthermore

[ (] o

h
e ) / (w02 u(z, w))” duw.

< (26(2ﬁ+25+1) + 1+25 (y 281211 2 .
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Therefore we obtain

by
// y* 2 Oyula, ) = By () Pdy do < CH22 "l g

We further obtain near the corner the following two lemmas:
Lemma 6.3. For u € Hg’l([O,hP) and (z,y) € [0,h]?* consider Iyu(h,y) = u(h,h) — (1 —
) foh 0.u(h, z)dz. Then there holds:

™% (ulh,y) = Lyulh, ) 2o S 077 full s o)
ly* =0y % (uh, y) = Lyu(hs y)l 2oz S 0 lull o o ey
et =20, 5 (u(h, y) = Lyuh, )=o) S AP llull g1 o ey

Proof. We only show the second estimate. The first and third estimate are shown in an

analogous, simpler way.
Note that with the definition of Iyu(h,y),

=0y & (ulh, ) — Lyulh, y)I22 0 n2) /%/2% (u(h,y) — Tyu(h,y)))* dy de

:/ ﬁ—z/y <8uhy /8uhz z) dy dzx.
0 0

We use Lemma 7.7 in [38] to estimate the inner integral:

h h
/ Y <8 u(h,y) / . u(h, z)d > dy < h272572ﬂ/ (yH'Basu(h,y))z dy.
o 0

It remains to adapt the proof of Lemma 7.11 in [38]:
ly* =20y 5 (uh, y) = Tyu(h, y)) 17z 0 12)

h h
os 2
<K 25/0 %3/0 (y**P0%u(h,y))” dyda

2

h h h
:h2725725/0 %2/0 y?r28 (/ 628§u(z,y)d2’+3iu($,y)> dy dx

h ok
S h272872ﬁ/ / (a;u(l‘,y))2dy dx

o Jo
2
h h h
+h2—2s—2ﬁ/ %2/ y2+20 (/ azaiu(z,y)dz> dy dx
0 0 T

h h
e 2
Sh? 25/ / (Ou(z,y))” dy dx
4 B2 213/ / 243 dx/ 2+2f*/ (0.0%u(z,y))’ dz dy.

Due to fo £ f 772dz dx = §, we conclude the proof

Iy =9, (ulhey) = Lyulhe ) qongey S B2l g e
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Approximation near the corner:

Lemma 6.4. For u € Hé’l([O, h]?) and (x,y) € [0, h)?, define

_ _ z Y
@ (2,9) = u(z,y) + 5 2ulh, b) = Fulh,y) = Lule,h)

and
h—zh-—y

P (2,y) = 7

bo-
Here, ¢o = 0 if uljo1]x {0} or ul{oyx[0,1] = 0, and ¢ = fo fo x,y)dx dy otherwise. Then

ly~* (uP (2, y) — " (x,9)) | L2 ((o,n12) S h17575||u|\H§=1([0,h]2),
Iy 20y (u” (z,y) — 6" (2, 1)l 2 0.n12) S hl_s_ﬁ”uHHz’l([O,h]Z)’

2= 0, (uP (2, y) = 6" (2, 9)) |l L2 0.2y S hl_S_ﬁ””HH;’l([O,h]?)'

Proof. We estimate
1 h h h
/ / y =2 (uP — ¢P)’dy dw:/ / y 2 (P (2, y) — " (2, y) — (WP (h,y) — 67 (h,y))) dy da
0 0 0 0
h h h
- / | v [ 0P ) 0P eazay de

/ / ‘”/ D(z,y) — P (z,y)))  dz dy do

gC’h2 2522812289, (uP — )||L2([o,h]2)

For the remaining estimate, we observe

8E(UD_¢D)
;yamu(x —fi/auzydz—f/ﬁauxz
1lh—y 1lh—y
+*7/ / 88wuzwdwdz+ff/ Ou(zx, z)d R u(x,y)-FE - ®o.

We consider the following term. The others are estimated in a similar way.
h rh
1h—
//;v < y/auzy >dydx
< h2/ / / 2ﬁd,z/ 2(9,u(x, 2))dz dy da

SChQ_QS_Z’B/ / (2P0, u(x, 2))%dz dy.
o Jo

This yields

5128 (uP = 6P) 3oy < CH 2 ullaa g,

and therefore

lu® — 6713

(02 <Ch2 Zs— 2ﬁ||u||Hzl Q)"
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Next we recall three results from [38].

Lemma 6.5. Let u € Hg’l(Q), Q =1[0,1]%, 0 < B < 1/2. Then for all (x1,22), (y1,%2) € Q
there holds

I P R el

|y1 2
<
< 1—28 min(zy,y1)'~# + min(zs, y2)1—F Hu||H§’1(Q) (37)

|U($1,$2) - U(y17y2)

which implies Hé’l(Q) C CYQ).

Theorem 6.6. Let Q1 = (a1,b1) x (0,hs) C Q = [0,1]? with hy = b1 —a; < M\ag, Ay >0 and
ay > 0. Foru e H§+2’1(Q) (0 < B < 1) with weight function g o1(z,y) in (38) there exists
a polynomial ¢ € Pr, 1(Q1) with 1 < ki <k, such that for 0 < |a| = aq + ag < 1 there holds

1D (@n, — O)172(01)

B B o F(k‘l s+ 1) A 2(s1+1—o1)
< O g2 2(1-p) h2(1 2—8) M 2 38
< Cay ™ (ay the )F(kl +s1+3—2a1) \ 2 |u|Hﬁ1+211(Q) (38)
and for z =0 or z = hy
185 (buns (2, 2) — $(a, D) F2(ay )
o _ _ Dk —s14+1) (A )
< Ch 1 20 (h2(1 8) 2(1 6)) — 2 s .
s Chyay 2t T(ky + 51 +3— 2a;) \ 2 ullgz21g)
Here we take
v\ [
Upy (z,y) = ulx,be) — (1 - h) O u(x,z)dz (39)
2 az

Here s1 € R, arbitrary, 1 < s1 < k1. and H21+2’1(Q) is the interpolation space (H§1+1’1(Q),H§1+2’1(Q))91m
for integers l~€1 =s51+1—-0, <k, 0<60, <1. The constant C is independent of k, but de-

pendents on \1. Furthermore ¢ = u on the vertices of Q1 and the tangential derivative of ¢

on the edges of Q1 is the L?-projection of the tangential derivative of u.

Theorem 6.7. Let Ql = (al,bl) X (ag,bg) CcC Q with hy = by —a; < a1, hog = by —ag <

Aoas, A\ >0, (1=1,2), and u € H§+3’1(Q) with @5 o1(z,y) as in (33). Then there exists a
polynomial ¢ € Py, 1, (Q1) with 2 < ki, ko <k, such that for 0 < ay,as <1 there holds

2 2s;
ceep) —van. Tlki—si+1) (AP
af,, 2 < 2(1 a;—p) 203 i i i 2
1D%(w = )lIz2(qy) < CZM a; Ui T+ s +3—2a;) \ 2 Wz )

(40)
where s; € Ri 1< <ki(i=1,2) and H§i+3’2(Q) is the interpolation space (H§i+2’1(Q), ngs'?”l(Q))@i,Oo
for integers k; = s; +1—0; < k;, 0<8; <1 and C is independent of k, but depends on \;
(i =1,2). Furthermore ¢ = u on the vertices of Q1.

6.2 Exponentially fast convergence: Proof of Theorem 4.4

Due to Lemma 6.5 we have u € C°(Q), therefore the point evaluation of u(z,y) is possible.
Let 0 < 8 < 1/2. Let I, be the linear interpolation operator with respect to the variable
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y on the interval [0, h;]. We split u into u + u® +u® + uP according to

u(,y) if (z,y) € [h1,1]%,
ILyu(z,y) if (z,y) € [h1,1] x [0, hq],
Lou(z,y) if (x,y) € [0, hq] x [h1,1],

e Lyu(hy,y) + hlh%xh%u((),hl) if (z,y) € [0, h1]?,
0 if (z,y) € [0,1] x [hq,1],
u(z,y) — Iyu(z,y) if (z,y) € [h1,1] x [0, ha],
rulhi,y) — 5 Lyu(hey)  if (zy) € [0, ha]?,
0 if (z,y) € [h1,1] x [0,1],
u(z,y) — Lyu(x,y) if (x,y) € [0, h1] x [h1,1],
u(z, h) — - Lyu(z, ) if (z,y) € [0, hq)?,
( y) + 35 bu(h, ) — Eulhe,y) = uz, b)) o if (2,y) € 0,7,

(z,v) .
0 otherwise.

We will construct the approximation function ¢ € SP'1(Q") approximating u by construct-
ing approximations ¢, ¢¥, o€, ¢ € SP1(Q") which are approximating u?, u”, u, u” such

that ¢ = ¢4 + @8 + ¢ + o,

6.2.1 Construction of ¢4

First we note that u and u* are identical on [hy, 1]?, therefore also ¢ and ¢ will be identical
on [hy,1]%. We define

r hi — hi—zy 2
hi,h — h - h h 41
) 0+ M Vo) o o m (4

A :L,
o7 (z,y) = h1
and we have (u? — ¢A)|[0’h1]2 =0.

Due to Theorem 6.6 we get polynomials g1 € Pp,1(Rr1) on the strip {(z,y) : h1 <z <
1,0 < y < hy} along the edge, which coincide at the corner points with « and which fulfill
(for suitable sy)

1D (u? = 1) 72 sy

B F(pk — s+ 1) A 2(sp+1—aq)
< 201/ 2(1-B) h2(1 az—f) 2 2 ) 42
<Cz. 79 (CBk 1 0+ )F(pk+8k+3_2a1) B |U‘ku+2,1(Q) (42)

Due to Theorem 6.7 we get polynomials ¢ € Pp,p, (Rkr) with 1 < s <ppand 0 < aq, 0 <1
for the inner elements Ry, (2 < k,l <n):

2Sk
-1 o |'U/|2 sp+3,1
F(pk—FSk +3—20[1) 2 Hﬁ (Q)

28]
2(1-01-6) ;202 L(p—s1+1) A )
+x T — |u|H;l+3’l(Q) .

T — 1
||Da(u—wkl)”L2 (Rit) <C< (1—a1— ﬁ)x—Qag (pk: Sk + ) ()\

PLT(pr 4 st 43— 202) \ 2
(43)

For the construction of a continuous ¢(z,y) € SP(Q?) we have to investigate the jumps of
Yy from Ry to its neighboring elements. Let 1 < k < n —1,1 <1 < n. Then 9¥; and
¥r+1, coincide with u(x,y) at the points (x,y) = (z,2;) and (zg,z;—1). The difference
Wy = (Yrg1,0 — wk,l)H,:l vanishes at the endpoints of the common side v}, = {xx} x [z;-1, 2]
of Ry and Ry11,. Wy, is a polynomial of degree < p; in y. Due to Lemma 7.5 in [38] there
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is a polynomial wy,; of degree p; in y and of degree 1 in x such that for z;_; < y < x
we have wi;(z,y) = Wp,;(y). The polynomial w}, vanishes at the other sides of Ry;. For
0<a;+ax<1

”Daw;;l(mvy)HQLQ(Rkl) (44)
< C (2 0y () 3 o,
<O (B0, (b = wlagy + 10, Wrina = wlagg)  49)

Analogously we have @y, = (Y41, — 1/Jk,l)‘w,‘;l at the common side vy, = [zr_1, 2] x {21} of
Ry and Ry 1191 and ¢¥p411(1 < k <n —1) coincide with u(z,y) at the endpoints of the
common side. By construction 1 and 41,1 are linear in y, i.e. there is no jump between
Y11 and Yg41,1- The same result holds for ¢1; and 1 ;11(1 <1 < n —1). Therefore we have
wp; =0for1<k<n—-landw =0for1 <I<n-1.

x3 R 41
R Tkl &2,

To 15 ,@DT

1131 12| fig - el .
Rl Ray | Rsy kil k+1,1
ry To T3 1 v

Figure 10: Mesh near corner (left) and element-to-element interfaces (right)

Letfor 1<k, l<n-1
g = Vrg + wiy + wiy- (46)

Due to construction we have at the common side v}, = x X [2;-1, %] of Ry and Ry, for
1<k<n—-1,1<I<n

(Drr10= k) |yr, = (WDrg 10—+ Wiy — Wiy +wWhy  —why)

ap = (W= e —wp )|y, = 0.

(47)
Analogously we have on the common side v, = [xg—1, Zx] X &; of Rg 41 and Ry for 1 < k <
n,1<l<n-1

(Dk,1+1=Pk,0) lvg, = (Vk1 =k 1w o =W TWE 1 —wi) lye, = Wk —Yra—wi ) lp, = 0.

Therefore there is a continuous function ¢ with @|g,, = ¢k, i.e. ¢ € SP1(Q?) and, using
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Lemma 2.1,

1D (u? = N7y = Z 1D (u? = b — wiy — w172 (myy
k=1
n n—1 n n n—1
<3 Z ||Da( - ¢kl)||%2(3kl) +3 Z Z ||Daw£l\|%2(3kl) + 32 Z IID“wzzllizmM)
k=1 k=1 1=2 k=2 I=1
<3 ) D = r) 172y
k=1
n—1 n
—2a; 1 2(1—2c
+ O3S P TR (0, (w0t — )32 ey + 10y (0 = 1))
k=1 1=2
n n—1
2(1—« —2x
+ OIS TR (0, (= ) 32 p,) F 1000t = Yrai) [Fage)- (49)
k=2 1=1

In the following we estimate the terms on the side 7¢;. The terms on 7, can be estimated
analogously. For 2 < k., < n we have

hi(lfal)hll—QOQ ||81(UA — wkl)“zLQ(’YEl)
< ORI R0 (0, — ) By + 1908y (0 — ) 2

= C (B0 R 22 0u (w0 = ) B,y + VR 000, (0t = b))
(50)

Therefore using Theorem 6.7 and hy = Axg_1, we get
2(l—« —2x
B Bl 200, (ut — wmniwl)

T 28y

2(170[1) —2as 2(1 1— ﬂ) (pk‘ Sk 1) )\ 2

< _ | — s

i K ( Tk T (p + sk +1) \ 2 |u|Hsk+3'1(Q)

2
+ 2 2(1 0— ﬂ) -2 F(pl_3l+1) A . |’U,‘2 van
1T+ s+ 1) \ 2 H' ™ (Q)

28k
2(1ea) p1-20z [ 20-1-0) —o Tk =55 +1) (A 2
+Chk hl ( k 1 l 1F(pk+5k+1) 2 |u|H;k+3’1(Q)

2s
4o 2(1-1— 5) -2 F(pl_3l+1) A l|u‘2 tan
“i-1 TR T 4 s +1) \2 HFTH Q)

25
o (s T s ) NV
- T(pr 4+ sp+1) \ 2 HZF™(Q)
2s
er—?al 2(1 Qaz— 5)F(pl —sit 1,) é l |u|2 s;+3,1 .
ket D(pi+si+1) \ 2 Hg' ™ (@)

23



Hence,

ZZ 2(1 al)hl 20&2”8( —¢kl)||%2("m‘éz)
k=2 1=2

n 28
Z 2102 Dpr — sk +1) (A" uf?
— £ U Tr st 1) \2 LaR(e)

n n 2s;
Cony 21—as—p) L1 —s1+1) (A
s T () gy (D)

=i (pi+s1+1)
The terms in (51) are of the form (43). Due to the symmetry of (51) in k and [, res
«, it is sufficient to investigate the following term

2s
Sy gy Lo st D (N e
k=2 1=2 . T(pr + sk +1) \ 2 H" (@)

p. a; and

for (a1, a2) = (0,0), (1,0) and (0, 1), respectively.
When a1 = ap = 0, we use z;, = ¢ % to obtain

n n

2s
3% a0 M N R
P pk—l—sk—i—l) 2 Hy Q)
Tpr — sk +1) [ A\
_ 52(1-B)(n—1) 2(1-8)(—k+2) k 2
=(n- ZU T(p + s + 1) <2> il s )
When oy =1, as = 0, we similarly have
DS Ut S A e
L 2T s ) \2) e
_ _ D(pp — s, +1) (A
_ 1)g-28(n-1) 2B(—k+2) 2 ,
e kzz D(pe + sk +1) \ 2 Ju HF Q)
When ay =0, ag =1 weuse Y ,a; 2 =Y, 0 2=+ < 5=2(=1) and obtain

iixm 8) —2Fk——3k+1) A\ uf. .
k—1 H;ker'l(Q)

o2 =2 pk + s + 1) 2

(S|t h 2y
> ) s R e (2) e

F(pk Sk + 1) A 25k
< 2(n— 1 2(1-B)(n—1) E 2(1-8)(—k+2) 2
(n 1) o ( T sr 1) |U| ok T3 1( )

25;‘,
_ —28(n—1) Z 2(1—B)(—k+2) P(pe — sk +1) (A 2
== 7 T(p +sp +1) \ 2 |U|HZ’““’1<Q>'

~

Now we are investigating the terms ||, (u? — wkl)H%z(,YG ) for the strips at the edges in (49)
kl
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separately. Using Theorem 6.6, hy = x; and |u|H;k+z,1(Q) < |u|H2k+3,1(Q), we have

21 [e5] (o)
SRR 9, (= )|

k=2

- B T(pe — sk +1) [ A\
< h, 1 aq hl QOLQh 1 2 (h2(1 5) 2(1- ﬁ)) - r @ r 7 — 2 s
Ckzz P T e R e 1) \2 RPNe)

_ F(pk — Sk + 1) A 2ok
<C 201, ,2(1-B—a2) A 2 X
ZI’“ e T \2) Mo

n

2sp
1 B—a1) —2a2r(pk —sp+1) (A 5
E , = | & . ) 9
+OY T Tlprtsnt+1) \2 [ulgsnt01(g) (52)

The terms in (52) are of the form (43), and they are the leading terms in the summation of
(51). Therefore the bounds obtained in (51) equally apply to (52) and (43).

< Cds+2T(sp, + 3).

skp+3,1 .
Due to u € Bj(Q) we have now u € Hﬁ‘“Jr (Q) with |u|H;k+3’1(Q)

Therefore we obtain with ¢ = max(1, \)

2s
202(1 B)(= ’H‘2)F(7’c —setl) (A k |U‘2 spt3,1
F(pk + sk + 1) 2 H/ik (Q)

k=2
T(py — sp + 1) gd 2ext2)
< ZO' (1=P)(—k+2) m F(Sk + 3)2 (53)
On the other hand setting
(1= a)t= (ad 2o
F(a,d) = (EECA) (54)

there holds for s = apy, (see [32])

L(pr — sk +1)

25k +2
od & 2 (=2)40-24+1 b 5
— T 3)*<CF d)P =CF d)?
F(pk+8k+1)< ) (D(sk +3))? (o, od) (a, od)

2

where p, = maxz(2,1 + [u(k — 1)]) for p > 0 (k = 2,...,n). Setting oy = max(1/pk, Wmin);
k=2,...,n, with apin = \/ﬁ, we get that (53) is bounded by
0

> U AERIE (ay, 0d)™ pj. (55)
k=2

Let Fiin := F(aumin, od) and

2(1—p)logo
“ o P o
and let ko be defined by the equation py, = [an] + 1. Then kg is bounded, yielding
o = [tk — 1)) € —— +2. (57)
Therefore we can bound (55) by
ko
S 0D B (1 0l g 3 021D (B e (58)

k=2 k=ko+1
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There holds

2(1-pB)(1—k) ppp 2(1-p) . 2(1-8) i *
— — ko — min - lnnn
o Fr =0 TR <Co (02(1_5)) (59)

and F* < 0?09 due to Fpm < 1 (see (56) and Theorem 5.1 in [32].) Therefore we have

q = % <land >, . q*k® < oco. Hence the series on the right hand side in (58) is
bounded. Altogether this yields the estimates

lut = 6% 172y < O (n— 1)}/ 2600 (60)

lu? = 6| () < C (n— 1) 2o~ 707D (61)

Thus we have by interpolation
Jut = 63y < O (62
for n > ny with a fixed integer ng and with b = —((log ng)/no + (2(1 —s) — 3) log o) > 0. For

the number of degrees of freedom N = dim SP(Q?) we have

n—1 2 2
N = <2+Z(1+mam(2,l+[ui]))) < (2(n+1)+un(n2_1)> <Cn?
i=1

Finally we get
_parl/4
[u = M o) = Ilu? = Moy < Ce™™ 7. (63)

6.2.2 Construction of ¢% and ¢¢

Note that u = u® + u® on [hy,1] x [0, hy], because u® + u” = 0 there. Thus u — ¢ =
ud +uf — (o + ¢B) = u? — ¢ + uP), choosing ¢? = 0. Hence,

1 = Ol ez o) S 1 = & ez ooy + 167 e s <o,
Note that the first term on the right hand side was already treated above. For the second
term we know u? = u(x,y) —I,u(z,y) on [h1,1]x [0, h1]. Therefore, Lemma 6.2 gives together
with Lemma 6.1 that
3_s—8
o s g cto.mnd) S 2 lull g2 gy agxgona)) -
Furthermore, for u”(z,y) = Zu(h1,y) — = Ihu(hy,y) in [0,h]* we find
ly' 8y u®(l22(@) = lly'* 0y || L2011 x 0.0y S hl_s_ﬁlluHHg:l(Q)-
Using (for simplicity, s # 3) the equivalence of |lu — ¢|| 7. and ||u — ¢|| g+, Lemma 2.1 gives,
B 1-s—p8
||u ||1?1s(Q) S hy ||UHH2‘1([h1,1]><[07h1]) :

As hy = 0™, convergence again is exponential.
The corresponding result for u© follows by symmetry.
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6.2.3 Construction of ¢”

Note that on [0, h;]? we have u4 — ¢* = 0 and u? — ¢® = 0 with ¢® = 0. Hence, u — ¢ =
uP — ¢P on [0, h1]?, and Lemma 6.4 together with Lemma 6.1 gives

D_ D 1-s—8), B
lu = @l o.nng) = 14” = 6P e ongzy S h "7 u 12211 (10,012
and using (for simplicity, s # 3) the equivalence of |[u — ¢|| 7. and |Ju — ¢|| = and Lemma 2.1,
1-s—B||, B
llu— ¢||ﬁs(Q) Shi® BHU HH;l([o,hl]Z)-
As hy = 0™, convergence again is exponential.
Finally, note that on [h,1]? we have u = u” and ¢ = ¢*, while u? = u© = v = 0.

Hence u — ¢ = u?* — ¢* on [hy, 1]2.

Combining all the above approximation results, we conclude

_anl/4
lu — ¢Hﬁs(@) S ||UA - ¢A||f1s(Q) + ||UB||f1s(Q) + HuCHF[s(Q) + ||UD - ¢D||f1s(Q) SCe ™

This concludes the proof of Theorem 4.4.

7 Implementation

We briefly address the details of the implementation for the bilinear form a from (4) for the
hp version on quadrilateral elements. The implementation of the A version on quasi-uniform
meshes is discussed in [28, 29].

Let L,(z) be Legendre polynomials over [0, 1] with Lo(z) = 1, Li(z) = 2z — 1 and for
n>2

_2n—1 n—1

L, (x) (2 — 1)Ly (x) — L, _o(x).

Further define integrated Legendre polynomials L, () over [0,1] by Lo(z) = 1 —x, Ly(z) = z
and for n > 2

- 1
Lnf2) = 5=

(Ln(2) = Ln—2())

Note that for n > 2 the integrated Legendre polynomials L, (z) vanish at the endpoints of
[0, 1].
Let SP be the space of polynomials of degree at most p.

On the reference rectangular element @@ = [0,1]? we define the basis functions as tensor
products of the integrated Legendre polynomials L, (z),

ng7l|Q(CU):Ek(SU1)Zl(CE2), ngépru Oglépww

and ¢y (x) = 0 outside @, see for example [49]. Here p,,, ps, are the maximal polynomial
degrees in x; and z» directions, respectively.

Let Qj be a mesh of M rectangular elements 7,, and R boundary edges e, € 9Qy,.
Let X.n : @ — 7, be an affine transformation from a reference element @ = [0,1]? to
the element 7,,, € Qp and x, : ¢ — e, be an affine transformation from a reference edge
e = [0,1] to the boundary edge e, € 0Qy,. Furthermore, let 31|, (z) := k(! (z)) and let
p = (p1, P2, ..., pum) be a vector of polynomial pairs p,, = (Pm,zy, Pm,z,) associated with
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Figure 11: Solution for s = 0.75 and p = 1 in the square domain in Example 8.1.

an element 7, for all elements in Q.

We then implement the bilinear form a associated with the Dirichlet problem for the
integral fractional Laplacian in Sy, C H*(2), the finite element subspace given by

ghp ={ue fIS(Q) : u continuous, ul,, € PPmerPme Ve Tl

Global basis functions are obtained by combining the local basis functions which do not vanish
at the boundaries of the elements.

Entries of the stiffness matrix K are then obtained by combining the entries

nn e [ BRE - SLOD@ELE -0
(CMICH DN — o [2+2s yax
QxQ |z — yl
N L.
2s JJaxaa |z — y[2+2s

The integrals are computed using a composite graded quadrature as discussed in [11]. The
computations are carried out on the quasi-uniform and geometrically graded meshes discussed
in Section 4. Examples of geometrically graded meshes are depicted in Figures 7 and 8.

8 Numerical experiments

In this section all errors are measured in the norm of H 5(Q), i.e. the energy norm.

8.1 hp version on quasi-uniform meshes

Ezample 8.1. We consider the discretization of the Dirichlet problem (1) with f = 1 in the

square domain Q = [-1,1]2 C R? depicted in Figure 6 using quasi-uniform meshes. We
examine fractional exponents s = 1, 3,2, 2. A numerical solution for s = 3 and p = 1 is

shown in Figure 11.

The theoretically predicted convergence rates are confirmed in Figures 12 and 13. Figure 12
examines h—convergence in the energy norm for s = % for different values of polynomial degree
p =1, 2, 3 on quasi—uniform meshes. The observed rates of convergence are approximately
0.5, in agreement with the theoretical approximation results, which predict an approximation
error bounded by h'/2.
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Figure 12: Convergence in h for s = 0.75 and different values of p on quasi—uniform meshes for
Example 8.1.

Next, the convergence with respect to the polynomial degree p is examined in Figure 13 for
different values of s = i, %, %, % on a fixed quasi—uniform mesh with h,,;, = 0.14. Polynomial
degrees up to p = 9 are considered. The observed convergence rates in p are close to 1: —1.01
(s = 1), —0.996 (s = %), —=1.00 (s = 3), —1.01 (s = 7). They agree with the theoretical
approximation results, which predict an approximation error proportional to p—!.

Ezample 8.2. We consider the discretization of the Dirichlet problem (1) with f; = 1, respec-
tively fo = sin(2+4 0.2 (z — y)), in the L-shaped domain Q = [-1,3]?\ [1, 3] C R? depicted
in Figure 7 using quasi-uniform meshes. We examine fractional exponents s = i %, %, 1%. A
numerical solution on a mesh with 3968 elements for s = 0.75 and p = 1 is shown in Figure 14
for fi1, respectively in Figure 15 for fs.

For fi1, the theoretically predicted convergence rates are illustrated in Figures 16 and
18. Figure 16 examines h—convergence in the energy norm for s = % for different values of
polynomial degree p = 1, 2, 3 on quasi—uniform meshes. The observed rate of convergence
is approximately 0.5. Like in Example 8.1 the rates agree with the theoretical expectations.
Figure 17 shows the results of analogous experiments for the right hand side f2, with identical
conclusions as for the right hand side f;.

The convergence with respect to the polynomial degree p is examined in Figure 18 for different
values of s = %, %, %, 1—90 for a fixed quasi—uniform mesh with h = 0.16. Polynomial degrees
up to p = 9 are considered. The observed convergence rates in p are again compatible with
—1.0: —=1.012 (s = §), —1.014 (s = 3), —1.004 (s = 2), —1.017 (s = ). They agree with
the theoretically expected convergence proportional to p~—!. Figure 19 shows the results of
analogous experiments for the right hand side fo, with identical conclusions as for the right

hand side f7.

8.2 hp version on geometrically graded meshes

Ezample 8.3. We consider the discretization of the Dirichlet problem (1) with f = 1 in the
square domain = [—1, 1] C R? depicted in Figure 7 using rectangular geometrically graded
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Figure 13: Convergence in p for different values of s on quasi—uniform meshes in Example 8.1.

Figure 14: Solution for f1, s = 0.75 in the L—shaped domain in Example 8.2.
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Figure 15: Solution for fs, s = 0.75 in the L—shaped domain in Example 8.2.
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Figure 16: Convergence in h for fi, s = 0.75 and different values of p on quasi—uniform meshes in
Example 8.2.
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Figure 17: Convergence in h for fo, s = 0.75 and different values of p on quasi—uniform meshes in
Example 8.2.

31



—e—s5=0.25
—e—:5=0.50
100 F s=0.75 ]
—e—5s=0.90

— — —Ref. slope -1

Error

1 2 3 4 5 6 7 8 910

Figure 18: Convergence in p for f; and different values of s on quasi—uniform meshes in Exam-
ple 8.2.
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Figure 19: Convergence in p for fo and different values of s on quasi—uniform meshes in Exam-
ple 8.2.

meshes with 4 =1, 0.5 and ¢ = 0.5, 0.17. We examine fractional exponents s = 1, %, 2. The
number of degrees of freedom is denoted by N.

Figure 20 depicts the energy error of the hp version on a geometrically graded mesh with
increasing IV for the classical case s = % in Example 8.3. The first plot suggests faster than
algebraic decay by plotting the error as a function of N in logarithmic scales. The second plot
shows that the error as a function of N'/* asymptotically follows a straight line in a semi-
logarithmic scale for all the considered choices of p and o. This suggests that the expected
size of the error is exp(—CN'/4) in all cases.

Figure 21 shows analogous results for s = %, % in the semi-logarithmic scale also for higher
values of N. As for s = % the results asymptotically follow a straight line, suggesting that the
expected size of the error is exp(—CN'/4) in all cases. Note that for all values of s the mesh

grading parameter ¢ = 0.17 leads to the smallest errors.
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Figure 20: Convergence of hp approximations to u with respect to N and N 1/4 for problem (1)
for s = 0.5, Example 8.3.

33



100 ; :
3 —o—pu=10=05
—o—u=0.5,0=0.5
—o—u=0.5,0=0.17
1072 ¢ 1
—
o
=
=
1074 ¢ 3
10-6 L L L L L L L
2 3 4 5 6 7 8 9 10
N1/4
—o—u=10=05>
1071 E —o—n1=0.5,0=0.5
3 —o—u=0.5,0=0.17
5 o402
§10 3 e
£a)
103 ¢ E
1 1 1 1 1 1 1

2 3 4 5 6 7 8 9 10
N1/4

Figure 21: Convergence of hp approximations to u for Problem (1) for s = 0.25, 0.75, Example 8.3.
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Ezample 8.4. We consider the discretization of the Dirichlet problem (1) with f; = 1, respec-
tively fo = sin(2+0.2- (z —y)), in the L-shaped domain = [-1,3]?\ [1, 3]> C R? depicted in
Figure 8 using geometrically graded meshes with 4 =1, 0.5 and o = 0.5, 0.17. We examine
fractional exponents s = i %7 %. The number of degrees of freedom is denoted by V.

For f; = 1, Figure 22 depicts the energy error of the hp version on a geometrically graded
mesh with increasing N in Example 8.4 for different values of s. Like in Example 8.3, the
error asymptotically follows straight lines in the semi-logarithmic plots for all the considered
choices of y and o. Tt is therefore of the expected size exp(—CN'/*). For all values of s the
mesh grading parameter ¢ = 0.17 again leads to the smallest errors.

Analogous results are obtained for fo =sin(2+0.2- (z —y)), as depicted in Figure 23.

9 Conclusions

In this work we initiate the study of p and hp versions of the finite element method for
the integral fractional Laplacian in polygonal domains, combining theoretical analysis with
extensive numerical experiments. Both quasi-uniform and geometrically graded discretizations
are considered.

On quasi-uniform meshes the asymptotic expansion for the solution obtained in [28] near
edges and corners allows us to obtain quasi-optimal estimates for the Galerkin error. In
particular, the energy error of the hp version is O(hl/ 2p~1), and therefore the convergence in
the polynomial degree p is twice as fast as the convergence in the mesh size h.

On a class of geometrically graded, quadrilateral meshes we prove exponentially fast con-
vergence with respect to the number of degrees of freedom, by combining an analytic regularity
result for the solution from [21] with ideas for the approximation in countably normed spaces
based on [38].

The numerical results confirm the theoretically predicted convergence rates on quasi-
uniform and on geometrically graded meshes. They illustrate the performance of the respective
methods.
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