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Abstract

Solutions to the Dirichlet problem for the fractional Laplacian in a polygonal, two-dimensional
domain exhibit singularities at edges and corners. This article considers their approximation
by hp versions of the �nite element method. On geometrically graded meshes the error in
the energy norm is shown to converge exponentially fast with increasing number of degrees of
freedom. Quasi-optimal convergence rates are obtained on quasi-uniform meshes. Numerical
experiments con�rm the theoretical results. They illustrate the expected convergence rates
for the hp version on quasi-uniform meshes and the exponential convergence on geometrically
graded meshes.

1 Introduction

Solutions to elliptic di�erential boundary value problems in polyhedral domains exhibit sin-
gularities in a neighborhood of the corners and edges. Numerical approximations by �nite or
boundary element methods take into account the nonsmooth behavior with local mesh re�ne-
ments or higher polynomial degrees to recover optimal convergence rates. The resulting h, p
and hp methods have been studied for several decades, see e.g. [43] for �nite elements and [33]
for boundary elements.

Nonlocal boundary value problems for fractional Laplacians [10, 31] and their numerical
approximations [2, 1, 9, 4, 7, 21, 30] have attracted much recent interest. Applications of the
integral fractional Laplacian (−∆)s arise from the pricing of stock options [50], image pro-
cessing [25] and continuum mechanics [16] to the movement of biological organisms [19, 20]
and the design of swarm robotic systems [17, 18].

In this article we consider the model fractional Dirichlet problem in a polygonal domain
Ω ⊂ R2 for s ∈ (0, 1),

(−∆)su = f inΩ,

u = 0 inΩc = Rn \ Ω.
(1)

with s ∈ (0, 1). For s = 1 one recovers the classical Dirichlet problem for the Laplacian in Ω,
for s = 1

2 the hypersingular integral equation on the �at screen Ω× {0} ⊂ R3 [30].
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The singularities of the solution of (1) at non-smooth boundary points of the domain Ω
reduce the order of convergence for the h and p versions of the �nite element method. Graded
meshes and hp versions are known to lead to e�cient approximations for elliptic di�erential
boundary value problems.

We exploit recent regularity results for the solution of (1) from [21] and [28] for an error
analysis of the hp version on quasi-uniform and on geometrically graded meshes. Using that
the solution to (1) belongs to the countably normed space B1

β(Ω) (introduced by Babu²ka
and Guo [32]), see De�nition 4.3, we obtain exponential convergence for the approximation
on geometrically graded meshes:

Theorem A. Let s ∈ (0, 1), u ∈ H̃s(Ω) be a solution to (1) with right hand side f ∈ C∞(Ω)
and uhp be the hp �nite element approximation on a geometrically graded mesh. Assume that
for some d ≥ 1 and all k ≥ 0 ∑

|α|=k

∥∂αf∥L2(Ω) ≤ dk+1kk.

Then u ∈ B1
β(Ω) and

∥u− uhp∥H̃s(Ω) ≲ e−CN1/4

,

where C is independent of number of degrees of freedom N .

See [23] for related estimates on a certain class of triangular meshes, without numerical
examples. We also obtain quasi-optimal convergence rates on quasi-uniform meshes:

Theorem B. Let s ∈ (0, 1), u ∈ H̃s(Ω) be a solution to (1) with f su�ciently smooth, and
uhp be the hp �nite element approximation on a quasi-uniform mesh. Then there exists β ∈ N0

such that

∥u− uhp∥H̃s(Ω) ≤ Ch1/2p−1
(
1 + log(ph−1)

)β
.

The assertion of Theorem A may be found in Proposition 4.5 and Corollary 4.6 below,
Theorem B as Corollary 4.2.

Extensive numerical experiments in Section 8 for the h, p and hp versions con�rm these the-
oretical results. They illustrate the exponential convergence on geometrically graded meshes
and also obtain the predicted convergence rates on quasi-uniform meshes.

The p and hp approximations of elliptic equations in polyhedral domains and their op-
timal rates of convergence have been studied for several decades for �nite element methods
[6, 5, 14, 15] and boundary element methods [45, 44, 8, 35, 27, 43]. Related to this work ex-
ponential convergence of the hp version for boundary element methods has been investigated
in [36, 34, 37]. For the fractional Laplacian, recent works develop the theory in 1D [3] and hp
methods for the spectral and integral fractional Laplacians [7, 21, 22, 24, 39].

The article is organized as follows: After introducing the Dirichlet problem for the fractional
Laplacian in Section 2, we report in Section 3 from [26, 28] detailed regularity results describing
the behavior of the solution near corners and edges. In Section 4 we present our approxima-
tion results for the hp version on quasi-uniform (Subsection 4.1) and on geometrically graded
meshes (Subsection 4.2). The results in Section 3 are used to show the convergence estimates
for the hp version on quasi-uniform meshes in Section 5. To obtain exponentially fast con-
vergence for the hp version on geometrically graded meshes we use the recent results by [21]
together with the framework of the countably normed space B1

β [32]. In Section 6 we present
our proof of the exponential convergence based on separate treatment of the corner element,
the edge elements and the elements away from the boundary on a tensor product mesh. In
Section 7 the implementation of the methods is described, and in Section 8 numerical results
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are presented.

Notation: We write f ≲ g provided there exists a constant C such that f ≤ Cg. If the
constant C is allowed to depend on a parameter σ, we write f ≲σ g.

2 Setup

We recall basic de�nitions and properties related to Sobolev spaces of non-integer order and
to the fractional Laplacian. For further details we refer to [13].
Let Ω ⊂ Rn be a bounded Lipschitz domain, and for s ∈ N0, H

s(Ω) the Sobolev space of
functions in L2(Ω) whose distributional derivatives of order s belong to L2(Ω). For s ∈ (0,∞),
we write m = ⌊s⌋ and σ = s−m and de�ne the Sobolev space Hs(Ω) as

Hs(Ω) = {v ∈ Hm(Ω) : |∂αv|Hσ(Ω) <∞ ∀|α| = m} .

Here | · |Hσ(Ω) is the Aronszajn-Slobodeckij seminorm

|v|2Hσ(Ω) =

∫∫
Ω×Ω

(v(x)− v(y))2

|x− y|n+2σ
dy dx.

Hs(Ω) is a Hilbert space endowed with the norm

∥v∥2Hs(Ω) = ∥v∥2Hm(Ω) +
∑

|α|=m

|∂αv|2Hσ(Ω).

Particularly relevant for this article is the space

H̃s(Ω) = {v ∈ Hs(Rn) : supp v ⊂ Ω}

of distributions whose extension by 0 belongs to Hs(Rn).

We recall that when Ω is Lipschitz and 1
2 ̸= s ∈ (0, 1), H̃s(Ω) coincides with the space

Hs
0(Ω), which is the closure of C∞

0 (Ω) with respect to the Hs norm. Moreover, for s ∈ (0, 12 ),

H̃s(Ω) = Hs(Ω) = Hs
0(Ω). All three spaces di�er when s =

1
2 .

For negative s the Sobolev spaces are de�ned by duality.
The following result will be useful to obtain estimates in Ω from estimates on subdomains.

It is stated in Theorem A.10 in [46] and originally in [41].

Lemma 2.1. Let Ω, Ωj (j = 1, . . . , k) be Lipschitz domains with Ω =
k⋃

j=1

Ωj. Then for all

s ∈ [−1, 1] and all v ∈ H̃s(Ω)

∥v∥2
H̃s(Ω)

≤
k∑

j=1

∥v∥2
H̃s(Ωj)

. (2)

For s ∈ (0, 1), we de�ne the fractional Laplacian of a Schwartz function u on Rn by

(−∆)su(x) = cn,s P.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy = cn,s lim

ε→0+

∫
Rn\Bε(x)

u(x)− u(y)

|x− y|n+2s
dy , (3)

where P.V. denotes the Cauchy principal value and Bε(x) the n-dimensional ball of radius
ε > 0 centered at X. The normalization constant cn,s is de�ned in terms of Γ functions:

cn,s =
22ssΓ

(
n+2s

2

)
π

n
2 Γ (1− s)

.

Equivalently, the fractional Laplacian may be de�ned in terms of the Fourier transform on
Rn as F((−∆)su) = |ξ|2sFu. This expression extends (−∆)s to an unbounded operator on
L2(Rn). It also shows that (−∆)s is an operator of order 2s and that for s = 1 one recovers
the ordinary Laplace operator.
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2.1 Dirichlet problem for fractional Laplacian in a domain

In this subsection we recall the fractional Laplace problem with Dirichlet boundary conditions
and the corresponding weak formulation. Let Ω ⊂ Rn be a bounded Lipschitz domain and
f ∈ L2(Ω) . The weak formulation of the Dirichlet problem for the fractional Laplacian (1)

involves the bilinear form a on H̃s(Ω),

a(u, v) =
cn,s
2

∫∫
D

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dy dx , (4)

where D = (Rn × Ω) ∪ (Ω× Rn).
Note that formally

a(u, v) = ⟨(−∆)su, v⟩Hs(Rn) −
∫∫

Ωc×Ωc

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dy dx,

when u, v ∈ Hs(Rn), and the second term vanishes on H̃s(Ω). The weak form of (1) therefore
reads as follows:

Find u ∈ H̃s(Ω) such that
a(u, v) = ⟨f, v⟩ (5)

for all v ∈ H̃s(Ω).

One veri�es that a is continuous and elliptic in H̃s(Ω): There exist Ca, α > 0 with

a(u, v) ≤ Ca∥u∥H̃s(Ω)∥v∥H̃s(Ω), a(u, u) ≥ α∥u∥2
H̃s(Ω)

.

By Lax-Milgram, the weak form (5) admits a unique solution, and the solution operator f 7→ u

extends to an isomorphism from H−s(Ω) to H̃s(Ω).

3 Regularity theory

Ω

X 2 R
n

t

Figure 1: Geometry of the extension problem in the upper half space.

In this section we summarize the conclusions from [26, 28]: The solution to the fractional
Laplace equation with Dirichlet boundary conditions near the boundary admits a decomposi-
tion into edge, corner and edge-corner singularities, plus a remainder which is smooth. Such
a decomposition allows us to derive quasi-optimal convergence rates for the hp version on
quasi-uniform meshes.

Following [10] for Rn, resp. [26] for Ω, we introduce a boundary value problem for a
degenerate partial di�erential operator in the half space Rn ×R+:, which is equivalent to (1):

LsU(X, t) := t−α∇ · (tα∇U(X, t)) = ∂2tU +
1− 2s

t
∂tU +∆Xu, (6)
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Figure 2: Model geometry for straight boundary.

with α = 1 − 2s. Here (X, t) ∈ Rn × R+. Including the boundary conditions the model
problem (1) is equivalent to:

LsU(x, y, t) = 0 in Rn × R+

U(x, y, 0) = 0 in ΩC × {0}
− lim

t→0+
tα∂tU(x, y, t) = f in Ω× {0}.

(7)

See Figure 1 for a depiction of the geometry of this boundary value problem when n = 2.
We �rst consider the behaviour of u near a point on an edge of ∂Ω away from any corner.

The model problem for edge singularities is given by the half space Ω = R+ × Rn−1 with
coordinates X = (x, y), depicted in Figure 2. For the behaviour of solutions near a general
smooth boundary see for example [26, 31]. For s = 1/2 see also [48].

We introduce cylindrical coordinates (x, y, t) = (ρ sin(θ), y, ρ cos(θ)) in the half-space Rn×
R+. Near a point on ∂Ω, the solution U to the extended problem (7) then admits an expansion
of the form

U(ρ, θ, y) ∼
∑
j

ρνj ûe,j(θ, y), (8)

up to a smooth remainder [26, 28]. Here for every y, ûe,j(θ, y) is a generalized eigenfunction
for a spectral problem for the operator

Ps = ∂2θ + (1− 2s) cot(θ)∂θ

on the halfcircle S1
+ ≃ (0, π). The spectral problem is given by

Psφ = −λ2φ for θ ∈ (0, π),

lim
θ→0+

θα∂θφ = 0 for θ = 0,

φ = 0 for θ = π,

(9)

where the singular exponents ν and the eigenvalues −λ2 are related by λ2 = ν2 + (1 − 2s)ν.
One can explicitly compute ûe,j(θ, y) = c(y)P s

j (cos(θ)) sin
s(ω), where P s

j denotes the associ-
ated Legendre function of the �rst kind, and one obtains νj = s+ j.

Similarly, the model geometry to describe the solution U to the extended problem (7) near
a corner point with opening angle χ is given by Ω = {(r, φ, θ = π

2 ) : r > 0, φ ∈ (0, χ)}, see
Figure 3. The solution admits an expansion in spherical coordinates (r, θ, φ) of the form

U(r, θ, φ) ∼
∑
j

Nj∑
k=0

rλj log(r)kûc,jk(θ, φ), (10)

up to a smooth remainder. Here ûc,jk are the generalized eigenfunctions for a spectral problem
for the operator

Dθ,φU := ∆θ,φU − (1− 2s) tan(θ)∂θU. (11)
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Figure 3: Model geometry for a corner with the opening angle χ.

on S2
+ with mixed boundary conditions:

Dθ,φ û = −µ2 û in S2 ∩ R3
+ = S2

+

lim
θ→π

2

(π
2
− θ
)1−2s

∂θ û = 0, for φ ∈ (0, χ),

û = 0 for φ /∈ (0, χ), θ = π/2.

(12)

The relation between the eigenvalues µ and the corner exponents λ is given by

µ2 = λ2 + (2− 2s)λ. (13)

The eigenfunctions ûc,jk of (12) are not smooth, but exhibit singularities as θ → π
2 ,

because of the mixed boundary conditions and the singular behavior of the �rst-order term
(1−2s) tan(θ)∂θ in the operator Dθ,φ. We �rst discuss the local behavior near (θ, φ) = (π2 , 0),
where the boundary conditions jump. The discussion equally applies to the local behavior
near (θ, φ) = (π2 , χ). For φ ̸∈ {0, χ}, the trace of ûj on the equator θ = π

2 is smooth, and the
corresponding singularities of the solution U to the extended problem (7) are not relevant to
the solution u of the fractional boundary value problem.

To understand the behavior around (θ, φ) = (π2 , 0), we introduce polar coordinates (ϱ, ω),

π

2
− θ = ϱ sin(ω), φ = ϱ cos(ω) , (14)

The operator ∆θ,φ coincides with the operator Ls in the half-space from (6) to leading order,
i.e. up to terms which vanish at ϱ = 0 and do not a�ect the singular exponents, see Figure 4 for
illustration. Lower-order terms are due to the curvature of S2

+. We conclude that near ϱ = 0

also the eigenfunctions ûc,jk of Dθ,φ admit an expansion with the exponents νM,s
k = s+ k, so

that
ûc,jk ∼

∑
l,m

ûc,jk,lmϱ
s+l log(ϱ)mP s

l (cos(ω)) sin
s(ω) . (15)

The solution to the original fractional problem (1) is given by the trace of the solution U
to (7) at θ = π

2 , u(r, φ) = U(r, π2 , φ). When φ is strictly between 0 and χ, the trace of the
eigenfunction ûc,jk(

π
2 , φ) is smooth, and the asymptotic expansion (10) takes the form

u(r, φ) ∼
∑
j

Nj∑
k=0

rλj log(r)kûc,jk(
π
2 , φ), (16)

with λj from (13). We now translate back from (r, φ) to (x, y) in this region, using r =√
x2 + y2 and φ = tan−1(y/x), the latter of which is here a smooth function of x and y.
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Figure 4: Model geometry near the change of boundary conditions. Highlighted region near

(θ, φ) = (π/2, 0) (left) and zoomed in (right) with local polar coordinates (ρ, ω).

Therefore with Ûc,jk(x, y) obtained from ûc,jk by change of coordinates,

u(x, y) ∼
∑
j

Nj∑
k=0

Ûc,jk(x, y) (x
2 + y2)λj/2 log(x2 + y2)k . (17)

The behavior at the boundaries φ = 0 and φ = χ is analogous, and we only discuss the
edge-vertex singularities for φ = 0. There

ûc,jk ∼
∑
l

Ml∑
m=1

ûjk,lmϱ
s+l log(ϱ)mP s

l (cos(ω)) sin
s(ω) .

The trace u at θ = π
2 corresponds to ϱ ∼ φ and ω = 0 (see Figure 4), so that

ûc,jk(
π
2 , φ) ∼

∑
l

∑Ml

m=1 ũjk,lmφ
s+l log(φ)m

near φ = 0. Here the ũjk,lm are the expansion coe�cients of ûc,jk(
π
2 , φ) at φ = 0. Therefore

in this region

u(r, φ) ∼
∑

j,k,l,m

ũjk,lmr
λj log(r)kφs+l log(φ)m . (18)

Translating from spherical coordinates (r, φ, θ) at θ = π
2 back to (x, y) = (r cos(φ) sin(θ), r cos(φ) cos(θ)),

we expand sin(φ) and cos(φ) into a Taylor series at φ = 0 to see

y ∼ rφ+ r
∑
i>0

(−1)i

(2i+ 1)!
φ2i+1, x ∼ r + r

∑
i>0

(−1)i

(2i)!
φ2i ,

or up to higher order terms
r ∼ x, φ ∼ y/x .

We conclude that in Cartesian coordinates near φ = 0, i.e. y = 0, u has an expansion of the
form

u(x, y) ∼
∑

j,k,l,m

vjk,lmx
λj−s−lys+l log(x)k log(y)m . (19)
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Analogously, we can proceed for edge singularities. We summarize this discussion in the follow-
ing theorem, which is shown in [28]. Related results for the weakly singular or hypersingular
operators can be found in [42, 40].

Theorem 3.1 ([28]). Let u ∈ H̃s(Ω) be the solution to (1) for f ∈ C∞(Ω) in a polygonal
domain Ω ⊂ R2. Then in polar coordinates in a neighborhood of each vertex of Ω

u(r, φ) ∼ v0 +
∑

j,k,l,m

ũjk,lmr
λj log(r)kφs+l log(φ)m , (20)

where v0 is a su�ciently smooth remainder, ũjk,lm from (18) and λj as in (13). In Cartesian
coordinates, this corresponds to a vertex singularity

u(x, y) ∼ v0 +
∑
j

Nj∑
k=0

Ûjk(x, y) (x
2 + y2)λj/2 log(x2 + y2)k (21)

away from the edge φ = 0, i.e. y = 0, where v0 is a su�ciently smooth remainder.
The edge-vertex singularity near φ = 0, i.e. y = 0, is of the form

u(x, y) ∼ v0 +
∑

j,k,l,m

vjk,lmx
λj−s−lys+l log(x)k log(y)m, (22)

where v0 is a su�ciently smooth remainder and vjk,lm from (19).
Away from the vertex, in a neighborhood of the edge at φ = 0, i.e. y = 0,

u(x, y) ∼ v0 +
∑
j,k

ūjk(x)y
s+j log(y)k , (23)

where v0 is a su�ciently smooth remainder and ūjk is obtained from (8).

The logarithms in the expansions only occur for integer singular exponents or for sin-
gular exponents corresponding to multiple eigenvalues. Note that the smooth remainder v0
represents a di�erent function in each of the expansions.

The explicit asymptotics in Theorem 3.1 provide a detailed description of the solution near
edges and corners, going beyond e.g. the weighted Sobolev estimates available in [21].

The above theorem addressed the local behavior of the solution near an edge or corner
point. The global structure of the solution in a polygonal domain Ω then follows from Theorem
3.1 by combining these local descriptions, yielding Theorem 3.2 below.

To state the result, let V,E denote the sets of vertices and edges, respectively, of Ω. Denote
by E(v) the set of edges connected to the vertex v ∈ V .

Theorem 3.2 ([28]). For su�ciently smooth f the solution of (1) has the form:

u = ureg +
∑
e∈E

ue +
∑
v∈V

uv +
∑
v∈V

∑
e∈E(v)

uev, (24)

where using local coordinate systems (rv, θv) and (xe1 , xe2) with origin at v, there exists the
following representation:

1. The regular part ureg ∈ Hk for some k > s.

2. The edge singularities ue of the form

ue =

me−1∑
j=0

 ke
j∑

k=0

bejk (xe1) |log xe2|
k

xs+j
e2 χe

1 (xe1)χ
e
2 (xe2) , (25)

where me, k
e
j are integers. Here, χe

1, χ
e
2 are C∞ cut-o� functions where χe

1 = 1 away
from the endpoints and zero at the end points. Furthermore, χe

2 = 1 for 0 ≤ xe2 ≤ δe
and zero for xe2 ≥ 2δe for δe ∈ (0, 1/2). The functions bejkχ

e
1 ∈ Hm(e) for arbitrarily

large m.
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3. The vertex singularities uv of the form

uv = χv (rv)

nv∑
i=1

qvi∑
k=0

Bv
ik |log rv|

k
r
λv
i

v wv
ik (θv) , (26)

where λvi+1 ≥ λvi > max{0, s − 1
2} as in (13), nv, q

v
i ≥ 0 are integers, and Bv

it are real
numbers. The C∞ cut-o� function χv = 1 for 0 ≤ rv ≤ τv and χv = 0 for rv ≥ 2τv with
τv ∈

(
0, 12

)
. The functions wv

ik ∈ Hq (0, ωv) for arbitrarily large q. Further ωv denotes
the interior angle between the edges at v.

4. The edge-vertex singularities uev of the form

uev = uev1 + uev2 , (27)

where

uev1 =

me−1∑
j=0

nv∑
i=1

 ke
j∑

k=0

qvi∑
t=0

k∑
l=0

Bev
ijltσ |log xe1|

k+t−l |log xe2|l
x

λv
i −s−j

e1 xs+j
e2 χv (rv)χ

ev (θv) ,

(28)

uev2 =

me−1∑
j=0

ke
j∑

k=0

Bev
jk (rv) |log xe2|

k
xs+j
e2 χv (rv)χ

ev (θv) , (29)

and

Bev
jk (rv) =

k∑
l=0

Bev
jkl (rv) |log rv|

l
. (30)

Here qvi , k
e
j , λ

v
i , χ

v are as above, Bev
ijltσ are real numbers, and χev is a C∞ cut-o�

function with χev = 1 for 0 ≤ θv ≤ βv and χev = 0 for 3
2βv ≤ θv ≤ ωv with

βv ∈ (0,min {ωv/2, π/8}]. The functions Bev
jσl can be chosen so that

Bev
jσ (rv)χ

v (rv)χ
ev (θv) = χjσ (xe1, xe2)χ

e
2 (xe2) , (31)

where the extension of χjσ by zero on R2
+ lies in Hm(R2

+) for m arbitrarily large.

P

!v

θv
v

xe2

xe1

rv

e

Figure 5: Diagram of the local coordinates near a vertex v and edge e.

4 Approximation results

For the numerical approximation, without loss of generality we assume that Ω has a polygonal
boundary. Let Th be a family of triangulations of Ω and Ṽhp ⊂ H̃s(Ω), the associated space of

9



Figure 6: Examples of quasi�uniform meshes for a square and an L�shaped domain.

continuous piecewise polynomial functions of degree p on Th vanishing at the boundary, with
p ≥ 1.

The discretized problem is solved on quasi-uniform triangulations Th of Ω as in Figure 6.
We also consider geometrically graded quadrilateral meshes Qh on Ω. To de�ne them on

an interval Ω = [0, 2] and with a re�nement parameter σ ∈ (0, 1/2], in the subintervall [0, 1]
we let x0 = 0,

xk = σN+1−k (32)

for k = 1, . . . , N , and we specify corresponding nodes in [1, 2] by symmetry. For the hp version
the polynomial degree p increases linearly from ∂Ω: p = µk in [xk, xk+1] for a given µ > 0.
We denote the corresponding space of piecewise polynomial functions by Shp. The nodes of
the geometrically graded mesh on a square are again given by (xk, yℓ), for k, ℓ = 1, . . . , N , and
by symmetry extended to the whole square.
Examples of geometrically graded meshes with σ = 0.5, respectively σ = 0.17, are depicted in
Figure 7 for a square and in Figure 8 for an L-shaped domain. For a polygonal domain one
de�nes a geometrically graded mesh by including a small number of triangles in the interior
and near the edges, but not in the corners, see Figure 9. More precisely, �rst note that every
polygonal domain can be decomposed into triangles. We divide each of these triangles F into
three parallelograms and three triangles where each parallelogram lies in a corner of F and
each triangle lies at an edge of F away from the corners. By linear transformations we can
transform the parallelograms on a reference square Q = [0, 1]2 such that the vertices of F
are transformed to (0, 0). The triangles can be transformed by a linear transformation φ̃i on
the reference triangle Q̃ = {(x, y) ∈ Q | y ≤ x} such that the corner point of the triangle in
the interior of the face F is transformed to (1, 1) of the reference triangle. The geometric
mesh and appropriate polynomial function spaces are de�ned on the reference element Q.
Analogously the geometric mesh can be de�ned on the reference triangle Q̃ (see Figure 9).
Via the linear transformations above, the geometric mesh is also de�ned on the polyhedron.
The approximation on the reference square is the more interesting case because it handles the
corner-edge singularities. Therefore we deal in this paper only with the approximation on the
reference square.

4.1 Approximation results on quasi-uniform meshes

The discretized problem on a quasi-uniform mesh is given in terms of the bilinear form in (4):

Find uhp ∈ Ṽhp, such that for all vhp ∈ Ṽhp

a(uhp, vhp) = (f, vhp)L2(Ω) .

By coercivity, there exists a unique solution uhp, the Galerkin approximation to u.

10



Figure 7: Examples of geometrically graded meshes with σ = 0.5 and 0.17 for the square.

Figure 8: Examples of geometrically graded meshes with σ = 0.5 and 0.17 for an L�shaped

domain.

Figure 9: Graded mesh on triangle.

11



We adapt the analysis of Bespalov and Heuer [8], for the singular expansion from Theorem
3.2 above. Details are given in Section 5.

Theorem 4.1. Let u ∈ H̃s(Ω) be a solution to (1) and Πhpu the best approximation in Ṽhp

on a quasi-uniform mesh Th in the H̃s(Ω) norm. Then there exists β ∈ N0 such that

∥u−Πhpu∥H̃s(Ω) ≤ Ch1/2p−1
(
1 + log(ph−1)

)β
.

By Cea's Lemma this theorem implies a corresponding estimate for the error of the �nite
element solution:

Corollary 4.2. Let u ∈ H̃s(Ω) be a solution to (1) and uhp ∈ Ṽhp the hp �nite element
approximation on a quasi-uniform mesh Th. Then there exists β ∈ N0 such that

∥u− uhp∥H̃s(Ω) ≤ Ch1/2p−1
(
1 + log(ph−1)

)β
.

4.2 Approximation results on geometrically graded meshes

Let Qh be a mesh for Ω, consisting of M rectangular elements τm and R boundary edges
er ∈ ∂Qh. Let χm : Q→ τm be an a�ne transformation from a reference element Q = [0, 1]2

to the element τm ∈ Qh and χr : e → er be an a�ne transformation from a reference edge
e = [0, 1] to the boundary edge er ∈ ∂Qh. Furthermore, let φ̃m

k,l|τm(x) := φk,l(χ
−1
m (x)) and let

p = (p1, p2, . . . , pM ) be a vector of polynomial pairs pm = (pm,x1
, pm,x2

) associated with
an element τm for all elements in Qh. The hp version on a geometrically graded mesh uses
the mesh and degree distribution described at the beginning of this section.

The hp version on a geometrically graded mesh Qh then uses the �nite element subspace
S̃hp ⊂ H̃s(Ω) given by

S̃hp = {u ∈ H̃s(Ω) : u continuous, u|τm ∈ Ppm,x1 ,pm,x2 , ∀τm ∈ Th}.

The discretization of the weak formulation of (1) is then given in terms of the bilinear
form in (4):

Find uhp ∈ S̃hp, such that for all vhp ∈ S̃hp

a(uhp, vhp) = (f, vhp)L2(Ω) .

By coercivity, there exists a unique solution uhp ∈ S̃hp, the Galerkin approximation to u.

In order to state Theorem 4.4 below, we next introduce a scale of weighted Sobolev spaces
and an associated countably normed space. On the reference element Q = [0, 1]2 the weight
function Φβ,α,1 is given by

Φβ,(α1,α2),1 =


xβ+α1−1 for α1 ≥ 1, α2 = 0

xβ+α1−1yα2 + xα1 y
β+α2−1 for α1 ≥ 1, α2 ≥ 1

yβ+α2−1 for α1 = 0, α2 ≥ 1.

(33)

De�nition 4.3. a) Let k ≥ 1. A function u ∈ L2(Ω) belongs to the weighted Sobolev space

Hk,1
β (Ω) if Φβ,α,1∂

αu ∈ L2(Q) for all 1 ≤ |α| ≤ k.

b) We say that u belongs to the countably normed space B1
β(Ω) if u ∈

⋂
k≥1H

k,1
β (Ω) and

there exist C, d ≥ 1 such that for all k ≥ 1 and all |α| = k:

∥Φβ,α,1∂
αu∥L2(Ω) ≤ Cdk−1(k − 1)!

12



Theorem 4.4. Let Ω be a polygonal domain, U ∈ B1
β(Ω) with β ∈ (0, 1) and ΠhpU ∈ S̃hp the

best approximation to U with respect to the H̃s(Ω) norm. Then

∥U −ΠhpU∥H̃s(Ω) ≲ e−CN1/4

,

where C is independent of N .

In the approximation arguments we regularly restrict to a rectangular reference element
Q = [0, 1]2, as described in the introduction to this Section 4. From Figure 9, the discretiza-
tion in a general polygonal domain requires additional triangles in the interior and at the
edges, away from the vertices. The corresponding approximation properties in these elements
are easier, as they do not involve the edge-vertex behavior; see the discussion at the beginning
around Figure 9 above.

We use Theorem 2.1 from [21] to show:

Proposition 4.5. Let u ∈ H̃s(Ω) to (1) with right hand side f ∈ C∞(Ω). Assume that for
some d ≥ 1 and all k ≥ 0 ∑

|α|=k

∥∂αf∥L2(Ω) ≤ dk+1kk.

Then u ∈ B1
β(Ω).

Proof. The proof follows by interpreting the results from [21]. Following this reference, we
de�ne ε-neighborhoods at an edge e, at a vertex v, respectively at e and v:

ωv = {x ∈ Ω : dist(x, v) < ε and dist(x, ∂Ω) ≥ εdist(x, v)},
ωve = {x ∈ Ω : dist(x, v) < ε and dist(x, e) < εdist(x, v)},

ωe = {x ∈ Ω : dist(x, e) < ε2 and dist(x, e) ≥ ε ∀ vertices e}.

Estimates near edge: We consider the de�nitions of Hk,1
β (Ω) and Φβ,(α1,α2),1 in a strip ωe at

the x-axis. In ωe the weight function Φβ,(α1,α2),1 is equivalent to the local weight function

Φωe

β,(α1,α2),1
(x, y) = yβ+α2−1.

We observe by choosing β = 1
2 − s+ ε, α1 = p∥, α2 = p⊥ that

∥yβ+α2−1∂α1
x ∂α2

y u∥L2(ωe) = ∥yp⊥− 1
2−s+ε∂p⊥

x ∂
p∥
y u∥L2(ωe).

Similarly, in an edge-vertex neighborhood ωve the weight function Φβ,(α1,α2),1 is equivalent to
the local weight function

Φωe

β,(α1,α2),1
(x, y) = xα1yβ+α2−1,

provided α1, α2 ≥ 1. Now we observe with β = 1
2 − s+ ε, α1 = p∥, α2 = p⊥ that

∥xα1yβ+α2−1∂α1
x ∂α2

y u∥L2(ωve) = ∥xp∥yp⊥− 1
2−s+ε∂p⊥

x ∂
p∥
y u∥L2(ωve).

Hence the result from [23] implies that in a neighborhood Q̃ of the edges u ∈ B1
β(Q̃) if and only

if u ∈ Hk,1
β (Q̃) for all k ≥ 1 and ∥Φβ,α,1D

αu∥L2(Q̃) ≤ Cdk−1(k− 1)! for all |α| = k = 1, 2, . . . ,
where C, d ≥ 1 are constants which are independent of k. This follows from

∥Φβ,α,1D
αu∥L2(ωe) + ∥Φβ,α,1D

αu∥L2(ωve) ≤ Cdk−1(k − 1)! .

Estimates near corner: To describe the solution in the vertex neighborhood ωv we use the
weighted Sobolev space Ĥk,1

β (Q), which consists of all u ∈ L2(Q) such that ∥Φ̃β,α,1Dαu∥L2(Q) <
∞ for all 0 ≤ |α| ≤ k. Here Dα = ∂αr

r ∂αθ

θ and

Φ̃β,α,1 = rβ+αr−1(sin(θ) sin(ω − θ))(β+αθ−1)+ ,

13



with (a)+ = max{a, 0}. De�ne Q̂ = [0, ω]θ × [0, R]r. In ωv = [θ1, θ2]θ × [0, R] ⊂ Q̃ we de�ne

Φ̃β,(αr,αθ),1 = rβ+αr−1+αθ .

Again we take β = 1
2 − s + ε and observe for αr = 1, αθ = 0 with ∂r = x

r ∂x + y
r ∂y =

cos(θ)∂x + sin(θ)∂y that for α1 + α2 = 1

∥rβ+αr−1∂αr
r ∂αθ

θ u∥L2(ωv) = ∥rβ∂ru∥L2(ωv) = ∥rβ(cos(θ)∂x + sin(θ)∂y)u∥L2(ωv)

≤ ∥rβ+αr−1∂α1
x ∂α2

y u∥L2(ωv) = ∥r|α|− 1
2−s+ε∂α1

x ∂α2
y u∥L2(ωv).

Consider now αr = 1, αθ = 1 and note that ∂θu = 1
sin(ω) ((x+y cos(ω))∂y− (x cos(ω)+y)∂x)u.

Then we obtain similarly

∥rβ+1(sin(θ))β∂αr
r ∂αθ

θ u∥L2(ωv)

= ∥rβ+1(cos(θ)∂x + sin(θ)∂y)
1

sin(ω)
((x+ y cos(ω))∂y − (x cos(ω) + y)∂x)u∥L2(ωv)

≤ ∥rβ+1∂x∂yu∥L2(ωv) = ∥r|α|− 1
2−s+ε∂α1

x ∂α2
y u∥L2(ωv).

The result follows for all αr, αθ by induction.
The argument in ωve combines the arguments in ωv and ωe.
Now we observe from [38] that B1

β in Cartesian coordinates is equivalent to B1
β in polar

coordinates. Hence Theorem 2.1 in [21] gives u ∈ B1
β(Q) - this is what we need for our

approximation analysis.

Corollary 4.6. Let Ω be a polygonal domain, u ∈ H̃s(Ω) be a solution to (1) with right hand

side f ∈ C∞(Ω) and uhp ∈ S̃hp be the �nite element approximation on a geometrically graded
mesh. Assume that for some d ≥ 1 and all k ≥ 0∑

|α|=k

∥∂αf∥L2(Ω) ≤ dk+1kk.

Then
∥u− uhp∥H̃s(Ω) ≲ e−CN1/4

,

where C is independent of number of degrees of freedom N .

In the numerical experiments below we observe that for su�ciently large N the numerical

error of the hp version on geometrically graded meshes behaves like ∥u−uhp∥H̃s(Ω) ≲ e−CN1/4

,

as predicted by Corollary 4.6.

5 Proof of approximation results on quasi-uniform meshes

We now discuss the proof of Theorem 4.1 from Subsection 4.1. We use the notation of Theo-
rem 3.2.

Edge-vertex singularities. Let e ∈ E be the edge of Ω with neighbouring vertices v, w. Let
Ae be the union of all elements at the edge e. We denote by ℓv and ℓw the edges of ∂Ae such
that ℓ̄v ∩ ē = {v} and ℓ̄w ∩ ē = {w}.
Let us consider the cut-o� functions χv and χev which appear in the expressions for the edge-
vertex singularities uev1 and uev2 . We take the supports of these cut-o� functions as follows:

suppχv ⊂ [0, 2τv] with 0 < τv < min

{
1

4
dist{v, w}, 1

2

}
suppχev ⊂

[
0,

3

2
βv

]
with 0 < βv ≤ min

{
1

2
θ0,

1

2
ωv,

π

8

} (34)
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where θ0 is the minimal angle of the triangles τh in the mesh Th. Then uev1 and uev2 vanish
outside the sector S =

{
(rv, θv) ; 0 < rv < 2τv, 0 < θv <

3
2βv
}
, in particular, uev1 = uev2 = 0 on

ℓv ∪ ℓw.

Lemma 5.1. Let u = uev1 be the edge-vertex singular function as in Theorem 3.2. Then there

exists uhp ∈ Ṽh,p(Ω) with p ≥ λ = λv1 such that

∥u− uhp∥H̃s(Ω) ≤ Ch1/2p−1 (1 + log(p/h))
β+ν

,

where, with the notation from Theorem 3.2,

β =

{
qv1 + s+ 1

2 if λv1 = γe1 − 1
2

qv1 + s otherwise
, ν =

{
1
2 if p = s− 1

2
0 otherwise

.

The proof is a straight-forward extension of Theorem 5.1 in [8] to Sobolev exponent s,
using the singular functions from the expansion of the solution given in Theorem 3.2. Details
can be found in [47].

Lemma 5.2. Let u = uev2 be the edge-vertex singular function as in Theorem 3.2. Then there

exists uhp ∈ Ṽh,p(Ω) with p ≥ s− 1
2 such that

∥u− uhp∥H̃s(Ω) ≤ Ch1/2p−1 (1 + log(p/h))
β+ν

,

where β = se1 ∈ N0, ν = 1
2 if p = s− 1

2 and ν = 0 otherwise.

Again the proof is a straight-forward extension of Theorem 5.2 in [8] to Sobolev exponent s,
using the singular functions from the expansion of the solution given in Theorem 3.2. Details
can be found in [47].

Remark 5.3. Note that since the cut�o� functions in uev2 can be rewritten by using (31), we
can apply Lemma 5.2 to obtain estimates for the edge singular functions ue.

Vertex singularities. Now we approximate the vertex singularities uv as in Theorem 3.2.
Let v ∈ V be a vertex of Ω.

Lemma 5.4. Let u = uv be the vertex singularity function as in Theorem 3.2. Then there
exists uhp ∈ Ṽh,p(Ω) with p ≥ λ such that

∥u− uhp∥H̃s(Ω) ≤ Chλ+1−sp−2(λ+1−s)(1 + log(p/h))β+ν

where λ = λv1 > 0, β = qv1 ∈ N0, ν = 1
2 if p = λ and ν = 0 otherwise.

The proof is a straight-forward extension of Theorem 6.1 in [8] to Sobolev exponent s,
using the singular functions from the expansion of the solution given in Theorem 3.2. Details
can be found in [47].

Edge singularities. As stated in Remark 5.3 estimates for the edge singularities ue can be
derived in the same way as for uev2 . Thus we only state the result for the edge singularities
below.

Lemma 5.5. Let u = ue be the edge singular function as in Theorem 3.2. Then there exists
uhp ∈ Ṽh,p(Ω) with p ≥ s− 1

2 such that

∥u− uhp∥H̃s(Ω) ≤ Ch1/2p−1 (1 + log(p/h))
β+ν

,

where β = se1 ∈ N0, ν = 1
2 if p = s− 1

2 and ν = 0 otherwise.
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The proof is a straight-forward extension of Theorem 6.2 in [8] to Sobolev exponent s,
using the singular functions from the expansion of the solution given in Theorem 3.2. Details
can be found in [47].

Regular part. We �nally review results for the approximation of the regular remainder.
For this it su�ces to recall the approximation result for su�ciently smooth functions from [8,
Proposition 4.1].

Lemma 5.6. Let u ∈ Hm(Ω) ∩ H̃1(Ω) with m > 1. Then there exists uhp ∈ Ṽh,p(Ω) such
that for s ∈ [0, 1]

∥u− uhp∥H̃s(Ω) ≤ Chµ−sp−(m−s̃)∥u∥Hm(Γ), (35)

where µ = min{m, p+ 1} and

s̃ =


1/2 s ∈ [0, 1/2)

1/2 + ε s = 1/2

s s ∈ (1/2, 1].

(36)

6 Proof of approximation results on geometrically graded

meshes

6.1 Piecewise polynomial approximation in weighted Sobolev spaces

We now discuss the proof of Theorem 4.4 in Subsection 4.2.
We �rst recall from [12] the spaces Ht

β(Q), β ∈ [0, 1): u ∈ Ht
0(Q) if u ∈ L2

loc(Q), for all
|α| = [t]

r|α|−t∂αu ∈ L2(Q),

and, if τ = t− [t] ∈ (0, 1), for all |α| = [t] the function ∂αu(x)−∂αu(y)
|x−y|τ+1 belongs to L2(Q×Q).

We say that u ∈ Ht
β(Q) if rβu ∈ Ht

0(Q), where r denotes the distance to the boundary.

We will need the expression for the norm of H1
β(Q):

∥u∥2H1
β(Q) = ∥rβ−1u∥2L2(Q) +

∑
|α|=1

∥∂α(rβu)∥2L2(Q).

Lemma 6.1. Let s ∈ (0, 1). Then for all u ∈ H1
1−s(Q),

∥u∥H̃s(Q) ≲ ∥u∥H1
1−s(Q) ≲ ∥r−su∥L2(Q) +

∑
|α|=1

∥r1−s∂αu∥L2(Q).

Proof. First note that H̃s(Q) = Hs
0(Q) by Theorem AA.7 in [12], so that we need to show

∥u∥Hs
0 (Q) ≲ ∥u∥H1

1−s(Q). The inequality ∥u∥H̃s(Q) ≲ ∥u∥H1
1−s(Q) now follows directly from

the dyadic characterization of Ht
β-norms, Lemma AA.24 in [12], applied to (t, β) = (s, 0) and

(1, 1− s).
The remaining estimate, ∥u∥H1

1−s(Q) ≲ ∥r−su∥L2(Q) +
∑

|α|=1 ∥r1−s∂αu∥L2(Q), follows from

the expression for the norm of H1
β(Q), when β = 1− s, and the triangle inequality.

Approximation near the edge:

Lemma 6.2. Let Q1 = [a1, b1]× [0, h], and u ∈ H2,1
β (Q1). De�ne

ūh(x, y) = u(x, h)−
(
1− y

h

)∫ h

0

∂zu(x, z)dz.
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Then

∥y−s(u(x, y)− ūh(x, y))∥L2(Q1) ≲ h1−s−β∥u∥H2,1
β (Q1)

,

∥y−s∂x(u(x, y)− ūh(x, y))∥L2(Q1) ≲ h1−s−β∥u∥H2,1
β (Q1)

.

∥y1−s∂y(u(x, y)− ūh(x, y))∥L2(Q1) ≲ h1−s−β∥u∥H2,1
β (Q1)

.

Proof. For the �rst estimate, note that∫ b1

a1

∫ h

0

y−2s(u(x, y)− ūh(x, y))
2dy dx

=

∫ b1

a1

∫ h

0

y−2s

(∫ h

y

(∂zu(x, z)− ∂zūh(x, z))dz

)2

dy dx

≤
∫ b1

a1

∫ h

0

y−2s

∫ h

y

z−1dz

∫ h

0

z(∂zu(x, z)− ∂zūh(x, z))
2dz dy dx

≤ h1−2s

(1− 2s)2

∫ b1

a1

∫ h

0

z

(
∂zu(x, z)−

1

h

∫ h

0

∂wu(x,w)dw

)2

dz dx

≤ h1−2s

(1− 2s)2

∫ b1

a1

∫ h

0

z

(
1

h

∫ h

0

∫ z

w

∂2qu(x, q)dq dw

)2

dz dx.

For a �xed ϵ > 0 su�ciently small, we observe

1

h2

∫ b1

a1

∫ h

0

z

∫ h

0

(∫ h

0

w−β−ϵwβ+ϵ

∫ z

w

∂2qu(x, q)dq dw

)2

dz dx

≤ 1

h2

∫ b1

a1

∫ h

0

z
h1−2β−2ϵ

1− 2β − 2ϵ

∫ h

0

w2β+2ϵ

(∫ z

w

∂2qu(x, q)dq

)2

dw dz dx,

yielding (with a constant C depending on ϵ)

∥y−s(u(x, y)− ūh(x, y))∥2L2(Q1)
≤ Ch1−2s+2−2β∥u∥2

H2,1
β (Q1)

.

The proof of the second estimate in the Lemma is analogous, and we now prove the
remaining, third estimate:∫ b1

a1

∫ h

0

y2−2s(∂yu(x, y)− ∂yūh(x, y))
2dy dx

=

∫ b1

a1

∫ h

0

y2−2s

(
∂yu(x, y)−

1

h

∫ h

0

∂zu(x, y)dz

)2

dy dx

=

∫ b1

a1

∫ h

0

y2−2s

(
1

h

∫ h

0

∫ y

z

∂2wu(x,w)dw dz

)2

dy dx.

Next, we observe(∫ h

0

z−β−ϵzβ+ϵ

∫ y

z

∂2wu(x,w)dw dz

)2

≤ h1−2β−2ϵ

1− 2β − 2ϵ

∫ h

0

z2β+2ϵ

(∫ y

z

∂2wu(x,w)dw

)2

dz.

Furthermore∫ h

0

z2β+2ϵ

(∫ y

z

∂2wu(x,w)dw

)2

dz

≤
(

y2ϵ

2ϵ(2β+2ϵ+1) +
1

1+2β

(
y−2β−1 h2β+2ϵ+1

2β+2ϵ+1 − h2ϵ

2ϵ

))∫ h

0

(
w1+β∂2wu(x,w)

)2
dw.
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Therefore we obtain∫ b1

a1

∫ h

0

y2−2s(∂yu(x, y)− ∂yūh(x, y))
2dy dx ≤ Ch2−2s−2β∥u∥2

H2,1
β (Q1)

.

We further obtain near the corner the following two lemmas:

Lemma 6.3. For u ∈ H3,1
β ([0, h]2) and (x, y) ∈ [0, h]2 consider Iyu(h, y) = u(h, h) − (1 −

y
h )
∫ h

0
∂zu(h, z)dz. Then there holds:

∥y−s x
h (u(h, y)− Iyu(h, y))∥L2([0,h]2) ≲ h1−s−β∥u∥H3,1

β ([0,h]2),

∥y1−s∂y
x
h (u(h, y)− Iyu(h, y))∥L2([0,h]2) ≲ h1−s−β∥u∥H3,1

β ([0,h]2),

∥x1−s∂x
x
h (u(h, y)− Iyu(h, y))∥L2([0,h]2) ≲ h1−s−β∥u∥H3,1

β ([0,h]2).

Proof. We only show the second estimate. The �rst and third estimate are shown in an
analogous, simpler way.
Note that with the de�nition of Iyu(h, y),

∥y1−s∂y
x
h (u(h, y)− Iyu(h, y))∥2L2([0,h]2) =

∫ h

0

x2

h2

∫ h

0

y2−2s (∂y(u(h, y)− Iyu(h, y)))
2
dy dx

=

∫ h

0

x2

h2

∫ h

0

y2−2s

(
∂yu(h, y)− 1

h

∫ h

0

∂zu(h, z)dz

)2

dy dx.

We use Lemma 7.7 in [38] to estimate the inner integral:∫ h

0

y2−2s

(
∂yu(h, y)− 1

h

∫ h

0

∂zu(h, z)dz

)2

dy ≲ h2−2s−2β

∫ h

0

(
y1+β∂2yu(h, y)

)2
dy.

It remains to adapt the proof of Lemma 7.11 in [38]:

∥y1−s∂y
x
h (u(h, y)− Iyu(h, y))∥2L2([0,h]2)

≲ h2−2s−2β

∫ h

0

x2

h2

∫ h

0

(
y1+β∂2yu(h, y)

)2
dydx

= h2−2s−2β

∫ h

0

x2

h2

∫ h

0

y2+2β

(∫ h

x

∂z∂
2
yu(z, y)dz + ∂2yu(x, y)

)2

dy dx

≲ h2−2s−2β

∫ h

0

∫ h

0

(
∂2yu(x, y)

)2
dy dx

+ h2−2s−2β

∫ h

0

x2

h2

∫ h

0

y2+2β

(∫ h

x

∂z∂
2
yu(z, y)dz

)2

dy dx

≲ h2−2s−2β

∫ h

0

∫ h

0

(
∂2yu(x, y)

)2
dy dx

+ h2−2s−2β

∫ h

0

x2

h2

∫ h

x

z̃−2dz̃ dx

∫ h

0

y2+2β

∫ h

0

z2
(
∂z∂

2
yu(z, y)

)2
dz dy.

Due to
∫ h

0
x2

h2

∫ h

x
z̃−2dz̃ dx = 1

6 , we conclude the proof

∥y1−s∂y
x
h (u(h, y)− Iyu(h, y))∥2L2([0,h]2) ≲ h2−2s−2β∥u∥2

H3,1
β ([0,h]2)

.
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Approximation near the corner:

Lemma 6.4. For u ∈ H2,1
β ([0, h]2) and (x, y) ∈ [0, h]2, de�ne

ūD(x, y) = u(x, y) +
x

h

y

h
u(h, h)− x

h
u(h, y)− y

h
u(x, h)

and

ϕD(x, y) =
h− x

h

h− y

h
ϕ0.

Here, ϕ0 = 0 if u|[0,1]×{0} or u|{0}×[0,1] = 0, and ϕ0 = 1
h2

∫ h

0

∫ h

0
u(x, y)dx dy otherwise. Then

∥y−s(uD(x, y)− ϕD(x, y))∥L2([0,h]2) ≲ h1−s−β∥u∥H2,1
β ([0,h]2),

∥y1−s∂y(u
D(x, y)− ϕD(x, y))∥L2([0,h]2) ≲ h1−s−β∥u∥H2,1

β ([0,h]2),

∥x1−s∂x(u
D(x, y)− ϕD(x, y))∥L2([0,h]2) ≲ h1−s−β∥u∥H2,1

β ([0,h]2).

Proof. We estimate∫ 1

0

∫ h

0

y−2s(uD − ϕD)2dy dx =

∫ h

0

∫ h

0

y−2s(uD(x, y)− ϕD(x, y)− (uD(h, y)− ϕD(h, y)))2dy dx

=

∫ h

0

∫ h

0

y−2s(−
∫ h

x

∂z(u
D(z, y)− ϕD(z, y))dz)2dy dx

≤
∫ h

0

∫ h

0

y−2s

∫ h

x

z−2β

∫ h

x

z2β
(
∂z(u

D(z, y)− ϕD(z, y))
)2
dz dy dx

≤ Ch2−2s−2β∥x2β∂x(uD − ϕD)∥2L2([0,h]2).

For the remaining estimate, we observe

∂x(u
D − ϕD)

=
h− y

h
∂xu(x, y)−

1

h

h− y

h

∫ h

x

∂zu(z, y)dz −
y

h

∫ h

y

∂x∂zu(x, z)dz

+
1

h

y

h

∫ h

x

∫ h

y

∂z∂wu(z, w)dw dz +
1

h

y

h

∫ h

y

∂zu(x, z)dz −− 1

h

h− y

h
u(x, y) +

1

h

h− y

h
ϕ0.

We consider the following term. The others are estimated in a similar way.

∫ h

0

∫ h

0

x2−2s

(
1

h

h− y

h

∫ h

x

∂zu(z, y)dz

)2

dy dx

≤ 1

h2

∫ h

0

∫ h

0

x2−2s

∫ h

x

z−2βdz

∫ h

x

z2β(∂zu(x, z))
2dz dy dx

≤ Ch2−2s−2β

∫ h

0

∫ h

0

(zβ∂zu(x, z))
2dz dy.

This yields
∥x1−s∂x(u

D − ϕD)∥2L2([0,h]2) ≤ Ch2−2s−2β∥u∥2
H2,1

β (Q1)
,

and therefore
∥uD − ϕD∥2

H̃s([0,h]2)
≤ Ch2−2s−2β∥u∥2

H2,1
β (Q1)

.
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Next we recall three results from [38].

Lemma 6.5. Let u ∈ H2,1
β (Q), Q = [0, 1]2, 0 ≤ β < 1/2. Then for all (x1, x2), (y1, y2) ∈ Q

there holds

|u(x1, x2)− u(y1, y2)| ≤
C

1− 2β

|y1−2β
1 − x1−2β

1 |+ |y1−2β
2 − x1−2β

2 |
min(x1, y1)1−β +min(x2, y2)1−β

∥u∥H2,1
β (Q) (37)

which implies H2,1
β (Q) ⊂ C0(Q̄).

Theorem 6.6. Let Q1 = (a1, b1)× (0, h2) ⊆ Q = [0, 1]2 with h1 = b1−a1 ≤ λ1a1, λ1 ≥ 0 and

a1 > 0. For u ∈ Hk+2,1
β (Q) (0 ≤ β < 1) with weight function Φβ,α,1(x, y) in (33) there exists

a polynomial ϕ ∈ Pk1,1(Q1) with 1 ≤ k1 ≤ k, such that for 0 ≤ |α| = α1 + α2 ≤ 1 there holds

∥Dα(ūh2 − ϕ)∥2L2(Q1)

≤ C a−2α1
1 (a

2(1−β)
1 + h

2(1−α2−β)
2 )

Γ(k1 − s1 + 1)

Γ(k1 + s1 + 3− 2α1)

(
λ1
2

)2(s1+1−α1)

|u|2
H

s1+2,1

β (Q)
(38)

and for z = 0 or z = h2

∥∂α1
x (buh2

(x, z)− ϕ(x, z))∥2L2(a1,b1)

≤ Ch−1
2 a−2α1

1

(
h
2(1−β)
2 + a

2(1−β)
1

) Γ(k1 − s1 + 1)

Γ(k1 + s1 + 3− 2α1)

(
λ1
2

)2(s1+1−α1)

|u|2
H

s1+2,1

β (Q)
.

Here we take

ūh2
(x, y) = u(x, b2)−

(
1− y

h2

)∫ b2

a2

∂zu(x, z) dz (39)

Here s1 ∈ R, arbitrary, 1 ≤ s1 ≤ k1. and H
s1+2,1
β (Q) is the interpolation space (H k̃1+1,1

β (Q), H k̃1+2,1
β (Q))θ1,∞

for integers k̃1 = s1 + 1 − θ1 ≤ k1, 0 ≤ θ1 ≤ 1. The constant C is independent of k, but de-
pendents on λ1. Furthermore ϕ = u on the vertices of Q1 and the tangential derivative of ϕ
on the edges of Q1 is the L2-projection of the tangential derivative of u.

Theorem 6.7. Let Q1 = (a1, b1)× (a2, b2) ⊂⊂ Q with h1 = b1 − a1 ≤ λ1a1, h2 = b2 − a2 ≤
λ2a2, λi ≥ 0, (i = 1, 2), and u ∈ Hk+3,1

β (Q) with Φβ,α,1(x, y) as in (33). Then there exists a
polynomial ϕ ∈ Pk1,k2

(Q1) with 2 ≤ k1, k2 ≤ k, such that for 0 ≤ α1, α2 ≤ 1 there holds

∥Dα(u− ϕ)∥2L2(Q1)
≤ C

2∑
i=1

a
2(1−αi−β)
i a

−2α3−i

3−i

Γ(ki − si + 1)

Γ(ki + si + 3− 2αi)

(
λi
2

)2si

|u|2
H

si+3,1

β (Q)

(40)

where si ∈ R, 1 ≤ si ≤ ki (i = 1, 2) and Hsi+3,2
β (Q) is the interpolation space (H k̃i+2,1

β (Q), H k̃i+3,1
β (Q))θi,∞

for integers k̃i = si + 1 − θi ≤ ki, 0 ≤ θi ≤ 1 and C is independent of k, but depends on λi
(i = 1, 2). Furthermore ϕ = u on the vertices of Q1.

6.2 Exponentially fast convergence: Proof of Theorem 4.4

Due to Lemma 6.5 we have u ∈ C0(Q̄), therefore the point evaluation of u(x, y) is possible.
Let 0 ≤ β < 1/2. Let Iy be the linear interpolation operator with respect to the variable
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y on the interval [0, h1]. We split u into uA + uB + uC + uD according to

uA(x, y) =


u(x, y) if (x, y) ∈ [h1, 1]

2,

Iyu(x, y) if (x, y) ∈ [h1, 1]× [0, h1],

Ixu(x, y) if (x, y) ∈ [0, h1]× [h1, 1],
x
h1
Iyu(h1, y) +

h1−x
h1

y
h1
u(0, h1) if (x, y) ∈ [0, h1]

2,

uB(x, y) =


0 if (x, y) ∈ [0, 1]× [h1, 1],

u(x, y)− Iyu(x, y) if (x, y) ∈ [h1, 1]× [0, h1],
x
h1
u(h1, y)− x

h1
Iyu(h1, y) if (x, y) ∈ [0, h1]

2,

uC(x, y) =


0 if (x, y) ∈ [h1, 1]× [0, 1],

u(x, y)− Ixu(x, y) if (x, y) ∈ [0, h1]× [h1, 1],
y
h1
u(x, h1)− y

h1
Ixu(x, h1) if (x, y) ∈ [0, h1]

2,

uD(x, y) =

{
u(x, y) + x

h1

y
h1
u(h1, h1)− x

h1
u(h1, y)− y

h1
u(x, h1) if (x, y) ∈ [0, h1]

2,

0 otherwise.

We will construct the approximation function ϕ ∈ Sp,1(Qn
σ) approximating u by construct-

ing approximations ϕA, ϕB , ϕC , ϕD ∈ Sp,1(Qn
σ) which are approximating uA, uB , uC , uD such

that ϕ = ϕA + ϕB + ϕC + ϕD.

6.2.1 Construction of ϕA

First we note that u and uA are identical on [h1, 1]
2, therefore also ϕ and ϕA will be identical

on [h1, 1]
2. We de�ne

ϕA(x, y) =
x

h1

y

h1
u(h1, h1) +

x

h1

h1 − y

h1
u(h1, 0) +

h1 − x

h1

y

h1
u(0, h1) on [0, h1]

2 (41)

and we have (uA − ϕA)|[0,h1]2 = 0.
Due to Theorem 6.6 we get polynomials ψk1 ∈ Ppk1(Rk1) on the strip {(x, y) : h1 ≤ x ≤

1, 0 ≤ y ≤ h1} along the edge, which coincide at the corner points with u and which ful�ll
(for suitable sk)

∥Dα(uA − ψk1)∥2L2(Rk1)

≤ C x−2α1

k−1 (x
2(1−β)
k−1 + h

2(1−α2−β)
1 )

Γ(pk − sk + 1)

Γ(pk + sk + 3− 2α1)

(
λ

2

)2(sk+1−α1)

|u|2
H

sk+2,1

β (Q)
. (42)

Due to Theorem 6.7 we get polynomials ψkl ∈ Ppkpl
(Rkl) with 1 ≤ sk ≤ pk and 0 ≤ α1, α2 ≤ 1

for the inner elements Rkl, (2 ≤ k, l ≤ n):

∥Dα(u− ψkl)∥2L2(Rkl)
≤ C

(
x
2(1−α1−β)
k−1 x−2α2

l−1

Γ(pk − sk + 1)

Γ(pk + sk + 3− 2α1)

(
λ

2

)2sk

|u|2
H

sk+3,1

β (Q)

+x
2(1−α1−β)
k−1 x−2α2

l−1

Γ(pl − sl + 1)

Γ(pl + sl + 3− 2α2)

(
λ

2

)2sl

|u|2
H

sl+3,1

β (Q)

)
.

(43)

For the construction of a continuous ϕ(x, y) ∈ Sp(Qn
σ) we have to investigate the jumps of

ψkl from Rkl to its neighboring elements. Let 1 ≤ k ≤ n − 1, 1 ≤ l ≤ n. Then ψk,l and
ψk+1,l coincide with u(x, y) at the points (x, y) = (xk, xl) and (xk, xl−1). The di�erence
w̃r

kl = (ψk+1,l − ψk,l)|γr
kl
vanishes at the endpoints of the common side γrkl = {xk} × [xl−1, xl]

of Rkl and Rk+1,l. w̃
r
kl is a polynomial of degree ≤ pl in y. Due to Lemma 7.5 in [38] there
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is a polynomial wr
kl of degree pl in y and of degree 1 in x such that for xl−1 ≤ y ≤ xl

we have wr
kl(xk, y) = w̃r

kl(y). The polynomial wr
kl vanishes at the other sides of Rkl. For

0 ≤ α1 + α2 ≤ 1

∥Dαwr
kl(x, y)∥2L2(Rkl)

(44)

≤ C (h1−2α1

k h
2(1−2α2)
l ∥∂yw̃r

kl(y)∥2L2(γr
kl)

≤ C
(
h1−2α1

k h
2(1−2α2)
l (∥∂y(ψkl − u)∥2L2(γr

kl)
+ ∥∂y(ψk+1,l − u)∥2L2(γr

kl)
)
)

(45)

Analogously we have w̃o
kl = (ψk+1,l − ψk,l)|γo

kl
at the common side γokl = [xk−1, xk] × {xl} of

Rkl and Rk,l+1.ψk,1 and ψk+1,1(1 ≤ k ≤ n − 1) coincide with u(x, y) at the endpoints of the
common side. By construction ψk,1 and ψk+1,1 are linear in y, i.e. there is no jump between
ψk,1 and ψk+1,1. The same result holds for ψ1,l and ψ1,l+1(1 ≤ l ≤ n− 1). Therefore we have
wr

k1 = 0 for 1 ≤ k ≤ n− 1 and wo
1l = 0 for 1 ≤ l ≤ n− 1.

Figure 10: Mesh near corner (left) and element-to-element interfaces (right)

Let for 1 ≤ k, l ≤ n− 1
ϕk,l = ψk,l + wr

kl + wo
kl. (46)

Due to construction we have at the common side γrkl = xk × [xl−1, xl] of Rkl and Rk+1,l for
1 ≤ k ≤ n− 1, 1 ≤ l ≤ n

(ϕk+1,l−ϕk,l)|γr
kl

= (ψk+1,l−ψk,l+w
r
k+1,l−wr

kl+w
o
k+1l−wo

kl)|γr
kl

= (ψk+1,l−ψk,l−wr
k,l)|γr

kl
= 0.
(47)

Analogously we have on the common side γokl = [xk−1, xk]× xl of Rk,l+1 and Rk,l for 1 ≤ k ≤
n, 1 ≤ l ≤ n− 1

(ϕk,l+1−ϕk,l)|γo
kl

= (ψk,l+1−ψk,l+w
r
k,l+1−wr

kl+w
o
k,l+1−wo

kl)|γo
kl

= (ψk,l+1−ψk,l−wo
k,l)|γo

kl
= 0.
(48)

Therefore there is a continuous function ϕ with ϕ|Rkl
= ϕk,l, i.e. ϕ ∈ Sp,1(Qn

σ) and, using
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Lemma 2.1,

∥Dα(uA − ϕA)∥2L2(Q) =

n∑
k,l=1

∥Dα(uA − ψkl − wr
kl − wo

kl)∥2L2(Rkl)

≤ 3

n∑
k,l=1

∥Dα(uA − ψkl)∥2L2(Rkl)
+ 3

n−1∑
k=1

n∑
l=2

∥Dαwr
kl∥2L2(Rkl)

+ 3

n∑
k=2

n−1∑
l=1

∥Dαwo
kl∥2L2(Rkl)

≤ 3

n∑
k,l=1

∥Dα(uA − ψkl)∥2L2(Rkl)

+ C

n−1∑
k=1

n∑
l=2

h1−2α1

k h
2(1−2α2)
l (∥∂y(uA − ψkl)∥2L2(γo

kl)
+ ∥∂y(uA − ψk+1,l)∥2L2(γo

kl)
)

+ C

n∑
k=2

n−1∑
l=1

h
2(1−α1)
k h1−2α2

l (∥∂x(uA − ψkl)∥2L2(γo
kl)

+ ∥∂x(uA − ψk,l+1)∥2L2(γo
kl)

). (49)

In the following we estimate the terms on the side γokl. The terms on γrkl can be estimated
analogously. For 2 ≤ k, l ≤ n we have

h
2(1−α1)
k h1−2α2

l ∥∂x(uA − ψkl)∥2L2(γo
kl)

≤ Ch
2(1−α1)
k h1−2α2

l (h−1
l ∥∂x(uA − ψkl)∥2L2(Rkl)

+ hl∥∂x∂y(uA − ψkl)∥2L2(Rkl)
)

= C
(
h
2(1−α1)
k h−2α2

l ∥∂x(uA − ψkl)∥2L2(Rkl)
+ h

2(1−α1)
k h

2(1−α2)
l ∥∂x∂y(uA − ψkl)∥2L2(Rkl)

)
.

(50)

Therefore using Theorem 6.7 and hk = λxk−1, we get

h
2(1−α1)
k h1−2α2

l ∥∂x(uA − ψkl)∥2L2(γo
kl)

≤ Ch
2(1−α1)
k h−2α2

l

(
x
2(1−1−β)
k−1 x0l−1

Γ(pk − sk + 1)

Γ(pk + sk + 1)

(
λ

2

)2sk

|u|2
H

sk+3,1

β (Q)

+ x
2(1−0−β)
l−1 x−2

k−1

Γ(pl − sl + 1)

Γ(pl + sl + 1)

(
λ

2

)2sl

|u|2
H

sl+3,1

β (Q)

)

+ Ch
2(1−α1)
k h1−2α2

l

(
x
2(1−1−β)
k−1 x−2

l−1

Γ(pk − sk + 1)

Γ(pk + sk + 1)

(
λ

2

)2sk

|u|2
H

sk+3,1

β (Q)

+ x
2(1−1−β)
l−1 x−2

k−1

Γ(pl − sl + 1)

Γ(pl + sl + 1)

(
λ

2

)2sl

|u|2
H

sl+3,1

β (Q)

)

≤ C

(
x
2(1−α1−β)
k−1 x−2α2

l−1

Γ(pk − sk + 1)

Γ(pk + sk + 1)

(
λ

2

)2sk

|u|2
H

sk+3,1

β (Q)

+x−2α1

k−1 x
2(1−α2−β)
l−1

Γ(pl − sl + 1)

Γ(pl + sl + 1)

(
λ

2

)2sl

|u|2
H

sl+3,1

β (Q)

)
.
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Hence,

n∑
k=2

n∑
l=2

h
2(1−α1)
k h1−2α2

l ∥∂x(uA − ψkl)∥2L2(γo
kl)

≤ C

n∑
k=2

n∑
l=2

x
2(1−α1−β)
k−1 x−2α2

l

Γ(pk − sk + 1)

Γ(pk + sk + 1)

(
λ

2

)2sk

|u|2
H

sk+3,1

β (Q)

+ C

n∑
k=2

n∑
l=2

x−2α1

k−1 x
2(1−α2−β)
l−1

Γ(pl − sl + 1)

Γ(pl + sl + 1)

(
λ

2

)2sl

|u|2
H

sl+3,1

β (Q)
. (51)

The terms in (51) are of the form (43). Due to the symmetry of (51) in k and l, resp. α1 and
α2, it is su�cient to investigate the following term

n∑
k=2

n∑
l=2

x
2(1−α1−β)
k−1 x−2α2

l

Γ(pk − sk + 1)

Γ(pk + sk + 1)

(
λ

2

)2sk

|u|2
H

sk+3,1

β (Q)

for (α1, α2) = (0, 0), (1, 0) and (0, 1), respectively.
When α1 = α2 = 0, we use xk = σn−k to obtain

n∑
k=2

n∑
l=2

x
2(1−β)
k−1 x0l

Γ(pk − sk + 1)

Γ(pk + sk + 1)

(
λ

2

)2sk

|u|2
H

sk+3,1

β (Q)

= (n− 1)σ2(1−β)(n−1)
n∑

k=2

σ2(1−β)(−k+2)Γ(pk − sk + 1)

Γ(pk + sk + 1)

(
λ

2

)2sk

|u|2
H

sk+3,1

β (Q)
.

When α1 = 1, α2 = 0, we similarly have

n∑
k=2

n∑
l=2

x−2β
k−1x

0
l

Γ(pk − sk + 1)

Γ(pk + sk + 1)

(
λ

2

)2sk

|u|2
H

sk+3,1

β (Q)

= (n− 1)σ−2β(n−1)
n∑

k=2

σ−2β(−k+2)Γ(pk − sk + 1)

Γ(pk + sk + 1)

(
λ

2

)2sk

|u|2
H

sk+3,1

β (Q)
.

When α1 = 0, α2 = 1 we use
∑n

l=2 x
−2
l =

∑n
l=2 σ

−2(n−l+1) ≲ σ−2(n−1) and obtain

n∑
k=2

n∑
l=2

x
2(1−β)
k−1 x−2

l

Γ(pk − sk + 1)

Γ(pk + sk + 1)

(
λ

2

)2sk

|u|2
H

sk+3,1

β (Q)

=

(
n∑

l=2

x−2
l

)
n∑

k=2

x
2(1−β)
k−1

Γ(pk − sk + 1)

Γ(pk + sk + 1)

(
λ

2

)2sk

|u|2
H

sk+3,1

β (Q)

≤ (n− 1)σ−2(n−1)σ2(1−β)(n−1)
n∑

k=2

σ2(1−β)(−k+2)Γ(pk − sk + 1)

Γ(pk + sk + 1)

(
λ

2

)2sk

|u|2
H

sk+3,1

β (Q)

= (n− 1)σ−2β(n−1)
n∑

k=2

σ2(1−β)(−k+2)Γ(pk − sk + 1)

Γ(pk + sk + 1)

(
λ

2

)2sk

|u|2
H

sk+3,1

β (Q)
.

Now we are investigating the terms ∥∂x(uA − ψkl)∥2L2(γo
kl)

for the strips at the edges in (49)
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separately. Using Theorem 6.6, h1 = x1 and |u|
H

sk+2,1

β (Q)
≤ |u|

H
sk+3,1

β (Q)
, we have

n∑
k=2

h
2(1−α1)
k h1−2α2

1 ∥∂x(uA − ψkl)∥2L2(γo
kl)

≤ C

n∑
k=2

h
2(1−α1)
k h1−2α2

1 h−1
1 x−2

k−1

(
h
2(1−β)
1 + x

2(1−β)
k−1

) Γ(pk − sk + 1)

Γ(pk + sk + 1)

(
λ

2

)2sk

|u|2
H

sk+2,1

β (Q)

≤ C

n∑
k=2

x−2α1

k−1 x
2(1−β−α2)
1

Γ(pk − sk + 1)

Γ(pk + sk + 1)

(
λ

2

)2sk

|u|2
H

sk+2,1

β (Q)

+ C

n∑
k=2

x
2(1−β−α1)
k−1 x−2α2

1

Γ(pk − sk + 1)

Γ(pk + sk + 1)

(
λ

2

)2sk

|u|2
H

sk+3,1

β (Q)
. (52)

The terms in (52) are of the form (43), and they are the leading terms in the summation of
(51). Therefore the bounds obtained in (51) equally apply to (52) and (43).

Due to u ∈ B1
β(Q) we have now u ∈ Hsk+3,1

β (Q) with |u|
H

sk+3,1

β (Q)
≤ Cdsk+2Γ(sk + 3).

Therefore we obtain with ϱ = max(1, λ)

n∑
k=2

σ2(1−β)(−k+2)Γ(pk − sk + 1)

Γ(pk + sk + 1)

(
λ

2

)2sk

|u|2
H

sk+3,1

β (Q)

≤
n∑

k=2

σ2(1−β)(−k+2)Γ(pk − sk + 1)

Γ(pk + sk + 1)

(
ϱd

2

)2(sk+2)

Γ(sk + 3)2. (53)

On the other hand setting

F (α, d) =
(1− α)1−α

(1 + α)1+α

(
αd

2

)2α

(54)

there holds for sk = αpk (see [32])

Γ(pk − sk + 1)

Γ(pk + sk + 1)

(
ϱd

2

)2sk+2

(Γ(sk + 3))2 ≤ C F (α, ϱd)
pk p

2−(−2)+0·2+1
k = C F (α, ϱd)

pk p5k

where pk = max(2, 1 + [µ(k − 1)]) for µ > 0 (k = 2, . . . , n). Setting αk = max(1/pk, αmin),
k = 2, . . . , n, with αmin = 2√

4+ϱ2d2
, we get that (53) is bounded by

n∑
k=2

σ2(1−β)(−k+2)F (αk, ϱd)
pk p5k. (55)

Let Fmin := F (αmin, ϱd) and

µ >
2(1− β) log σ

logFmin
(56)

and let k0 be de�ned by the equation pk0
=
[

1
αmin

]
+ 1. Then k0 is bounded, yielding

pk0
= [µ(k0 − 1)] ≤ 1

αmin
+ 2. (57)

Therefore we can bound (55) by

k0∑
k=2

σ2(1−β)(−k+2)F (1/pk, ϱd)
pk p5k +

n∑
k=k0+1

σ2(1−β)(−k+2)(Fmin)
pkp5k. (58)
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There holds

σ2(1−β)(1−k)F pk

min = σ2(1−β)F
[µ(k−1)]+1
min

σ2(1−β)k
≤ C σ2(1−β)

(
Fµ
min

σ2(1−β)

)k

(59)

and Fµ
min < σ2(1−β), due to Fmin < 1 (see (56) and Theorem 5.1 in [32].) Therefore we have

q :=
Fµ

min

σ2(1−β) < 1 and
∑

k>k0
qkk5 < ∞. Hence the series on the right hand side in (58) is

bounded. Altogether this yields the estimates

∥uA − ϕA∥2L2(Q) ≤ C (n− 1)1/2σ(1−β)(n−1) (60)

∥uA − ϕA∥2H1(Q) ≤ C (n− 1)1/2σ−β(n−1) (61)

Thus we have by interpolation

∥uA − ϕA∥2Hs(Q) ≤ C e−2bn (62)

for n ≥ n0 with a �xed integer n0 and with b = −((log n0)/n0 + (2(1− s)− β) log σ) > 0. For
the number of degrees of freedom N = dimSp(Qn

σ) we have

N =

(
2 +

n−1∑
i=1

(1 +max(2, 1 + [µi]))

)2

≤
(
2(n+ 1) + µ

n(n− 1)

2

)2

≤ C n4.

Finally we get

∥uA − ϕA∥H̃s(Q) ≃ ∥uA − ϕA∥Hs(Q) ≤ C e−bN1/4

. (63)

6.2.2 Construction of ϕB and ϕC

Note that u = uA + uB on [h1, 1] × [0, h1], because u
C + uD = 0 there. Thus u − ϕ =

uA + uB − (ϕA + ϕB) = uA − ϕA + uB), choosing ϕB = 0. Hence,

∥u− ϕ∥Hs([h1,1]×[0,h1]) ≲ ∥uA − ϕA∥Hs([h1,1]×[0,h1]) + ∥uB∥Hs([h1,1]×[0,h1]).

Note that the �rst term on the right hand side was already treated above. For the second
term we know uB = u(x, y)−Iyu(x, y) on [h1, 1]× [0, h1]. Therefore, Lemma 6.2 gives together
with Lemma 6.1 that

∥uB∥Hs([h1,1]×[0,h1]) ≲ h
3
2−s−β
1 ∥u∥H2,1

β ([h1,1]×[0,h1])
.

Furthermore, for uB(x, y) = x
h1
u(h1, y)− x

h1
Ihu(h1, y) in [0, h1]

2 we �nd

∥y1−s∂yu
B∥L2(Q) = ∥y1−s∂yu

B∥L2([0,1]×[0,h1]) ≲ h1−s−β∥u∥H3,1
β (Q).

Using (for simplicity, s ̸= 1
2 ) the equivalence of ∥u− ϕ∥H̃s and ∥u− ϕ∥Hs , Lemma 2.1 gives,

∥uB∥H̃s(Q) ≲ h1−s−β
1 ∥u∥H3,1

β ([h1,1]×[0,h1])
.

As h1 = σn−1, convergence again is exponential.
The corresponding result for uC follows by symmetry.
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6.2.3 Construction of ϕD

Note that on [0, h1]
2 we have uA − ϕA = 0 and uB − ϕB = 0 with ϕB = 0. Hence, u − ϕ =

uD − ϕD on [0, h1]
2, and Lemma 6.4 together with Lemma 6.1 gives

∥u− ϕ∥Hs([0,h1]2) = ∥uD − ϕD∥Hs([0,h1]2) ≲ h1−s−β
1 ∥uB∥H2,1

β ([0,h1]2)
,

and using (for simplicity, s ̸= 1
2 ) the equivalence of ∥u−ϕ∥H̃s and ∥u−ϕ∥Hs and Lemma 2.1,

∥u− ϕ∥H̃s(Q) ≲ h1−s−β
1 ∥uB∥H2,1

β ([0,h1]2)
.

As h1 = σn−1, convergence again is exponential.
Finally, note that on [h1, 1]

2 we have u = uA and ϕ = ϕA, while uB = uC = uD = 0.
Hence u− ϕ = uA − ϕA on [h1, 1]

2.

Combining all the above approximation results, we conclude

∥u− ϕ∥H̃s(Q) ≲ ∥uA − ϕA∥H̃s(Q) + ∥uB∥H̃s(Q) + ∥uC∥H̃s(Q) + ∥uD − ϕD∥H̃s(Q) ≲ Ce−bN1/4

.

This concludes the proof of Theorem 4.4.

7 Implementation

We brie�y address the details of the implementation for the bilinear form a from (4) for the
hp version on quadrilateral elements. The implementation of the h version on quasi-uniform
meshes is discussed in [28, 29].

Let Ln(x) be Legendre polynomials over [0, 1] with L0(x) = 1, L1(x) = 2x − 1 and for
n ≥ 2

Ln(x) =
2n− 1

n
(2x− 1)Ln−1(x)−

n− 1

n
Ln−2(x).

Further de�ne integrated Legendre polynomials L̃n(x) over [0, 1] by L̃0(x) = 1−x, L̃1(x) = x
and for n ≥ 2

L̃n(x) =
1

2n− 1
(Ln(x)− Ln−2(x))

Note that for n ≥ 2 the integrated Legendre polynomials L̃n(x) vanish at the endpoints of
[0, 1].
Let Sp be the space of polynomials of degree at most p.

On the reference rectangular element Q = [0, 1]2 we de�ne the basis functions as tensor

products of the integrated Legendre polynomials L̃n(x),

φk,l|Q(x) = L̃k(x1)L̃l(x2), 0 ≤ k ≤ px1 , 0 ≤ l ≤ px2 ,

and φk,l(x) = 0 outside Q, see for example [49]. Here px1
, px2

are the maximal polynomial
degrees in x1 and x2 directions, respectively.

Let Qh be a mesh of M rectangular elements τm and R boundary edges er ∈ ∂Qh.
Let χm : Q → τm be an a�ne transformation from a reference element Q = [0, 1]2 to
the element τm ∈ Qh and χr : e → er be an a�ne transformation from a reference edge
e = [0, 1] to the boundary edge er ∈ ∂Qh. Furthermore, let φ̃m

k,l|τm(x) := φk,l(χ
−1
m (x)) and let

p = (p1, p2, . . . , pM ) be a vector of polynomial pairs pm = (pm,x1
, pm,x2

) associated with
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Figure 11: Solution for s = 0.75 and p = 1 in the square domain in Example 8.1.

an element τm for all elements in Qh.

We then implement the bilinear form a associated with the Dirichlet problem for the
integral fractional Laplacian in S̃hp ⊂ H̃s(Ω), the �nite element subspace given by

S̃hp = {u ∈ H̃s(Ω) : u continuous, u|τm ∈ Ppm,x1 ,pm,x2 , ∀τm ∈ Th}.

Global basis functions are obtained by combining the local basis functions which do not vanish
at the boundaries of the elements.

Entries of the sti�ness matrix K are then obtained by combining the entries

Km,n
(i,j)(k,l) =

c2,s
2

∫∫
Ω×Ω

(φ̃m
i,j(x)− φ̃m

i,j(y))(φ̃
n
k,l(x)− φ̃n

k,l(y))

|x− y|2+2s
dy dx

+
c2,s
2s

∫∫
Ω×∂Ω

φ̃m
i,j(x)φ̃

n
k,l(x)(x− y) · ny

|x− y|2+2s
dy dx .

The integrals are computed using a composite graded quadrature as discussed in [11]. The
computations are carried out on the quasi-uniform and geometrically graded meshes discussed
in Section 4. Examples of geometrically graded meshes are depicted in Figures 7 and 8.

8 Numerical experiments

In this section all errors are measured in the norm of H̃s(Ω), i.e. the energy norm.

8.1 hp version on quasi-uniform meshes

Example 8.1. We consider the discretization of the Dirichlet problem (1) with f = 1 in the
square domain Ω = [−1, 1]2 ⊂ R2 depicted in Figure 6 using quasi-uniform meshes. We
examine fractional exponents s = 1

4 ,
1
2 ,

3
4 ,

9
10 . A numerical solution for s = 3

4 and p = 1 is
shown in Figure 11.

The theoretically predicted convergence rates are con�rmed in Figures 12 and 13. Figure 12
examines h�convergence in the energy norm for s = 3

4 for di�erent values of polynomial degree
p = 1, 2, 3 on quasi�uniform meshes. The observed rates of convergence are approximately
0.5, in agreement with the theoretical approximation results, which predict an approximation
error bounded by h1/2.
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Figure 12: Convergence in h for s = 0.75 and di�erent values of p on quasi�uniform meshes for

Example 8.1.

Next, the convergence with respect to the polynomial degree p is examined in Figure 13 for
di�erent values of s = 1

4 ,
1
2 ,

3
4 ,

9
10 on a �xed quasi�uniform mesh with hmin = 0.14. Polynomial

degrees up to p = 9 are considered. The observed convergence rates in p are close to 1: −1.01
(s = 1

4 ), −0.996 (s = 1
2 ), −1.00 (s = 3

4 ), −1.01 (s = 9
10 ). They agree with the theoretical

approximation results, which predict an approximation error proportional to p−1.

Example 8.2. We consider the discretization of the Dirichlet problem (1) with f1 = 1, respec-
tively f2 = sin(2 + 0.2 · (x− y)), in the L-shaped domain Ω = [−1, 3]2 \ [1, 3]2 ⊂ R2 depicted
in Figure 7 using quasi-uniform meshes. We examine fractional exponents s = 1

4 ,
1
2 ,

3
4 ,

9
10 . A

numerical solution on a mesh with 3968 elements for s = 0.75 and p = 1 is shown in Figure 14
for f1, respectively in Figure 15 for f2.

For f1, the theoretically predicted convergence rates are illustrated in Figures 16 and
18. Figure 16 examines h�convergence in the energy norm for s = 3

4 for di�erent values of
polynomial degree p = 1, 2, 3 on quasi�uniform meshes. The observed rate of convergence
is approximately 0.5. Like in Example 8.1 the rates agree with the theoretical expectations.
Figure 17 shows the results of analogous experiments for the right hand side f2, with identical
conclusions as for the right hand side f1.
The convergence with respect to the polynomial degree p is examined in Figure 18 for di�erent
values of s = 1

4 ,
1
2 ,

3
4 ,

9
10 for a �xed quasi�uniform mesh with h = 0.16. Polynomial degrees

up to p = 9 are considered. The observed convergence rates in p are again compatible with
−1.0: −1.012 (s = 1

4 ), −1.014 (s = 1
2 ), −1.004 (s = 3

4 ), −1.017 (s = 9
10 ). They agree with

the theoretically expected convergence proportional to p−1. Figure 19 shows the results of
analogous experiments for the right hand side f2, with identical conclusions as for the right
hand side f1.

8.2 hp version on geometrically graded meshes

Example 8.3. We consider the discretization of the Dirichlet problem (1) with f = 1 in the
square domain Ω = [−1, 1]2 ⊂ R2 depicted in Figure 7 using rectangular geometrically graded
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Figure 13: Convergence in p for di�erent values of s on quasi�uniform meshes in Example 8.1.

Figure 14: Solution for f1, s = 0.75 in the L�shaped domain in Example 8.2.

Figure 15: Solution for f2, s = 0.75 in the L�shaped domain in Example 8.2.
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Figure 16: Convergence in h for f1, s = 0.75 and di�erent values of p on quasi�uniform meshes in

Example 8.2.
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Figure 17: Convergence in h for f2, s = 0.75 and di�erent values of p on quasi�uniform meshes in

Example 8.2.
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Figure 18: Convergence in p for f1 and di�erent values of s on quasi�uniform meshes in Exam-

ple 8.2.
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Figure 19: Convergence in p for f2 and di�erent values of s on quasi�uniform meshes in Exam-

ple 8.2.

meshes with µ = 1, 0.5 and σ = 0.5, 0.17. We examine fractional exponents s = 1
4 ,

1
2 ,

3
4 . The

number of degrees of freedom is denoted by N .

Figure 20 depicts the energy error of the hp version on a geometrically graded mesh with
increasing N for the classical case s = 1

2 in Example 8.3. The �rst plot suggests faster than
algebraic decay by plotting the error as a function of N in logarithmic scales. The second plot
shows that the error as a function of N1/4 asymptotically follows a straight line in a semi-
logarithmic scale for all the considered choices of µ and σ. This suggests that the expected
size of the error is exp(−CN1/4) in all cases.

Figure 21 shows analogous results for s = 1
4 ,

3
4 in the semi-logarithmic scale also for higher

values of N . As for s = 1
2 the results asymptotically follow a straight line, suggesting that the

expected size of the error is exp(−CN1/4) in all cases. Note that for all values of s the mesh
grading parameter σ = 0.17 leads to the smallest errors.
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Figure 20: Convergence of hp approximations to u with respect to N and N1/4 for problem (1)

for s = 0.5, Example 8.3.
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Figure 21: Convergence of hp approximations to u for Problem (1) for s = 0.25, 0.75, Example 8.3.
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Example 8.4. We consider the discretization of the Dirichlet problem (1) with f1 = 1, respec-
tively f2 = sin(2+0.2 · (x−y)), in the L-shaped domain Ω = [−1, 3]2 \ [1, 3]2 ⊂ R2 depicted in
Figure 8 using geometrically graded meshes with µ = 1, 0.5 and σ = 0.5, 0.17. We examine
fractional exponents s = 1

4 ,
1
2 ,

3
4 . The number of degrees of freedom is denoted by N .

For f1 = 1, Figure 22 depicts the energy error of the hp version on a geometrically graded
mesh with increasing N in Example 8.4 for di�erent values of s. Like in Example 8.3, the
error asymptotically follows straight lines in the semi-logarithmic plots for all the considered
choices of µ and σ. It is therefore of the expected size exp(−CN1/4). For all values of s the
mesh grading parameter σ = 0.17 again leads to the smallest errors.

Analogous results are obtained for f2 = sin(2 + 0.2 · (x− y)), as depicted in Figure 23.

9 Conclusions

In this work we initiate the study of p and hp versions of the �nite element method for
the integral fractional Laplacian in polygonal domains, combining theoretical analysis with
extensive numerical experiments. Both quasi-uniform and geometrically graded discretizations
are considered.

On quasi-uniform meshes the asymptotic expansion for the solution obtained in [28] near
edges and corners allows us to obtain quasi-optimal estimates for the Galerkin error. In
particular, the energy error of the hp version is O(h1/2p−1), and therefore the convergence in
the polynomial degree p is twice as fast as the convergence in the mesh size h.

On a class of geometrically graded, quadrilateral meshes we prove exponentially fast con-
vergence with respect to the number of degrees of freedom, by combining an analytic regularity
result for the solution from [21] with ideas for the approximation in countably normed spaces
based on [38].

The numerical results con�rm the theoretically predicted convergence rates on quasi-
uniform and on geometrically graded meshes. They illustrate the performance of the respective
methods.

References

[1] G. Acosta, F. M. Bersetche, and J. P. Borthagaray, A short FE implemen-
tation for a 2d homogeneous Dirichlet problem of a fractional Laplacian, Computers &
Mathematics with Applications, 74 (2017), pp. 784 � 816.

[2] G. Acosta and J. P. Borthagaray, A fractional Laplace equation: regularity of
solutions and �nite element approximations, SIAM Journal on Numerical Analysis, 55
(2017), pp. 472�495.

[3] G. Acosta, J. P. Borthagaray, O. Bruno, and M. Maas, Regularity theory and
high order numerical methods for the (1d)-fractional Laplacian, Mathematics of Compu-
tation, 87 (2017), p. 1821�1857.

[4] M. Ainsworth and C. Glusa, Aspects of an adaptive �nite element method for the
fractional Laplacian: a priori and a posteriori error estimates, e�cient implementation
and multigrid solver, Computer Methods in Applied Mechanics and Engineering, 327
(2017), pp. 4�35.

[5] I. Babu²ka and M. Suri, The h-p version of the �nite element method with quasiuni-
form meshes, ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation
Mathématique et Analyse Numérique, 21 (1987), pp. 199�238.

[6] I. Babu²ka, B. A. Szabo, and I. N. Katz, The p-Version of the Finite Element
Method, SIAM J. Numer. Anal., 18 (1981), pp. 515�545.

35



3 4 5 6 7 8

10
-3

10
-2

10
-1

10
0

3 4 5 6 7 8

10
-2

10
-1

10
0

3 4 5 6 7 8

10
-2

10
-1

Figure 22: Convergence of hp approximations to u for problem (1) with f1 = 1 for di�erent values

of s = 0.25, 0.5, 0.75, Example 8.4.

36



3 4 5 6 7 8 9

10
-2

10
-1

10
0

Figure 23: Convergence of hp approximations to u for problem (1) with f2 = sin(2+ 0.2 · (x− y))
for s = 0.75, Example 8.4.

[7] L. Banjai, J. M. Melenk, R. H. Nochetto, E. Otarola, A. J. Salgado, and
C. Schwab, Tensor FEM for spectral fractional di�usion, Foundations of Computational
Mathematics, 19 (2019), pp. 901�962.

[8] A. Bespalov and N. Heuer, The hp-version of the boundary element method with
quasi-uniform meshes in three dimensions, ESAIM: M2AN, 42 (2008), pp. 821�849.

[9] A. Bonito, J. P. Borthagaray, R. H. Nochetto, E. Otárola, and A. J. Sal-
gado, Numerical methods for fractional di�usion, Computing and Visualization in Sci-
ence, 19 (2018), pp. 19�46.

[10] L. Caffarelli and L. Silvestre, An extension problem related to the fractional lapla-
cian, Communications in Partial Di�erential Equations, 32 (2007), pp. 1245�1260.

[11] Chernov, Alexey, von Petersdorff, Tobias, and Schwab, Christoph, Expo-
nential convergence of hp quadrature for integral operators with gevrey kernels, ESAIM:
M2AN, 45 (2011), pp. 387�422.

[12] M. Dauge, Elliptic boundary value problems on corner domains: smoothness and asymp-
totics of solutions, vol. 1341 of Lecture Notes in Mathematics, Springer, 1988.

[13] E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker's guide to the fractional
Sobolev spaces, Bulletin des Sciences Mathématiques, 136 (2012), pp. 521�573.

[14] M. R. Dorr, The Approximation Theory for the p-Version of the Finite Element Method,
SIAM J. Numer. Anal., 21 (1984), pp. 1180�1207.

[15] , The Approximation of Solutions of Elliptic Boundary-Value Problems via the p-
Version of the Finite Element Method, SIAM J. Numer. Anal., 23 (1986), pp. 58�77.

[16] Q. Du, An invitation to nonlocal modeling, analysis and computation, in Proceedings
International Congress of Mathematicians, Rio de Janeiro, 2018, pp. 3523�3552.

[17] S. Duncan, G. Estrada-Rodriguez, J. Stocek, M. Dragone, P. A. Vargas,
and H. Gimperlein, E�cient quantitative assessment of robot swarms: coverage and
targeting lévy strategies, Bioinspiration & Biomimetics, 17 (2022), p. 036006.

[18] G. Estrada-Rodriguez and H. Gimperlein, Interacting particles with lévy strate-
gies: Limits of transport equations for swarm robotic systems, SIAM Journal on Applied
Mathematics, 80 (2020), p. 476�498.

37



[19] G. Estrada-Rodriguez, H. Gimperlein, and K. J. Painter, Fractional Patlak-
Keller-Segel equations for chemotactic superdi�usion, SIAM Journal on Applied Mathe-
matics, 78 (2018), pp. 1155�1173.

[20] G. Estrada-Rodriguez, H. Gimperlein, K. J. Painter, and J. Stocek, Space-
time fractional di�usion in cell movement models with delay, Mathematical Models and
Methods in Applied Sciences, 29 (2019), pp. 65�88.

[21] M. Faustmann, C. Marcati, J. M. Melenk, and C. Schwab, Weighted analytic
regularity for the integral fractional Laplacian in polygons, preprint, (2021).

[22] , Exponential convergence of hp-fem for the integral fractional laplacian in 1d, arXiv
preprint arXiv:2204.04113, (2022).

[23] , Exponential convergence of hp FEM for the Integral Fractional Laplacian in poly-
gons, preprint, (2022).

[24] P. Gatto and J. S. Hesthaven, Numerical Approximation of the Fractional Laplacian
via hp-�nite Elements, with an Application to Image Denoising, Journal of Scienti�c
Computing, 65 (2015), pp. 249�270.

[25] G. Gilboa and S. Osher, Nonlocal operators with applications to image processing,
Multiscale Modeling & Simulation, 7 (2008), pp. 1005�1028.

[26] H. Gimperlein, N. Louca, and R. Mazzeo, , in preparation, (2022).

[27] H. Gimperlein, C. Özdemir, D. Stark, and E. P. Stephan, hp-version time domain
boundary elements for the wave equation on quasi-uniform meshes, Computer Methods
in Applied Mechanics and Engineering, 356 (2019), pp. 145�174.

[28] H. Gimperlein, E. P. Stephan, and J. Stocek, Corner Singularities for the Frac-
tional Laplacian and Finite Element Approximation, preprint, (2022).

[29] H. Gimperlein and J. Stocek, Space�time adaptive �nite elements for nonlocal
parabolic variational inequalities, Computer Methods in Applied Mechanics and Engi-
neering, 352 (2019), pp. 137�171.

[30] H. Gimperlein, J. Stocek, and C. Urzúa-Torres, Optimal operator preconditioning
for pseudodi�erential boundary problems, Numerische Mathematik, 148 (2021), pp. 1�41.

[31] G. Grubb, Fractional Laplacians on domains, a development of Hörmander's theory
of µ-transmission pseudodi�erential operators, Advances in Mathematics, 268 (2015),
pp. 478 � 528.

[32] B. Guo and I. Babu²ka, The hp version of the �nite element method. part 1: The basic
approximation results, Computational Mechanics, 1 (1986), pp. 21�41.

[33] J. Gwinner and E. P. Stephan, Advanced Boundary Element Methods�Treatment of
Boundary Value, Transmission and Contact Problems, Springer, 2018.

[34] N. Heuer, M. Maischak, and E. P. Stephan, Exponential convergence of the hp-
version for the boundary element method on open surfaces, Numerische Mathematik, 83
(1999), pp. 641�666.

[35] N. Heuer and E. P. Stephan, The hp-version of the boundary element method on
polygons, J. Integral Equations Applications, 8 (1996), pp. 173�212.

[36] N. Heuer and E. P. Stephan, Boundary integral operators in countably normed spaces,
Mathematische Nachrichten, 191 (1998), pp. 123�151.

[37] H. Holm, M. Maischak, and E. Stephan, Exponential convergence of the h�p version
bem for mixed boundary value problems on polyhedrons, Mathematical Methods in the
Applied Sciences, 31 (2008), pp. 2069�2093.

[38] M. Maischak, FEM/BEM methods for Signorini-type problems � error analysis, adap-
tivity, preconditioners, PhD thesis, Habilitation thesis, Universität Hannover, 2004.

38



[39] J. M. Melenk and A. Rieder, hp-FEM for the fractional heat equation, IMA Journal
of Numerical Analysis, 41 (2020), pp. 412�454.

[40] T. Petersdorff and E. P. Stephan, Decompositions in edge and corner singularities
for the solution of the Dirichlet problem of the Laplacian in a polyhedron, Mathematische
Nachrichten, 149 (1990), pp. 71�103.

[41] T. v. Petersdorff, Randwertprobleme der Elastizitätstheorie für Polyeder-
Singularitäten und Approximation mit Randelementmethoden, PhD thesis, Technische
Universität Darmstadt, 1989.

[42] T. v. Petersdorff and E. P. Stephan, Regularity of mixed boundary value problems
in R3 and boundary element methods on graded meshes, Mathematical Methods in the
Applied Sciences, 12 (1990), pp. 229�249.

[43] C. Schwab, p- and hp- Finite Element Methods: Theory and Applications in Solid and
Fluid Mechanics, Numerical Mathematics and Scienti�c Computation, Oxford University
Press, Oxford, New York, 1998.

[44] C. Schwab and M. Suri, The Optimal p-Version Approximation of Singularities on
Polyhedra in the Boundary Element Method, SIAM J. Numer. Anal., 33 (1996), pp. 729�
759.

[45] E. P. Stephan and M. Suri, The hp-version of the boundary element method on polyg-
onal domains with quasiuniform meshes, ESAIM: M2AN, 25 (1991), pp. 783�807.

[46] E. P. Stephan and T. Tran, Schwarz Methods and Multilevel Preconditioners for
Boundary Element Methods, Springer, 2021.

[47] J. Stocek, E�cient �nite element methods for the integral fractional Laplacian and
applications, PhD thesis, Heriot-Watt University and University of Edinburgh, 2021.

[48] T. von Petersdorff and E. P. Stephan, Singularities of the solution of the Laplacian
in domains with circular edges, Applicable Analysis, 45 (1992), pp. 281�294.

[49] P. �olín, Partial di�erential equations and the �nite element method, vol. 73, John Wiley
& Sons, 2005.

[50] P. Wilmott, J. Dewynne, and S. Howison, Option pricing: mathematical models
and computation, Oxford Financial Press, Oxford, 1993.

39


