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Abstract

The solution to the elastodynamic equations in the exterior of a polygonal or polyhedral do-
main or a screen exhibits singularities at corners and edges. This paper presents a space-time
boundary element method in 3D on algebraically graded meshes to resolve these singularities,
based on recently obtained error estimates for the weakly singular integral equation. Numer-
ical examples show the efficiency of the proposed approach. They confirm the theoretically
predicted, quasi-optimal convergence rates and study the singular behavior of the solution for
typical 3D geometries with edges, corners or cone points.
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1 Introduction
The displacement and stress of an elastic body exhibit singular behavior from edges, corners

or cone points. Their asymptotic behavior near such geometric singularities is well-understood for
static problems [17, 25, 29]. Numerically, singular expansions of the displacement and stresses are
the basis of efficient approximations by h, p and hp finite [37] or boundary element methods [27],
which recover the optimal convergence rates known for smooth solutions.

Corresponding methods for elastodynamic problems are only starting to be explored. Founda-
tional works by Plamenevskǐı and collaborators [31, 30] demonstrate that the transient displace-
ment and stresses exhibit singular behavior of the same kind as in static problems. More precisely,
their results imply that at any given time the transient singular expansions near an edge or a cone
point involve the same singular functions known from the static case, with coefficients varying
smoothly in time. Müller and Schwab [32] later used these analytical results to obtain optimal
convergence rates for a finite element method on graded meshes in 2D polygonal domains. Recent
work by Aimi, Di Credico, Gimperlein and Stephan [4] extends the theoretical analysis to h and hp
boundary element methods for elastodynamics, confirmed by numerical experiments in 2D model
cases.

In this article we study h-versions of the boundary element method for elastodynamics in 3D
polyhedral domains or, as the most challenging case, in the complement of a polygonal screen. The
singular expansion of the boundary traction leads to quasi-optimal convergence rates for boundary

∗Corresponding Author, Heiko.Gimperlein@uibk.ac.at
†A. Aimi, L. Desiderio and C. Guardasoni are members of the INdAM-GNCS Research Group, Italy. L. Desiderio

is a member of the Accademia Peloritana dei Pericolanti, Messina, Italy.

1



element approximations on algebraically graded meshes. Detailed numerical experiments confirm
the predicted convergence rates and the precise singular behavior of the solutions.

To be specific, we consider elastodynamic wave propagation in a polyhedral domain or outside
a polygonal screen, with prescribed displacement on the boundary Γ . To solve this problem
numerically, we formulate it as an equivalent time-dependent integral equation for the single layer
operator on the boundary. Its solution is numerically approximated using a space-time Galerkin
boundary element method based on tensor product elements on a quasi-uniform or graded mesh
for Γ in space and a uniform mesh in time.

As obtained in [4], the approximation rate is governed by the above-mentioned geometric
singularities of the traction on the boundary. We review the behavior of traction and displacement
for typical singular 3D geometries and, in a Theorem in Subsection 5.2, deduce an a priori error
estimate for the error of the h-method on algebraically graded meshes. Essentially, the convergence
rate on β-graded meshes (defined in Subsection 5.1) is improved by a factor β with respect to the
rate on quasi-uniform meshes, until the quasi-optimal rate 3

2 is achieved for large β. Note that,
unlike in two space dimensions, quasi-optimal convergence rates cannot be obtained on shape-
regular meshes: the thin, anisotropic elements of a graded mesh are required for the quasi-optimal
approximation of edge singularities.

Detailed numerical experiments are presented in typical 3D geometries with edges, corners
or cone points. They study the convergence rates on algebraically graded and quasi-uniform
meshes for these singular geometries, as well as the leading singular behavior of the solution. The
numerical results underline the theoretical predictions.

Our work contributes to the active developments in boundary element methods for acoustic
and elastodynamic wave equations based on both space-time Galerkin and convolution quadrature
methods, see [8, 16, 28, 21] for an overview. Our approach is based on formulations related to
the energy of the system [1], which assures unconditional stability. The application of boundary
element methods to problems in elastodynamics has a long history in engineering [5], and the
mathematical analysis was started in [10, 11] for scattering and for crack problems. Recent works
on the numerical analysis and computational aspects of elastodynamic problems include [3, 4, 13,
18, 20, 36].

For time independent elastic problems in polygonal or polyhedral domains, the study of sin-
gular expansions near non-smooth boundary points has a long history, partly motivated by the
difficulty to compute quantities of interest like stress intensity factors. Beyond the general refer-
ences mentioned at the beginning of this Introduction, we refer to [6, 7, 9, 12, 15, 34] for examples
and applications motivating the current work. Based on such expansions, von Petersdorff [35] first
derived quasi-optimal convergence rates for boundary elements on algebraically graded meshes for
the Laplace equation.

The article is organized as follows: after presenting the model problem in the Section 2, Section
3 reviews the singular expansion of displacement and stress near non-smooth boundary points,
like edges, corners and cone points. The weak formulation of the boundary integral equation
is discussed in Section 4. Section 5 then introduces the boundary element discretization based
on piece-wise polynomial approximations of the solution for uniform time steps and algebraically
graded meshes in space. It presents an a priori error estimate, showing a quasi-optimal convergence
rate, and discusses the algorithmic realization of the proposed approach. Detailed numerical results
are the content of Section 6. Section 7 outlines our conclusions. The relevant definitions of function
spaces and norms that are used in the analysis are recalled in an Appendix.

2 Model problem
In the Euclidean space R3 equipped with a fixed orthonormal Cartesian coordinate system

x = (x1, x2, x3)
⊤ with origin at O = (0, 0, 0)⊤, we consider a screen or a closed surface Γ and its

connected exterior, denoted by Ω. Further, let J := [0, T ] be a time interval for a given final time
instant T > 0. Under the assumptions of small displacement theory and in absence of external
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sources, elastodynamic wave propagation is described by the following boundary value problem
for the Navier-Cauchy equation of motion:

ϱü(x; t)−∇ · σ[u](x; t) = 0 (x; t) ∈ Ω × J

u(x; t) = u(x; t) (x; t) ∈ Γ × J

u(x; 0) = 0 x ∈ Ω

u̇(x; 0) = 0 x ∈ Ω,

(2.1a)
(2.1b)
(2.1c)
(2.1d)

where u(x; t) = (u1, u2, u3)
⊤
(x; t) and σ[u](x; t) represent, respectively, the unknown displace-

ment field and the stress tensor at point x and time t. In addition, ϱ is the mass density of the
medium occupying Ω. In problem (2.1), homogeneous initial conditions are assumed at the first
time of interest t = 0 and a Dirichlet type boundary condition u(x; t) = (ū1, ū2, ū3)

⊤
(x; t) is

prescribed on Γ . Furthermore, the superposed dot indicates time differentiation, while ∇ denotes
the nabla operator. According to linear elasticity theory, the stress-strain relation allows us to
express the tensor σ[u] as follows:

σ[u](x; t) := λ [∇ · u(x; t)] I+ µ
[
∇u(x; t) +∇u⊤(x; t)

]
, (2.2)

I being the 3-by-3 identity tensor, while µ and λ being the shear modulus and the Lamé parameter,
respectively. Since we can separate equation (2.1a) into solutions for the pressure wave (P-wave
in short) and the shear wave (S-wave in short) by taking the divergence and curl respectively, the
elastic parameters µ and λ are related to the primary and secondary wave speeds c2P := (λ+2µ)ϱ−1

and c2S := µϱ−1.

A crucial property of the Navier-Cauchy equation is the energy balance. For all t ∈ J the time-
dependent energy functional is defined as the sum of the kinetic energy and the total strain energy
[33], i.e.:

E(t) :=
1

2


ˆ

Ω

u̇2(x; t)dx+ c2S

ˆ

Ω

∇u(x; t) : ∇u(x; t)dx+ (c2P − c2S)

ˆ

Ω

[∇ · u(x; t)]2 dx

 , (2.3)

where the symbol : stands for the double inner tensor product. Testing (2.1a) against u̇(x; t),
integrating over Ω and using Green’s formula implies that

d

dt
E(t) =

ˆ

Γ

p(u)⊤(x; t)u̇(x; t)dΓx (2.4)

where p(u)(x; t) stands for the traction vector σσσ[u](x; t) · nx (in case of a screen, if Γ− and Γ+

denote respectively the lower and the upper face of Γ , then nx is oriented from Γ− to Γ+).
Integrating the relationship (2.4) over J , the homogeneous initial conditions allow us to derive the
following energy balance equation:

E(T ) =

T̂

0

ˆ

Γ

p(u)⊤(x; t)u̇(x; t)dΓxdt. (2.5)

To solve (2.1) numerically, we formulate it as an equivalent time dependent integral equation on
Γ × J , as briefly recalled in the following Section 4, i.e. we study

V[w](x; t) =

(
K+

1

2
I

)
[u](x; t), (x, t) ∈ Γ × J , (2.6)

where w := p(u)|Γ×J , involving the weakly singular integral operator V and, on the right-hand
side the double layer integral operator K, defined from a fundamental solution G to (2.1a) and
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its traction py(G), respectively, as

V[ΦΦΦ](x; t) =

ˆ t

0

ˆ
Γ

G(x,y; t, τ)ΦΦΦ(y; τ)dΓydτ ,

K[ΨΨΨ ](x; t) =

ˆ t

0

ˆ
Γ

py(G)(x,y; t, τ)TΨΨΨ(y, τ)dΓydτ .

.
Kernel tensor G represents the response of the elastic medium to a unidirectional unit δ-Dirac
impulse in space and time. In particular, its entries:

Gij(x,y; t, τ) :=
1

4πϱc2P

rirj
r3

δ

(
t− τ − r

cP

)
+

1

4πϱc2S

(
δij
r

− rirj
r3

)
δ

(
t− τ − r

cS

)
+

− 1

4πϱ

(
δij
r3

− rirj
r5

)
(t− τ)

[
H

(
t− τ − r

cP

)
−H

(
t− τ − r

cS

)]
,

(2.7)

provide the i-th component of the displacement at the observation point x and observation time
t, due to a force in the j-th direction at the source point y and emission time τ . Moreover, they
depend only on the difference r := x−y and t− τ , but not on the source point y and the emission
time τ themselves. Note that in (2.7) H(·) is the Heaviside function, while δ(·) is the Dirac impulse.

3 Singular expansion near non-smooth boundary points
For the time independent Lamé equations of elastostatics in a singular domain, detailed asymp-

totic expansions of the solution at non-smooth boundary points have been studied extensively,
partly motivated by applications to computing quantities of interest like stress intensity factors,
see e.g. [12, 15, 24, 25, 34]. We describe key results for the elastodynamic equations in geometries
with edges, cone points or corners, as relevant to this article. There the solution admits a singular
expansion into a leading part of explicit singular functions plus smoother remainder terms.

3.1 2d sector / polygon
- Elastostatic equation
We first review the time independent Lamé equations in the simple case of a polygon or sector
Ω ⊂ R2. There the singular functions at a vertex Vj are explicitly given in polar coordinates
(r, ϕ) centered at Vj , depending on the opening angle ωj at the vertex and the elastic parameters.
The result is the basis to describe edge singularities of domains in R3 and for the corresponding
elastodynamic problems.

Proposition 3.1. Near a vertex Vj, with interior opening angle ωj, the solution u ∈ H1(Ω)2 of
the time independent Lamé equations with sufficiently regular Dirichlet boundary data admits the
decomposition

u(r, ϕ) = u0,j(r, ϕ) +
∑
k

a∗jkS
∗
jk(r, ϕ)χj(r) (3.1)

with a regular part u0 ∈ H1+s(Ω)2, s > 0 depending on the boundary data, a∗jk ∈ C, the singular
functions

S∗
jk(r, ϕ) =

{
rν

∗
jkφφφ∗

jk(ϕ), for ν∗jk /∈ N,
rν

∗
jk ln r φφφ∗

jk(ϕ) + rν
∗
jkφ̃̃φ̃φ∗

jk(ϕ), for ν∗jk ∈ N
(3.2)

with φφφ∗
jk, φ̃̃φ̃φ

∗
jk defined below, and χj smooth cut-off functions localized at Vj. The singular exponents

ν∗jk ∈ C with Re ν∗jk > 0 are solutions of the equations

sin ν∗jkωj = ±ν∗
jk

k∗ sinωj , (3.3)
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where k∗ = 3 − 4ν and ν := λ
2λ+µ is the Poisson ratio. The functions φφφ∗

jk with the components
(φ∗

jk)r in r-direction and (φ∗
jk)ϕ in ϕ-direction are of the form

(φ∗
jk)r = A cos

(
1 + ν∗jk

)
ϕ+B sin

(
1 + ν∗jk

)
ϕ+ C cos

(
1− ν∗jk

)
ϕ+D sin

(
1− ν∗jk

)
ϕ (3.4)

(φ∗
jk)ϕ = −A sin

(
1 + ν∗jk

)
ϕ+B cos

(
1 + ν∗jk

)
ϕ− γjkC sin

(
1− ν∗jk

)
ϕ+ γjkD cos

(
1− ν∗jk

)
ϕ (3.5)

with constants A,B,C,D ∈ C depending on the material parameters and γjk =
3+ν∗

jk−4ν

3−ν∗
jk−4ν . The

functions φ̃̃φ̃φ∗
jk are a linear combination of cos

(
(1± ν∗jk)ϕ

)
, ϕ cos

(
(1± ν∗jk)ϕ

)
, sin

(
(1± ν∗jk)ϕ

)
and ϕ sin

(
(1± ν∗jk)ϕ

)
.

- Elastodynamic equation
The singular behavior of the solution to the elastodynamic equations is then studied using a Fourier
transform in time [31, 4, 32]. In particular, Corollary 3.6 in [4] finds that in a neighborhood of Vj

the solution to the elastodynamic equations admits the expansion

u(r, ϕ, t) = u0(r, ϕ, t) +
∑
k

(Xc∗jk)(r, ϕ, t)S
∗
jk(r, ϕ), (3.6)

for suitable c∗jk involving the same singular functions S∗
jk and singular exponents ν∗jk as the time

independent problem. The smoothing operator X is here given by

Xc(r, ϕ, t) = F−1
τ→t (χ(|τ |r cosϕ, |τ |r sinϕ) ĉ(τ)) ,

with a suitable cut-off function χ.

- Laplace and scalar wave equations
We also require a corresponding description of the singularities for the scalar wave equation

ϱ∂2
t u−∆u = 0 ,

with Dirichlet boundary conditions imposed near a vertex Vj of Ω. For the time independent
problem

−∆u = 0 ,

near Vj the solution u admits the decomposition

u(r, ϕ) = u0(r, ϕ) +
∑
k

ajkSjk(r, ϕ)χj(r) (3.7)

analogous to Proposition 3.1, with the singular functions now given by

Sjk(r, ϕ) =

{
rνjkφjk(ϕ), for νjk /∈ N,
rνjk ln r φjk(ϕ) + rνjk φ̃jk(ϕ), for νjk ∈ N.

(3.8)

The singular exponents are explicitly computable as νjk = kπ
ωj

, φjk(ϕ) = sin(νjkϕ) and φ̃jk(ϕ) =

cos(νjkϕ), k ∈ N.
The singular expansion (3.7) for the time independent problem translates into an expansion for
the time dependent problem, analogous to (3.6), but with the singular functions Sjk replacing S∗

jk

and suitable coefficients cjk replacing c∗jk.
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3.2 3d wedge
The behavior of solutions in a wedge of opening angle ω, denoted by Ω = K × R with K =

{(r, ϕ) : r > 0, ϕ ∈ (0, ω)}, generalizes the discussion in Section 3.1 from dimension n = 2 to
n = 3. As an example, the wedge K × R is a model for the curved edge between the base and
the lateral surface of the cone illustrated in Figure 1. We omit the index j in the discussion for
polygons, as long as we consider the model geometry with only one non-smooth subset {0}×R of
∂Ω. For the time dependent problem the singular expansion of the solution near the edge {0}×R
is given by, in cylindrical coordinates and denoting by x3 the coordinate along the edge of the
wedge:

u(r, ϕ, x3, t) = u0(r, ϕ, x3, t) +
∑
k,ℓ

(Xckℓ)(r, ϕ, x3, t)Skℓ(r, ϕ)

+
∑
k,ℓ

(Xc∗kℓ)(r, ϕ, x3, t)S
∗
kℓ(r, ϕ). (3.9)

Here, the singular functions Skℓ and S∗
kℓ are constructed from those in Section 3.1 ((3.8), respec-

tively (3.2)). The smoothing operator X for the edge is given by

Xc(r, ϕ, x3, t) = F−1
(ξ,τ)→(x3,t)

(
χ(
√
|ξ|2 + |τ |2(r cosϕ, r sinϕ))ĉ(ξ, τ)

)
for ĉ = ĉkℓ, ĉ

∗
kℓ. We refer to Section 3.2 in [4] and to [31] for a detailed analysis.

By considering the coordinate x3 along the edge as a parameter, the expansion recovers those
for polygonal domains in R2 in Section 3.1.

Applications to boundary integral equations require the Neumann trace of the solution u of
the inhomogeneous Dirichlet problem and the given initial conditions. As in (3.9), we obtain the
leading singular behavior

w(r, ϕ, x3, t) = b(ϕ, x3, t)r
ν∗−1 +w0(r, ϕ, x3, t) . (3.10)

Here, ν∗ denotes the leading singular exponent, b is smooth for smooth data and w0 is a less
singular remainder.

3.3 3d cone
We now consider the elastodynamic equations in the exterior of an infinitely extended cone K

with vertex at r = 0 and opening angle Θ. The model geometry of a finitely extended cone of
opening angle Θ is illustrated at the top of Figure 1. The singular behavior of solutions to the
elastostatic Lamé equations has been studied, in particular, in [9, 12], in dependence on Θ and
the elastic parameters.

Figure 1: Model geometry of a 3d cone with opening angle Θ. This includes also a curved wedge,
between the lateral surface and the basis, of opening angle ω.
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Using spherical coordinates (r, ϕ, θ), local orthonormal basis vectors are given by

er = (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ))⊤,

eθ = (cos(θ) cos(ϕ), cos(θ) sin(ϕ),− sin(θ))⊤,

eϕ = (− sin(ϕ), cos(ϕ), 0)⊤.

We write the components of a vector u in this basis as u = urer + uθeθ + uϕeϕ. For the time
independent problem Beagles and Sändig [12] use Papkovich-Neuber potentials to construct the
general form of rotationally symmetric solutions from the ansatz

u = 4(1− ν)B−∇(x ·B+B4) (3.11)

with Poisson’s ratio ν and where the components of B = (B1, B2, B3)
⊤ and B4 are harmonic

functions. In spherical coordinates the ansatz (3.11) is written as

u = (ur, uθ, uϕ)
⊤ = (3− 4ν)(B · er,B · eθ,B · eϕ)⊤

− (rer · ∂rB+ ∂rB4, er · ∂θB+
1

r
∂θB4,

1

sin(θ)
er · ∂ϕB+

1

r sin(θ)
∂ϕB4)

⊤. (3.12)

To find the rotationally symmetric solutions (which also describe the generic leading behavior),
we set B1 = B2 = 0,

B3 = c1r
αPα(cos(θ)), B4 = c2r

α+1Pα+1(cos(θ)),

where Pα(cos(θ)) are Legendre functions of the first kind and the singular exponent α > 0 together
with the coefficients c1, c2 are obtained below. Substitution into (3.12) gives the singular functions
for the cone

u(r, θ) = c1r
α

(
A11(α, θ)
A21(α, θ)

)
+ c2r

α

(
B11(α, θ)
B21(α, θ)

)
(3.13)

with

(A11(α, θ), A21(α, θ)) = ((3− 4ν − α)Pα(cos(θ)), P
′
α(cos(θ)) cos(θ) sin(θ)− (3− 4ν)Pα(cos(θ)) sin(θ)) ,

as well as (B11(α, θ), B21(α, θ)) =
(
−(α+ 1)Pα+1(cos(θ)), sin(θ)P

′
α+1(cos(θ))

)
. The singular ex-

ponents α are computed as the roots of the equation

det

(
A11(α,Θ) B11(α,Θ)
A21(α,Θ) B21(α,Θ)

)
= 0 .

Substituting for A11, A21, B11, B21, this equation for α takes the following form:

0 =
−(α+ 1)

sin(Θ)

(
P 2
α(cos(Θ)) cos(Θ)(α+ 4ν − 3) (3.14)

+Pα(cos(Θ))Pα+1(cos(Θ))(3− 4ν − cos2(Θ)(2α+ 1)) + P 2
α+1(cos(Θ)) cos(Θ)(α+ 1)

)
.

Imposing homogeneous Dirichlet conditions on u in (3.13) determines the coefficients c1, c2 and
hence the corresponding eigenfunction. We refer to [12] for numerical results for the zeros α and
their dependence on the opening angle Θ and Poisson’s ratio ν.
For the time independent problem, the singular expansion of the solution near the cone tip is
based on the singular functions from (3.13) and the exponents α which are the roots in (3.14),
and it can be expressed as

u(r, ϕ, θ) =
∑
k,ℓ

ãkℓ (ϕ)u
k
ℓ (r, θ) + u0(r, ϕ, θ). (3.15)
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The singular expansion translates into a singular expansion for the time dependent problem, see
Section 3.3 in [4]:

u(r, ϕ, θ, t) =
∑
k,ℓ

c̃kℓ (r, ϕ, θ, t)u
k
ℓ (r, θ) + u0(r, ϕ, θ, t). (3.16)

For applications to boundary integral equations we again require the Neumann trace at θ = Θ
of the solution u of the inhomogeneous Dirichlet problem with given initial conditions. For the
cone we obtain the leading singular behavior

w(r, ϕ, t) = χ(r)rα−1b(ϕ, t) +w0(r, ϕ, t) , (3.17)

for the leading root α of (3.14) and a suitable cut-off function χ localized in a neighborhood of
the cone tip, r = 0. Here, b is smooth for smooth data and w0 a less singular remainder.

For both the wedge and the cone, we may assume, after possibly expanding w0 further in
(3.10), respectively (3.17), that the regular part w0 is sufficiently smooth in space. Corresponding
expansions then also hold for the solutions w to the integral equation, see also (4.2).

3.4 Polygonal screens and polyhedral domains in 3d
Beyond the geometries considered in Sections 3.1-3.3, singularities at corner points are of sig-

nificant interest. The simplest case is given by a flat polygonal screen Γ ⊂ R3, where singularities
arise from the edges and corner points. For time independent problems in this geometry, asymp-
totic expansions and their implications for the numerical approximation are discussed, for example,
in [17, 35]. For the time dependent scalar wave equation, see [22, 23].

We describe the decomposition of the solution and its traction on Γ near a vertex in terms of
polar coordinates (r, θ) centered at this point. Approaching the screen from the upper, respectively
lower sides of the screen, we obtain the boundary values u±, which now involve vertex, singular
and regular edge-vertex, as well as edge singularities.

u(t, r, θ)|± = C(t)χ(r)rλΦ(θ) + C1(t)χ̃(θ)βββ1(r)(sin(θ))
1
2

+ C2(t)χ̃(
π
2 − θ)βββ2(r)(cos(θ))

1
2 + u0(t, r, θ) (3.18)

=: uv + uev
1 + uev

2 + u0.

The corresponding decomposition of the traction is given by

p(t, r, θ)|± = C ′(t)χ(r)rλ−1Φ′(θ) + C ′
1(t)χ̃(θ)βββ

′
1(r)r

−1(sin(θ))−
1
2

+ C ′
2(t)χ̃(

π
2 − θ)βββ′

2(r)r
−1(cos(θ))−

1
2 +w0(t, r, θ) (3.19)

=: wv +wev
1 +wev

2 +w0 .

Here βββj(r) behaves like rλ−
1
2 near r = 0, while βββ′

j(r) behaves like rλ, j = 1, 2. Compared to
the local coordinates near the edge in the previous section, the polar angle θ corresponds to the
distance to the edge and the radius r to the variable x3 along the edge.

For a rectangular screen Γ = (0, 1) × (0, 1) × {0}, the corner exponent λ ≃ 0.2966. The
behavior of the corner exponent λ for a flat polygonal screen is analyzed in [40]: it is independent
of material parameters, and the singularity becomes monotonically weaker, varying from r−1 to
r0, as the angle of the corner varies from 2π to 0.

Expansions for polyhedral domains similarly involve edge, vertex and edge-vertex singularities.
The leading singular behavior near an edge coincides with that from Section 3.2. The leading
singular behavior at a corner is studied, for example, in [6, 7]. The singular exponent λ is obtained
as the lowest eigenvalue of a spectral problem for an elliptic operator on a spherical polygonal
domain with Dirichlet boundary conditions. It generally has to be computed numerically, and we
refer to [6, 7] for efficient methods.
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4 Energetic time-domain BIE weak formulation
The basic machinery for deriving a BIE formulation of equation (2.1a) is a classical one and

can be found in any textbook on PDEs and boundary integral equations (see for example [14] and
[26]). Hence, starting from the well known integral representation formula of the solution u(x; t)
to (2.1a)

u(x; t) = V[p(u)](x; t)−K[u](x; t), (x, t) ∈ Ω × J , (4.1)

when x approaches the boundary Γ , u tends to u according to the Dirichlet boundary condition
in (2.1b). Consequently, with the help of a limiting process, we obtain the formulation of the
elastodynamic problem as the integral equation (2.6) of the first kind on Γ × J . Setting g :=(
K+ 1

2I
)
[u], we write this equation in the form

V[w](x; t) = g(x; t), (x, t) ∈ Γ × J . (4.2)

Using the solution w from (4.2) and the Dirichlet datum, the representation formula (4.1)
allows to evaluate the solution u(x; t) to the elastodynamic problem in every point of Ω × J .

For the numerical solution with a Galerkin boundary element method, we need to write (4.2)
in a weak form involving suitable space-time Sobolev spaces and related norms, which are shortly
recalled in the Appendix. For the interested reader, more details can be found in [19].
Having introduced the space-time bilinear form

BE(w,v) =

T̂

0

ˆ

Γ

v⊤(x; t)
∂

∂t
V [w] (x; t)dΓxdt , (4.3)

the weak formulation of (4.2) consists in finding w ∈ H0
σ(R+; H̃

−1/2
(Γ ))3 such that:

BE(w,v) =

T̂

0

ˆ

Γ

v⊤(x; t)ġ(x; t)dΓxdt ∀v ∈ H0
σ(R+; H̃

−1/2
(Γ ))3 . (4.4)

As discussed in [3], BE is continuous and (weakly) coercive in the sense that

∥w∥20,− 1
2 ,Γ,∗

≤ BE(w,w) ≤ ∥w∥21,− 1
2 ,Γ,∗

. (4.5)

The weak boundary integral equation (4.4) for the Dirichlet problem is well-posed, due to (4.5).

Note that while the theoretical analysis requires σ > 0 on the unbounded time interval R+, it
is common in practical computations to use σ = 0 [38].

The weak formulation (4.4) is often called energetic because it relates to the elastodynamic
energy. Namely, if we choose the test function v = w, the energy balance (2.5) allows us to obtain
the identity:

BE(w,w) =

T̂

0

ˆ

Γ

w⊤(x; t)ġ(x; t)dΓxdt =
1

2
E(T ) +

T̂

0

ˆ

Γ

w⊤(x; t)
∂

∂t
K [u] (x; t)dΓxdt . (4.6)

The bilinear form BE(w,w) on the left-hand side therefore agrees with a multiple of the energy
E(T ), up to a term which involves the Dirichlet datum.

5 Approximation by space-time BEM
In order to numerically approximate the solution of the weak formulation (4.4), we introduce

a space-time boundary element method. In the following we describe the Galerkin discretization
of (4.4) on β-graded meshes, use the singular expansions from Section (3)to obtain quasi-optimal
convergence rates and describe the algorithmic details of the proposed approach.
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5.1 Discretization
We restrict our attention to tensor product space-time discretisations of Σ := Γ × J . To be

specific, for the time discretization we consider a decomposition T∆t(J) of the time interval J
into subintervals Jn := [tn, tn+1] with constant time step ∆t := T/N∆t , such that tn := n∆t for
n = 0, . . . , N∆t

.
In space we consider the approximation on quasiuniform and graded meshes T∆x(Γ ) =

⋃M∆x
j=1 Ej ,

consisting of triangles Ej , j = 1, · · · ,M∆x . We denote by ∆x the longest side of a triangle.
To define a β-graded mesh on the interval [−1, 1], for parameter β > 0, by symmetry it suffices

to specify the nodes in [−1, 0]. There we let

xk = −1 +

(
k

Nl

)β

(5.1)

for k = 1, . . . , Nl. On the square [−1, 1]2, the nodes of a β-graded mesh are given by tuples of
such points, (xk, xl), k, l = 1, . . . , Nl, see Figure 2.

We refer to Section 6 for illustrations of graded meshes on more general polyhedral geometries,
which are locally modeled on the previous examples. In all cases, a quasiuniform mesh is recovered
for β = 1.

Associated to the triangulation T∆x(Γ ), we choose a basis {φm}M∆x
m=1 of Lagrangian shape func-

tions for the space X0
∆x

of piecewise constant polynomials. Similarly, for the time discretization,
we fix a basis {φ̄n}

N∆t−1
n=0 of shape functions, for the space X0

∆t
of piecewise constant polynomials

associated to T∆t(J). Note that, in what follows, we assume:

φ̄n(t) := H(t− tn)−H(t− tn+1) for n = 0, . . . , N∆t .

We define the space-time mesh T∆x,∆t(Σ) := T∆t(J)×T∆x(Γ ). The corresponding approximation
spaces are given as a tensor product of X0

∆t
and X0

∆x
. We set X0,0

∆x,∆t
:=
(
X0

∆t
⊗ X0

∆x

)3
.

Finally, to discretise the variational formulation (4.4), we replace the unknown density field w ∈
H0

σ(R+; H−1/2(Γ))3 and the test function v ∈ H0
σ(R+; H−1/2(Γ))3 with their discrete counterparts

in X0,0
∆x,∆t

, respectively.
Consequently, we consider the problem of finding w∆x,∆t

∈ X0,0
∆x,∆t

such that:

BE(w∆x,∆t
,v∆x,∆t

) =

T̂

0

ˆ

Γ

v⊤
∆x,∆t

(x; t)ġ(x; t)dΓxdt ∀v∆x,∆t
∈ X0,0

∆x,∆t
. (5.2)

From the solution w∆x,∆t
and the Dirichlet datum, the numerical approximations u∆x,∆t

to the
solution of the elastodynamic problem (2.1) is obtained in Ω × J using (4.1).

5.2 Convergence rates
The asymptotic expansion of the solution u and, more specifically, the traction p(u) on Σ, give

rise to quasi-optimal convergence rates for the numerical solution of the discrete weak formulation
(5.2) on graded meshes.

For a domain in R3 with both wedge and cone singularities, the convergence rate will be
determined by

α̃ = min

{
Re ν∗,Re α+

1

2

}
, (5.3)

which depends on the geometry and the elastic parameters. Here, we recall that ν∗ denotes the
leading singular exponent at the edge (the minimum of π

ω and the minimal root of (3.3)), while
α is the leading singular exponent at the cone tip (the leading zero of (3.14)). For a domain with
only conical singularities, we set α̃ = Re α+ 1

2 , while for a wedge domain in R3, we set α̃ = Re ν∗.
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The most singular case is given by a screen in R3, respectively a crack in R2, where in both cases
ν∗ = 1

2 is independent of the elastic parameters.
From [4] we recall quasi-optimal a-priori error estimates on graded meshes in these geometries:

Theorem. Let ε > 0 and σ > 0. Let w ∈ Hr
σ(R+; H−1/2(Γ))3 be the solution to the single

layer integral equation (2.6) and w∆x,∆t ∈ X0,0
∆x,∆t

the best approximation to w in the norm of
Hr

σ(R+; H−1/2(Γ))3 on a β-graded spatial mesh with ∆t ≲ ∆x. Then

∥w −w∆x,∆t
∥0,− 1

2 ,Γ,∗
≤ Cβ,ε∆

min{βα̃−ε, 32}
x , (5.4)

where Cβ,ε is a suitable constant depending on β, ε and w.

In particular, for β > 3
2α̃ the convergence rate 3

2 − ε gets arbitrarily close to the rate 3
2 known

for smooth geometries.

Corresponding convergence rates in the presence of corner singularities, as in Section 3.4, are
determined by

α̃ = min

{
Re ν∗,Re λ+

1

2

}
,

with the corner exponent λ. We refer to [22] for a discussion in the case of the time-dependent
scalar wave equation, which is readily adapted to elastodynamics.

5.3 Algorithmic realization
Since the unknown discrete density field w∆x,∆t admits the representation

w∆x,∆t
(x; t) :=

N∆t−1∑
n=0

φ̄n(t)

M∆x∑
m=1

w(n)
m φm(x), w(n)

m :=
(
w

(n)
m,1, w

(n)
m,2, w

(n)
m,3

)⊤
by testing equation (5.2) with basis functions, we obtain

N∆t−1∑
n=0

M∆x∑
m=1

BE(φm, φ̄n, φm̃, φ̄ñ)w
(n)
m = g

(ñ)
m̃ for m̃ = 1, . . . ,M∆x , ñ = 1, . . . , N∆t

where

BE(φm, φ̄n, φm̃, φ̄ñ) = −
T̂

0

ˆ

Γ

 tˆ

0

ˆ

Γ

G(x,y; t, τ)φm(y)φ̄n(τ)dΓydτ

φm̃(x) ˙̄φñ(t)dΓxdt

and

g
(ñ)
m̃ = −

T̂

0

ˆ

Γ

g(x; t)φm̃(x) ˙̄φñ(t)dΓxdt .

We focus our attention on BE(φm, φ̄n, φm̃, φ̄ñ). As the fundamental solution depends only on the
difference t − τ and the considered decomposition of the time interval is uniform, the temporal
integrals depend only on the difference ∆ñ,n := tñ − tn and in particular they vanish if tñ < tn.
Thus, the duality pairing with all the basis functions leads to the block lower triangular Toeplitz
system 

EEE(0) 0 0 0 0

EEE(1) EEE(0) 0 0 0

EEE(2) EEE(1) EEE(0) 0 0
...

...
...

. . .
...

EEE(N∆t−1) EEE(N∆t−2) EEE(N∆t−3) . . . EEE(0)




w(1)

w(2)

w(3)

...
w(N∆t−1)

 =


g(1)

g(2)

g(3)

...
g(N∆t−1)

 (5.5)
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where, for each ℓ = ñ − n = 0, . . . , N∆t − 1, the block EEE(ℓ) is a 3M∆x -by-3M∆x matrix, because
each pair of spatial indices m̃,m = 1, . . . ,M∆x does not define a single entry but rather a 3-by-3
subblock, i.e.

(
EEE(ℓ)
m̃,m

)
ij
= −

T̂

0

ˆ

Γ

 tˆ

0

ˆ

Γ

Gij(x,y; t, τ)φm(y)φ̄n(τ)dΓydτ

φm̃(x) ˙̄φñ(t)dΓxdt (5.6)

A main challenge of the energetic BEM is the accurate and efficient evaluation of the quadruple
integrals in (5.6). After a double analytic integration in the time variables, we obtain:

(
EEE(ℓ)
m̃,m

)
ij
= − 1

4πϱ

1∑
η,η̃=0

(−1)η+η̃

ˆ

Γ

ˆ

Γ

Gij(x,y;∆ñ+η̃,n+η)φm(y)φm̃(x)dΓydΓx. (5.7)

where the components of the time-integrated kernel GGG are given by

Gij(x,y;∆ñ,n) =
1

c2P

rirj
r3

H

(
∆ñ,n − r

cP

)
+

1

c2S

(
δij
r

− rirj
r3

)
H

(
∆ñ,n − r

cS

)
+

− 1

2

(
δij
r3

− rirj
r5

)[(
∆2

ñ,n − r2

c2P

)
H

(
∆ñ,n − r

cP

)
−
(
∆2

ñ,n − r2

c2S

)
H

(
∆ñ,n − r

cS

)]
(5.8)

In the above relationship, the Heaviside functions represent the wave front propagation and their
contribution is 0 or 1. If r < cS∆ñ,n < cP∆ñ,n, then (5.8) reduces to

Gij(x,y;∆ñ,n) =
1

2

(
rirj
r3

c2P − c2S
c2Pc

2
S

+
δij
r

c2P + c2S
c2Pc

2
S

)
(5.9)

and we observe a space singularity of type O(1/r) as r → 0, which is typical of weakly singular
kernels related to 3D elliptic problems. Moreover, when 0 < cS∆ñ,n < r < cP∆ñ,n, (5.8) is no
longer singular and becomes

Gij(x,y;∆ñ,n) =
1

2

(
1

c2P

δij
r

− 1

c2P

rirj
r3

− δij
r3

∆2
ñ,n + 3

rirj
r5

∆2
ñ,n

)
. (5.10)

For what concerns the double integration in space variables, we remember that we are considering
lagrangian piecewise constant basis and test functions. Consequently, we can reduce the integrals
over Γ to double integrals over the source and the field triangles Em̃ and Em respectively. Thus,
we consider (

EEE(ℓ)
m̃,m

)
ij
= − 1

4πϱ

1∑
η,η̃=0

(−1)η+η̃

ˆ

Em̃

ˆ

Em

Gij(x,y;∆ñ+η̃,n+η)dΓydΓx (5.11)

and we carry out the outer integration on the source triangle by applying a Mg-point suitable
quadrature rule, so that

(
EEE(ℓ)
m̃,m

)
ij
≃ − 1

4πϱ

1∑
η,η̃=0

(−1)η+η̃

Mg∑
q=1

ωq

ˆ

Em

Gij(xq,y;∆ñ+η̃,n+η)dΓy, (5.12)

where xq and ωq are the quadrature nodes and weights, respectively. The remaining integral
requires integration over geometrically complicated intersections of the field triangle with two
spherical surfaces of radii rP = cP∆ñ,n and rS = cS∆ñ,n, representing the wave fronts of the P-
and S-waves. To address this issue, we project the source point xq onto the field triangle plane
and we use a careful decomposition of the area of integration into sample standard shapes in polar
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coordinates. Thus, the integration is performed analytically, as described in [3].

Finally, the space-time system (5.5) may be solved by a block forward substitution, that leads to a
marching-on-in-time time stepping scheme, which is unconditionally stable and first-order accurate
in ∆t. This is proved for scalar problems in [2] in the more general framework of an energetic
BEM-FEM coupling. Therefore, under the assumption that the matrix EEE(0) is non singular, which
is confirmed by all the numerical testing that has been performed on the energetic approach, at
every time instant tℓ with ℓ = 0, . . . , N∆t

− 1, one has to solve the reduced linear system

EEE(0)w(ℓ) = g(ℓ) −
ℓ−1∑
k=0

EEE(ℓ−k)w(k).

We remark that blocks EEE(ℓ), with ℓ = 1, . . . , N∆t − 1, are only used to update at every time step
the right-hand side. For this reason the LU factorization on the block EEE(0) needs to be performed
and stored only once at the beginning of the time stepping scheme.

6 Numerical results
In this section we present numerical experiments which validate the convergence properties of

the proposed approach and study the singular behavior of the solution. We first discuss compu-
tational aspects common to all the experiments.
For the numerical evaluation of integrals that define the entries EEE(ℓ)

m̃,m in (5.12), we have applied a
quadrature rule with Mg nodes and weights, obtained with the algorithm described in [39]. The
choices Mg = 7 for the first three examples, Mg = 12 for the fourth example and Mg = 19 for the
last example have guaranteed the computation of the mentioned integrals with a sufficiently high
accuracy. This is a key issue to assure the convergence and space-time accuracy of the energetic
BEM in the context of 3D elastodynamic problems, whose theoretical analysis been performed in
[4].

All the numerical computations have been performed on a cluster with two Intel® XEON®

E5-2683v4 CPUs (2.1 GHz clock frequency and 16 cores) by means of parallel MATLAB® codes.

A natural measure of the error relies on the (squared) energy, which is defined from the identity
(4.6) and computed in the discrete framework from the matrix EEE or the right hand side vector g
and the solution vector w as

E(w) := w⊤EEEw = w⊤g . (6.1)

We compute the squared energy error with respect to an extrapolated benchmark energy E∞ as

ErrL := E∞ − E(wL) (6.2)

where the subscript L refers to the refinement level.

In the first two examples, we study the numerical solution of the integral equation (4.2) on a
flat screen Γ using the Galerkin formulation (5.2). The Dirichlet datum g(x; t) =

(
0, 0, x2

1 sin
5 t
)⊤.

The final time is set as T = 1, while the material parameters ϱ = 1, µ = 0.25 and λ = 0.5 are
taken in such a way that cP = 1, cS = 0.5, unless otherwise stated.
On the screen Γ we introduce an algebraically graded mesh, whose construction on a general poly-
hedral surface is described in [35]. In what follows, β ≥ 1 is the grading parameter of the mesh,
and the level L ≥ 1 relates to the (square root of the) number of triangles on Γ . To study the
convergence, we start by choosing a coarse mesh associated to the value L = 2 and successively
double the value of L.
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Example 1. Square screen. We consider Γ := [−ℓ, ℓ]2 × {x3 = 0}, with ℓ = 0.5. Due to its
symmetry with respect to the origin, the β-graded space mesh is generated on the bottom-left
quarter of Γ by the nodes (x

(L)
1,k , x

(L)
2,k ), where

x
(L)
1,k = ℓ

(
−1 +

(
k

L

)β
)

and x
(L)
2,h = ℓ

(
−1 +

(
h

L

)β
)
, for k, h = 0, . . . , L ,

which have been then reflected to obtain a mesh on the whole screen. The total number of trian-
gles is proportional to L2.
Note that the parameter ∆x is proportional to ℓmax := ℓ[1 − (1 − 1/L)β ], while the parameter
ℓmin := ℓL−β is related to the smallest element of the mesh. For uniform meshes, i.e. for β = 1,
it is easy to see that ℓmax = ℓmin = ℓ/L. In Table 1, we report the space-time discretization
parameters, associated to the decomposition of the computational domain for β = 1, 2.

L ∆t N∆t ℓmax = ℓmin (β = 1) ℓmax (β = 2) ℓmin (β = 2) M∆x

2 2.5000e− 01 4 2.5000e− 01 3.7500e-01 1.2500e− 01 32
4 1.2500e− 01 8 1.2500e− 01 2.1875e-01 3.1250e− 02 128
8 6.2500e− 02 16 6.2500e− 02 1.1719e-01 7.8125e− 03 512

16 3.1250e− 02 32 3.1250e− 02 6.0547e-02 1.9531e− 03 2048
32 1.5625e− 02 64 1.5625e− 02 3.0762e-02 4.8828e− 04 8192

Table 1: Example 1. Discretization parameters of the square screen β-meshes with β = 1 and
β = 2, for different values of L.

In Figure 2 the meshes corresponding to the L = 16 are represented for β = 1 (left plot) and β = 2
(right plot).

β = 1 β = 2

Figure 2: Example 1. Meshes of Γ corresponding to L = 16, for β = 1 (left plot) and β = 2 (right
plot).

Figure 3 shows the component in the x3-direction of the numerical solution w∆x,∆t
(the only

non-trivial one) on Γ in the scaled left plot and along a cross-section in the right plot at the final
time. Here, a 2-graded mesh with L = 32 was used.
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Figure 3: Example 1. For the β-graded mesh with β = 2 and L = 32, component in x3-direction
of the numerical solution w∆x,∆t

at the final time T = 1 on Γ (scaled left plot) and along x2 = 0
(right plot).

Moreover, the asymptotic behavior of the numerical solutions for β = 1, 2, L = 32, at T = 1, is
shown in Figure 4, along the x1-axis, for x2 = x3 = 0. Here, the horizontal axis uses the distance
r from the left side of the screen. The singular behavior of the numerical solution on the 2-graded
mesh (green line), respectively, on the uniform mesh (blue line), agrees with the theoretically
predicted behavior from Section 3.4, i.e. O(r−1/2) (dashed red line).

10−4 10−3 10−2 10−1 100

10−2

10−1

100

101

102

r

O(r−1/2)
β = 1
β = 2

Figure 4: Example 1. Asymptotic behavior of the numerical solution (L = 32) along the x1-axis,
at T = 1, for β = 1, 2. The plot is with respect to the distance r from the left side of the screen.

In Figure 5 we depict the asymptotic behavior of the numerical solution at T = 1 for different
ratios between primary and secondary wave speeds, again for β = 2 and L = 32. The left
plot depicts the numerical solution along the x1-axis with respect to the distance r from the
left side of the screen. The behavior O(r−0.5) is independent of the elastodynamic parameters, as
theoretically discussed in Section 3.4. Similarly, the right plot depicts the numerical solution along
the line x2 = −x1 with respect to the distance from the top-left corner. The singular behavior
O(r−0.78) is independent of the elastodynamic parameters and in line with the theoretical analysis
in Section 3.4. The qualitative behavior agrees with that obtained for the scalar wave equation in
[22].
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Figure 5: Example 1. Asymptotic behavior of the numerical solution (L = 32) along the x1-axis
(left plot) and along the line x2 = −x1 (right plot), at T = 1, for β = 2 and different ratios
between primary and secondary wave speeds. The plot is with respect to the distance r from the
screen boundary.

In Table 2 we report the values of the squared energy EL := E(wL) of the numerical solution. Figure
6 presents the squared energy errors with respect to the common benchmark E∞ = 0.0145377,
which was obtained by extrapolation from the energy values for β = 2. The convergence rate ≃ β
is in very good agreement with the theoretical prediction from Section 5.2.

L 2 4 8 16 32

EL (β = 1) 1.1518e− 02 1.3088e− 02 1.3804e− 02 1.4162e− 02 1.4345e− 02

EL (β = 2) 1.2867e− 02 1.4197e− 02 1.4458e− 02 1.4519e− 02 1.4533e− 02

Table 2: Example 1. Squared energy values of the numerical solution at T = 1 for β = 1, 2 and
different values of L.
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Figure 6: Example 1. Squared errors in energy norm for β = 1 and β = 2.
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Example 2. Circular screen. We consider Γ := {x2
1 + x2

2 ≤ R2} × {x3 = 0}, with R = 0.5.
Here the radial nodes in the β-graded mesh are given by rk = R

(
1− ( kL )

β
)
, k = 0, . . . , L and the

number of angular elements is increased towards the boundary as shown in Figure 7, where the
meshes corresponding to L = 8 are represented for β = 1 (left plot), β = 2 (center plot) and β = 3
(right plot).
The parameters ℓmax and ℓmin for β = 1, 2 are the same as in Table 1, while for β = 3 they are
shown in Table 3, together with the remaining discretization parameters.

L ∆t N∆t ℓmax (β = 3) ℓmin (β = 3) M∆x

2 2.5000e− 01 4 4.3750e− 01 6.2500e− 02 16
4 1.2500e− 01 8 2.8906e− 01 7.8125e− 03 128
8 6.2500e− 02 16 1.6504e− 01 9.7656e− 04 1024

16 3.1250e− 02 32 8.8013e− 02 1.2207e− 04 8192

Table 3: Example 2. Discretization parameters of the circular screen β-mesh with β = 3. for
different values of L.

β = 1 β = 2 β = 3

Figure 7: Example 2. Meshes of Γ corresponding to L = 8, for β = 1 (left plot), β = 2 (center
plot) and β = 3 (right plot).

Figure 8 shows the component in x3-direction of the numerical solution w∆x,∆t (the only one
not trivial) on Γ (scaled left plot) and along a cross-section (right plot) at the final time. These
results are obtained by considering a β-graded mesh with β = 3 for L = 16.
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Figure 8: Example 2. For the β-graded mesh with β = 3 and L = 16, component in x3-direction
of the numerical solution w∆x,∆t at the final time T = 1 on Γ (scaled left plot) and along x2 = 0
(right plot).
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Figure 9 shows the asymptotic behavior of the numerical solutions at T = 1 along the x1-axis,
for x2 = x3 = 0, with respect to the distance r from the boundary of the circular screen. Here,
β = 1, 2, 3, L = 16, have been used. The singular behavior of the numerical solutions agrees with
the theoretically predicted behavior from Section 3.4, i.e. O(r−1/2) ( dashed red line), particularly
for β = 3.
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100
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O(r−1/2)
β = 1
β = 2
β = 3

Figure 9: Example 2. Asymptotic behavior of the numerical solution (L = 16) along the x1-axis,
at T = 1, for β = 1, 2, 3. The plot is with respect to the distance r from the circular screen
boundary.

In Table 4 we report the values of the squared energy EL of the numerical solution. Figure
10 presents the squared energy errors with respect to the common benchmark E∞ = 0.0071888,
which was obtained by extrapolation from the energy values for β = 3. Again, the convergence
rate ≃ β is in very good agreement with the theoretical prediction from Section 5.2.

L 2 4 6 8 12 16

EL (β = 1) 4.0000e− 03 6.3122e− 03 6.7169e− 03 6.8562e− 03 6.9901e− 03 7.0454e− 03

EL (β = 2) 4.6143e− 03 6.8793e− 03 7.0906e− 03 7.1386e− 03 7.1679e− 03 7.1751e− 03

EL (β = 3) 4.8380e− 03 7.0302e− 03 7.1698e− 03 7.1860e− 03 7.1880e− 03 7.1885e− 03

Table 4: Example 2. Squared energy values of the numerical solution at T = 1 for β = 1, 2, 3 and
different values of L.
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Figure 10: Example 2. Squared errors in energy norm for β = 1, 2, 3.

Example 3. L-shaped screen. In this example, we consider Γ := ([−ℓ, ℓ]2 \ [0, ℓ]2)× {x3 = 0},
with ℓ = 0.5, and the Dirichlet datum g(x; t) =

(
0, 0, [(x1 + ℓ)2 + (x2 + ℓ)2] sin5 t

)⊤. The final
time is set T = 1, while the material parameters ϱ = 1, µ = 0.25 and λ = 0.5 are taken, in such a
way that cP = 1, cS = 0.5.
The graded mesh on the L-shape is obtained from three copies of the graded mesh used in Example
1, see Figure 11 for the meshes corresponding to L = 16 with β = 1 (left plot), β = 2 (center plot)
and β = 3 (right plot). The discretization parameters for β = 1, 2 are shown in Table 5.

L ∆t N∆t
ℓmax = ℓmin (β = 1) ℓmax (β = 2) ℓmin (β = 2) M∆x

2 1.2500e− 01 8 1.2500e− 01 1.8750e− 01 6.2500e− 02 96
4 6.2500e− 02 16 6.2500e− 02 1.0938e− 01 1.5625e− 02 384
8 3.1250e− 02 32 3.1250e− 02 5.8594e− 02 3.9062e− 03 1536

16 1.5625e− 02 64 1.5625e− 02 3.0273e− 02 9.7656e− 04 6144

Table 5: Example 3. Discretization parameters of the L-shaped screen β-meshes with β = 1 and
β = 2, for different values of L.

β = 1 β = 2 β = 3

Figure 11: Example 3. Meshes of Γ corresponding to L = 16, for β = 1 (left plot), β = 2 (center
plot) and β = 3 (right plot).
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Figure 12 shows the component in x3-direction of the numerical solution w∆x,∆t (the only one
not trivial) on Γ (scaled left-top plot) and along three cross-sections (right-top plot along the red
diagonal, left-bottom plot along the green segment on the x1 axis, right-bottom plot along the
magenta diagonal) at the final time. These results are obtained on a β-graded mesh with β = 3 for
L = 16. We observe the singular behavior of the numerical solution towards the screen boundary,
with different orders of magnitude, except towards the left-bottom corner, where the solution is
trivial.
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Figure 12: Example 3. For the β-graded mesh with β = 3 and L = 16, component in x3-direction
of the numerical solution w∆x,∆t

at the final time T = 1 on Γ (scaled left-top plot) and along three
cross-sections (right-top plot along the red diagonal, left-bottom plot along the green segment on
the x1 axis, right-bottom plot along the magenta diagonal).

Figure 13 shows the asymptotic behavior of the numerical solutions at T = 1 with respect to
the distance r from the left side of the screen, along the green line (on the left) and along the red
line (in the center) highlighted on the L-shaped screen and from the re-entrant corner along the
red, green and magenta lines (on the right). Here, β = 3, L = 16, have been used. The behavior
of the green curve on the left plot is O(r−1/2). The red curve in the central plot has a steeper
slope O(r−3/4), while the three curves on the right plot behave approximately as O(r−1/4).
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Figure 13: Example 3. Asymptotic behavior of the numerical solution (L = 16) for β = 3, along
the red, green and magenta lines highlighted in the L-shaped screen. The plot on the right is with
respect to the distance r from the left side of the screen, the plot in the center is with respect to
the distance r from the top-left corner, while the plot on the right is with respect to the distance
r from the re-entrant corner.

In Table 6 we report the values of the squared energy EL of the numerical solution. Figure 14
presents the squared energy errors with respect to the common benchmark E∞ = 0.27029, which
was obtained by extrapolation from the energy values for β = 3. Again, the convergence rate ≃ β
is in very good agreement with the theoretical prediction from Section 5.2. Note that the optimal
convergence rate is obtained for β = 3.

L 2 4 6 8 12 16

EL (β = 1) 2.5292e− 01 2.6092e− 01 2.6380e− 01 2.6531e− 01 2.6688e− 01 2.6768e− 01

EL (β = 2) 2.6034e− 01 2.6767e− 01 2.6907e− 01 2.6957e− 01 2.6995e− 01 2.7008e− 01

EL (β = 3) 2.6504e− 01 2.6961e− 01 2.7015e− 01 2.7024e− 01 2.7027e− 01 2.7028e− 01

Table 6: Example 3. Squared energy values of the numerical solution at T = 1 for β = 1, 2, 3 and
different values of L.
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Figure 14: Example 3. Squared errors in energy norm for β = 1, 2, 3.

Example 4. Cone. In this example, we consider the cone Γ := {(x1, x2, x3) :
√

x2
1 + x2

2 ≤
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R ∧ x3 = (R −
√
x2
1 + x2

2) tan(ω)} ∪ {(x1, x2, 0) :
√
x2
1 + x2

2 ≤ R}, where ω = π/9 is the angle
between the lateral surface and the disk of radius R = 0.5 centered in the origin of the x1x2 -plane,
which represents the cone base. The Dirichlet datum is g(x; t) =

(
0, 0, sin5 t(x2

1 + x2
2)/R

)⊤. The
final time is set T = 1, while the material parameters ϱ = 1, µ = 0.25 and λ = 0.5 are taken, in
such a way that cP = 1, cS = 0.5, as before.
We introduce on the base of the cone a graded mesh as discussed in Example 2, suitably connected
to the mesh constructed on the lateral surface of the 3D domain taken into account, graded towards
both the apex and the base of the cone. Along the red line on the lateral surface in Figure 15 on
the right, the nodes of the mesh have the following coordinates:

x1 = 0

x2 =

[
R− R

2

(
[0:1:(L/2−1)]

L/2

)β
, R

2 ,
R
2

(
[(L/2−1):−1:1]

L/2

)β
, 0

]
x3 = x2 tan(ω)

.

Some of the employed discretization parameters for β = 1, 2, 3 are shown in Table 7.

L ∆t N∆t
ℓmax (β = 1) ℓmax (β = 2) ℓmax (β = 3) M∆x

4 1.2500e− 01 8 1.3302e− 01 2.1875e− 01 2.8906e− 01 256
6 8.3333e− 02 12 8.8681e− 02 1.5278e− 01 2.1065e− 01 864
8 6.2500e− 02 16 6.6511e− 02 1.1719e− 01 1.6504e− 01 2048

12 4.1667e− 02 24 4.4341e− 02 8.1291e− 02 1.1487e− 01 6912

Table 7: Example 4. Discretization parameters of the cone surface β-meshes with β = 1, 2, 3, for
different values of L.

In Figure 15 the meshes corresponding to L = 8 are represented for β = 1 (left plot), β = 2
(center plot) and β = 3 (right plot).

Figure 15: Example 4. Meshes of Γ corresponding to L = 8, for β = 1 (left plot), β = 2 (center
plot) and β = 3 (right plot).

Figure 16 shows the three components of the numerical solution w∆x,∆t
on Γ , at the final time,

using β = 1 and L = 4. We observe the singular behavior of the numerical solution towards the
circular boundary of the cone base.
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Figure 16: Example 4. For the β-graded mesh with β = 1 and L = 4, from left to right, the
components in x1, x2, x3 directions of the numerical solution w∆x,∆t at the final time T = 1 on Γ .

Figure 17 shows the numerical solutions at T = 1 with respect to the distance r from the circular
boundary of the cone base, using β = 1, 2, 3, L = 12. The singular behavior of the solution is of
the form O(rα−1) with α = 0.5117, due to the wedge type singularity at the base of the cone. The
singularity at the cone tip is milder, in agreement with the theoretical analysis from Section 3.

Figure 17: Example 4. Asymptotic behavior of the numerical solution (L = 12) for β = 1, 2, 3.
The plot is with respect to the distance r from the circular boundary of the cone base.

In Table 8 we report the values of the squared energy EL of the numerical solution. Figure 18
presents the squared energy errors with respect to the common benchmark E∞ = 0.078431, which
was obtained by extrapolation from the energy values for β = 3. Again, the convergence rate ≃ β
is in very good agreement with the theoretical prediction from Section 5.2. Note that the optimal
convergence rate is obtained for β = 3, in agreement with (5.4).
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L 4 6 8 12

EL (β = 1) 7.0039e− 02 7.4195e− 02 7.5435e− 02 7.6664e− 02

EL (β = 2) 7.5018e− 02 7.7361e− 02 7.7864e− 02 7.8177e− 02

EL (β = 3) 7.6682e− 02 7.8143e− 02 7.8332− 02 7.8395e− 02

Table 8: Example 4. Squared energy values of the numerical solution at T = 1 for β = 1, 2, 3 and
different values of L.

Figure 18: Example 4. Squared errors in energy norm for β = 1, 2, 3.

Example 5. Top-down ice-cream geometry. In this example, we consider Γ := {(x1, x2, x3) :√
x2
1 + x2

2 ≤ R∧x3 = (R−
√
x2
1 + x2

2) tan(ω)}∪ {(x1, x2, x3) :
√
x2
1 + x2

2 ≤ R∧x3 = −
√

R2 − x2
1 − x2

2},
constituted by a cone whose angle with x1x2-plane is ω = 9π/20 with a hemispherical base of ra-
dius R = 0.5. The Dirichlet datum is g(x; t) =

(
0, 0, sin5 t(1− (x2

1 + x2
2)/R)

)⊤. The final time is
set T = 1, while the material parameters ϱ = 1, µ = 0.25 and λ = 0.5 are taken, in such a way
that cP = 1, cS = 0.5, as before.
We introduce on the hemisphercal surface graded meshes inherited by the graded meshes on the
disk as considered in Example 2, suitably connected to the mesh constructed on the lateral surface
of the cone part taken into account, graded, similarly to what happens in Example 4, towards
both the apex and the hemisphere. Some of the employed discretization parameters for β = 1, 2, 3
are shown in Table 9:

L ∆t N∆t
ℓmax (β = 1) ℓmax (β = 2) ℓmax (β = 3) M∆x

4 1.2500e− 01 8 7.9906e− 01 1.1986e+ 00 1.3983e+ 00 256
6 8.3333e− 02 12 5.3270e− 01 8.8784e− 01 1.1246e+ 00 864
8 6.2500e− 02 16 3.9953e− 01 6.9917e− 01 9.2391e− 01 2048

12 4.1667e− 02 24 2.6635e− 01 4.8831e− 01 6.7328e− 01 6912

Table 9: Example 5. Discretization parameters of the domain surface β-meshes with β = 1, 2, 3,
for different values of L.

24



In Figure 19 the meshes corresponding to L = 6 are represented for β = 1 (left plot), β = 2
(center plot) and β = 3 (right plot).

Figure 19: Example 5. Meshes of Γ corresponding to L = 6, for β = 1 (left plot), β = 2 (center
plot) and β = 3 (right plot).

Figure 20 shows the three components of the numerical solution w∆x,∆t
on Γ , at the final time.

These results are obtained by considering a β-graded mesh with β = 3 for L = 6. We observe the
singular behavior of the numerical solution towards the apex of the top-down ice-cream geometry.

Figure 20: Example 5. For the β-graded mesh with β = 3 and L = 6, from left to right, the
components in x1, x2, x3 directions of the numerical solution w∆x,∆t at the final time T = 1 on Γ .

Moreover, the singular behavior of the numerical solutions for β = 1, 2, 3, L = 12, at T = 1, is
shown in Figure 21. The plot is with respect to the distance r from the apex of the domain. This
behavior turns out to be O(rα̃−1) with α̃ = 0.23189 due to the prevailing cone (apex) singularity,
and follows the theoretical prediction from Section 3.
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Figure 21: Example 5. Asymptotic behavior of the numerical solution (L = 12) for β = 1, 2, 3.
The plot is with respect to the distance r from the apex of the domain.

In Table 10 we report the values of the squared energy EL of the numerical solution. Figure 22
presents the squared energy errors with respect to the common benchmark E∞ = 1.5153, which
was obtained by extrapolation from the energy values for β = 3. Again, the convergence rate ≃ β
is in very good agreement with the theoretical prediction from Section 5.2. Note that the optimal
convergence rate is obtained for β = 3, as can be deduced from (5.4) with α = α̃+1/2 = 0.73189.

L 4 6 8 12

EL (β = 1) 1.4847e+ 00 1.5023e+ 00 1.5079e+ 00 1.5117e+ 00

EL (β = 2) 1.4908e+ 00 1.5060e+ 00 1.5106e+ 00 1.5135e+ 00

EL (β = 3) 1.4901e+ 00 1.5067e+ 00 1.5115e+ 00 1.5142e+ 00

Table 10: Example 5. Squared energy values of the numerical solution at T = 1 for β = 1, 2, 3
and different values of L.

Figure 22: Example 5. Squared errors in energy norm for β = 1, 2, 3.
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7 Conclusions
This article reduced boundary value problems for 3D time-domain elastodynamics, endowed

with a Dirichlet type boundary and null initial conditions, to time dependent weakly singular
boundary integral equations. Guided by the singular behavior of the solution near cone points,
corners and edges proposed in [4], we have numerically studied a space-time energetic boundary
element method on graded meshes. Extensive numerical results confirmed the performance of the
approach and the theoretically predicted, quasi-optimal convergence rates. The singular behavior
of the solutions is reliably computed, allowing a study of the singular exponents for the time
dependent elastic problem.
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Appendix

Let L2(Γ̃ ) be the space of measurable functions whose square is Lebesgue integrable on Γ̃ .
The inner product and the norm of this space are defined respectively by:

⟨u, v⟩L2(Γ̃ ) :=

ˆ

Γ̃

u(x)v(x)dΓx and ∥u∥L2(Γ̃ ) :=
√

⟨u, u⟩L2(Γ̃ ) ∀u, v ∈ L2(Γ̃ ).

Now, we recall that at each point x ∈ Γ̃ there is an open neighbourhood U and a bijective mapping
ϕ : U → Q, where Q ⊂ R3 is the unit cube centered at the origin. Consequently, Γ̃ can be covered
by a finite set {Ui}ki=1 of such neighbourhoods, whose corresponding maps form a finite family of
diffeomorphisms {ϕi}ki=1. If we denote by {αi}ki=1 a partition of unity subordinate to the covering
{Ui}ki=1, any function u : Γ̃ → R can be written in the form

u(x) =

k∑
i=1

αi(x)u(x) ∀x ∈ Γ̃

and each summand can be parametrized over ϕi(Ui ∩ Γ̃ ) ⊂ R2 as (αiu) ◦ ϕ−1
i . After these

preparatory remarks, for each s ∈ R we introduce the Sobolev space

Hs(Γ̃ ) :=
{
u : Γ̃ → R | (αiu) ◦ ϕ−1

i ∈ Hs(ϕi(Ui ∩ Γ̃ )), ∀i = 1, . . . , k
}

that becomes a Hilbert space once it is equipped with the norm

∥u∥s,Γ̃ :=

√√√√ k∑
i=1

∥(αiu) ◦ ϕ−1
i ∥2

Hs(ϕi(Ui∩Γ̃ ))
.

27



The value of the above norm clearly depends on the choice of Ui, αi and ϕi, but one can show
that the resulting norms will be equivalent and that the space Hs(Γ̃ ) is independent of this choice.
Furthermore, for every parameter ω = ρ + ıσ ∈ C \ {0}, we introduce ω-dependent norms for
Hs(Γ̃ ), i.e.

∥u∥s,ω,Γ̃ :=

√√√√√ k∑
i=1

ˆ

R2

(|ω|2 + |ξ|2)s
∣∣F{(αiu) ◦ ϕ−1

i }(ξ)
∣∣2 dξ

where F stands for the Fourier transform. Note that, by varying ω, each ∥ · ∥s,ω,Γ̃ is equivalent to
∥ · ∥s,Γ̃ .

At this stage, we call H̃
s
(Γ ) the closed subspace of Hs(Γ̃ ) collecting all the distributions with

support in Γ , and we denote by Hs(Γ ) the quotient space Hs(Γ̃ )/H̃
s
(Γ̃ \ Γ̄ ). We use the norm

∥ · ∥s,ω,Γ̃ in order to define a norm on Hs(Γ̃ ), i.e.

∥u∥s,ω,Γ := inf
h∈H̃s(Γ̃\Γ̄ )

∥u+ h∥s,ω,Γ̃ ∀u ∈ Hs(Γ̃ ).

and a norm on Hs(Γ ), i.e.

∥u∥s,ω,Γ,∗ := ∥e+(u)∥s,ω,Γ̃ ∀u ∈ Hs(Γ ),

e+ being the operator that extends the distribution f by 0 from Γ to Γ̃ . Note that, for a fixed ω,
the norm ∥ · ∥s,ω,Γ,∗ is stronger than ∥ · ∥s,ω,Γ , whenever s ∈ 1

2 + Z.

For a given σ > 0 and two parameters s, p ∈ R, we define the space-time anisotropic Sobolev
spaces:

Hp
σ

(
R+;Hs(Γ )

)
:=
{
f ∈ D

′

+(H
s(Γ )) : e− Im{ω}tf ∈ S

′

+(H
s(Γ )) and ∥f∥s,ω,Γ < +∞

}
Hp

σ

(
R+; H̃

s
(Γ )
)
:=
{
f ∈ D

′

+(H̃
s(Γ )) : e− Im{ω}tf ∈ S

′

+(H̃
s(Γ )) and ∥f∥s,ω,Γ,∗ < +∞

}
where D′

+(E) denotes the space of all the distributions on R with support in [0,+∞), taking values
in a Hilbert space E, while its subspace S ′

+(E) ⊂ D′

+(E) contains all the tempered distributions.
In these two spaces the norms are given respectively by:

∥f∥p,s,Γ :=

√√√√√ +∞+ıσˆ

−∞+ıσ

|ω|2p ∥F{f}(ω)∥2s,ω,Γ dω

∥f∥p,s,Γ,∗ :=

√√√√√ +∞+ıσˆ

−∞+ıσ

|ω|2p ∥F{f}(ω)∥2s,ω,Γ,∗ dω.

We remark that, for p = s = 0, Hp
σ (R+;Hs(Γ )) and Hp

σ

(
R+; H̃

s
(Γ )
)

correspond to the weighted
L2-space with standard inner product. For 3D vector-valued functions in space variable, we denote

by Hp
σ (R+;Hs(Γ ))

3 and Hp
σ

(
R+; H̃

s
(Γ )
)3

the extension of the previously introduced functional
spaces.
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