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Abstract

The quasi-brittle response of cohesive-frictional materials in numerical simulations is commonly represented
by softening plasticity or continuum damage models, either individually or in combination. However, classical
models, particularly when coupled with non-associated plasticity, often suffer from ill-posedness and a lack
of objectivity in numerical simulations. Moreover, the performance of the finite element method significantly
degrades in simulations involving finite strains when mesh distortion reaches excessive levels. This represents
a challenge for modeling cohesive-frictional materials, given their tendency to experience strongly localized
deformations, such as those occurring during shear band dominated failure. Hence, accurate modeling of the
response of cohesive-frictional solids is a demanding task. To address these challenges, we present an extension
of the material point method (MPM) for the unified gradient-enhanced micropolar continuum, aiming at the
analysis of finite localized inelastic deformations in cohesive-frictional materials. The generalized gradient-
enhanced micropolar continuum formulation is employed to tackle challenges related to localization and softening
material behavior, while the MPM addresses issues arising from excessive deformations. The method leverages
a B-spline formulation for the rigid background mesh to mitigate the well-known cell crossing errors of the MPM
as well as locking behavior in case of inelastic deformations. To demonstrate the performance of the method, 2D
and 3D numerical studies on localized failure in sandstone in plane strain compression and triaxial extension tests
are presented. A comparison with finite element results confirms the suitability of the formulation. Moreover,
an efficient numerical implementation of the formulation is presented, and it is demonstrated that the additional
MPM specific overhead is negligible.

Keywords: Material point method, Micropolar continuum, Gradient-enhanced continuum, B-spline, Shear
failure

1. Introduction

Cohesive-frictional materials, also known as geomaterials or quasi-brittle materials [4], describe a large class1

of solids whose constitutive behavior is dominated by friction and cohesion between individual particles or2

grains. These materials arise in almost all engineering disciplines with examples such as concrete, mortar, rock,3

rock mass, clay, bone, fibre reinforced composites, tough ceramics, soils, and cemented sands. Such materials,4

even at low stress levels, exhibit nonlinear elastic and inelastic behavior. Other characteristics include a low5

resistance in tension and a potentially high compressive strength, a pronounced pressure dependency of strength,6

and complex failure mechanisms depending on the stress state.7
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The mechanical response of cohesive-frictional materials is greatly influenced by the microstructure of the8

solid as well as the deformations at the microscale. For instance, cohesive-frictional materials with distinct9

cohesive particle bonds might exhibit a fracturing and cracking material response in tension or unconfined10

compression. This behavior is caused by discrete crack formation characterized by a fracture process zone of11

finite size ahead of the crack tip. In this fracture process zone, microcracks emerge and coalesce to form distinct12

stress free macroscropic cracks – a process known as quasi-brittle cracking [5]. Due to the presence of a fracture13

process zone with finite size, quasi-brittle cracking is characterized by an inherent material length associated14

with the microstructure of the solid. Additionally, in confined compression and shear, strongly localized zones15

of large inelastic deformations emerge, frequently in the form of shear bands, kink bands, or fault zones. Similar16

to quasi-brittle fracture process zones, these localized regions of inelastic deformations are dominated by an17

apparent size effect, which is, for example, evidenced by the finite width of shear bands. The characteristic18

dimensions of such localized zones are related to deformations at the microstructure of a material, to the scale19

of the microstructure, and to material heterogeneities.20

1.1. Constitutive modeling of cohesive-frictional materials21

In classical pure continuum models, the quasi-brittle response of cohesive-frictional solids is often captured22

by means of softening plasticity or continuum damage mechanics, or a combination thereof. However, classical23

models, which do not represent any intrinsic characteristic material length scale, suffer from ill-posedness and24

a lack of objectivity, i.e., a pronounced mesh sensitivity in numerical simulations [43]. Additionally, in material25

models for cohesive-frictional materials based on the theory of plasticity, non-associated plastic flow rules are26

commonly employed for representing the volumetric inelastic behavior in a realistic manner. However, non-27

associated plastic flow can lead to unstable material behavior, which manifests itself in the form of localized28

deformations, structural softening behavior, and accordingly, a pathological mesh sensitivity of the results in29

numerical simulations [18, 7].30

To resolve these issues in the context of pure continuum models, various different approaches have been pro-31

posed and investigated, for instance, so-called strongly nonlocal and weakly nonlocal [69] generalized continuum32

models, which emerged in the past century. Such approaches are based on the assumption that the response of33

a material particle is not only influenced by its own loading history but also by the state within a certain finite34

or potentially infinite neighborhood. See [50] for a historical overview.35

From a numerical point of view, weakly and strongly nonlocal generalized continuum models formulated36

implicitly by means of coupled systems of partial differential equations are amenable to efficient and robust37

numerical implementations, as they readily fit the concepts of many established and well understood numerical38

methods, such as the Finite Element Method (FEM). Particular examples of such generalized continuum theories39

are: (i) the micromorphic continuum [29, 26], taking into account the deformation of the microstructure by means40

of an independent microdeformation field, (ii) the microstretch and micropolar (or Cosserat [15]) continua [27],41

which are both special cases of Eringen’s micromorphic continuum assuming certain kinematic restrictions for the42

microdeformation, (iii) strain gradient formulations [79, 51, 1, 8], and (iv) implicit gradient-enhanced continuum43

formulations with gradients of internal state variables [64]. Interested readers are referred to [33, 34, 32] for a44

systematic thermodynamic approach to such formulations.45

One key aspect of generalized continuum formulations is that they may serve as a remedy for the well-known46

problems of classical continua with regard to localizing and softening material behavior. Moreover, the formu-47

lation of generalized continuum models for material failure can be physically motivated by the micromechanical48

behavior [65, 3, 24] of cohesive-frictional materials considering quasi-brittle fracture a nonlocal process.49

For instance, gradient-enhanced models with gradients of internal state variables, taking into account the50

nonlocal influence of spatially interacting microcracks, are particularly well suited for representing quasi-brittle51
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cracking in tension. However, such formulations are potentially not sufficient for modeling the complex kinemat-52

ics of shear band dominated failure. On the other hand, while micropolar continuum models in general provide53

no regularizing effect for quasi-brittle cracking in tension [42], they represent a proper framework for modeling54

shear band dominated failure and for regularizing non-associated plasticity [58]. Hence, for a general contin-55

uum model representing the response of cohesive-frictional materials under a broad range of loading conditions56

ranging from cracking in tension to shear band dominated failure, both the size effect related to microstructural57

deformations and the nonlocal character of quasi-brittle failure in terms of interacting microcracks have to be58

taken into account.59

Accordingly, Neuner et al. [58] proposed a gradient-enhanced micropolar approach for quasi-brittle failure of60

cohesive-frictional materials formulated in the small strain regime. Using the micropolar theory, the framework61

presented a proper remedy for the non-associated plastic flow issues, while the gradient-enhanced part accounted62

for the damage evolution. The novel framework was also validated based on several challenging experimental63

tests on concrete, including a comprehensive numerical study on a transverse shear test on concrete slabs64

reported in [59]. Motivated by these promising results, Neuner et al. [60] recently presented a thermodynamically65

consistent extension of the gradient-enhanced micropolar continuum to the finite strain regime, based on the66

concept of hyperelasto-plasticity. Continuing those efforts, Neuner et al. [57] formulated a damage-plasticity67

model for Red Wildmoor sandstone, investigating complex borehole breakout modes in soft rock. These works68

confirmed the potential of a unified gradient-enhanced micropolar formulation for investigating localized material69

failure in cohesive-frictional materials involving microdeformations.70

1.2. Material point method for large inelastic deformations71

It is well known that the performance of the classical Lagrangian FEM deteriorates substantially in simula-72

tions considering finite strains if mesh distortion becomes excessive. This may occur in particular for modeling73

shear band dominated failure of cohesive-frictional materials with strongly localized deformations, see Fig. 1.74

Accordingly, there is a strong demand for tailored numerical methods to overcome these limitations of the classi-75

cal FEM. In the past decades, several alternative numerical methods have been developed for solving problems76

involving large displacements. Examples include the Particle Finite Element Method (PFEM) [62, 41], the77

Discrete Element Method (DEM) [16, 17], Smoothed Particle Hydrodynamics (SPH) [35, 31, 30, 20, 21, 87],78

meshfree methods such as the Reproducing Kernel Particle Method (RKPM) [48, 12, 11, 37, 6], or the Material79

Point Method (MPM) [77, 78].80

A particularly promising method is the MPM, a Lagrangian particle method using a rigid background81

mesh for computing spatial derivatives and for assembling the global system of equations. Compared to, e.g.,82

the DEM, the MPM is rooted in continuum mechanics, and for this reason, classical continuum models, e.g.,83

developed in the context of the FEM, can be adopted easily. The MPM was developed initially by Sulsky et al.84

[77, 78], see also [19, 72] for recent overviews. The fundamental ideas of the MPM are the spatial discretization85

of a domain of interest by a finite number of material points (sometimes also denoted as particles), the use of86

an independent background mesh, i.e., fixed in space, for assembling and solving a global system of differential87

equations, and the use of suitable interpolation methods for passing information between material points and88

the background mesh, see Fig. 2 for an illustration of the original method.89

In the MPM the history and thermodynamic state of the material are convecting with the material points,90

and accordingly, the method is commonly denoted a Lagrangian particle method, despite involving a background91

mesh. Although initially proposed for explicit time integration schemes, in the past years, implicit formulations92

of the MPM (iMPM) have also been presented [52, 36, 10, 83, 39, 40, 14, 66, 67]. Unconditionally stable93

implicit schemes can guarantee numerically stable solutions independently of the choice of time steps in transient94

simulations. Thus, especially if combined with techniques for error control, they are particularly well suited for95
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Figure 1: Contour plot of damage from a simulation of borehole breakout, using a finite strain gradient-enhanced micropolar damage-
plasticity model for sandstone within the classical finite element method [57]. Large, localized deformations may deteriorate the
performance of the classical finite element method due to excessive mesh distortion.

static and quasi-static analyses. Several applications reported in the literature demonstrate the great potential of96

the MPM, for instance for geomechanical problems [73, 80, 82], fracture modeling [44, 47, 53], or manufacturing97

processes of ultra-high temperature ceramics [66, 67].98

Within the MPM, a major research effort is devoted to the development of improved interpolation procedures99

for passing information from the material points to the background mesh and vice versa. While the original100

MPM [77] did not consider a finite size of the material points and treated them as point masses, extensions101

such as the Generalized Interpolation MPM (GIMP) [2] with different variants uGIMP and cpGIMP [81], the102

Convected Particle Domain Interpolation techniques and extensions (CPDI, CPDI2) [71, 70], and the Dual103

Domain technique MPM (DDMP) [86] improve the MPM by assigning the material points a finite size and104

distinct shape, as well as accounting for the change in volume and shape of a material point undergoing105

deformations. This is achieved by assuming characteristic domain functions for each material point, which,106

together with the classical grid shape functions, are used in a convolution operation to obtain modified weight107

functions for the interpolation procedure. Thereby, an increased robustness and accuracy of the method is108

obtained, and numerical issues, such as cell boundary crossing errors or numerical fracture, can be remedied109

[72]. Another recent concept, the Partitioned Quadrature Material Point Method (PQMPM), modifies the110

numerical quadrature by considering material points consisting of subdomains during cell crossing [84].111

Alternative approaches make use of higher order B-splines [74, 75], similar to Isogeometric FEM approaches112

[38], exploiting their higher order continuity to mitigate cell crossing errors, and for improved convergence113

properties. Additionally, the ease of the implementation of B-splines and the fact that they are less prone to114

locking compared to linear shape functions traditionally used in MPM are promising characteristics.115

There are only a few reported applications of the MPM to generalized continua, such as the micropolar116

continuum, e.g., the explicit formulation by Ma and Sun [49]. Compared to explicit formulations, implicit for-117

mulations of the MPM are a considerably newer development, and accordingly, their formulation for generalized118

continuum models has not yet been investigated in detail. An extension of the iMPM to the purely elastic mi-119

cropolar continuum was recently presented in [61], neglecting, however, inelastic material behavior and material120

failure. More specifically, micropolar continua are characterized by finite macroscopic deformations, including121

stretch, shear, and rotational components, alongside independent finite microrotations. These deformations122
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Figure 2: Original material point method: (a) a domain is discretized using a finite number of material points, (b) in each time
step, the global system of equations is assembled by passing information (e.g., momentum) from the material points to a background
mesh using an interpolation operation, (c) only active cells, i.e., cells with material points located inside, contribute to the global
system of equations, (d) after solving the global system of equations, the updated solution is interpolated back to the material
points, and (e) material points positions and deformation state are updated.

necessitate a suitable parametrization, which has yet to be thoroughly investigated in the context of the MPM.123

Additionally, the robustness of the MPM under excessive shear deformations in micropolar continua, as for124

instance observed in localized shear bands, has not yet been studied.125

This work is motivated by these shortcomings, as well as the promising potential of a gradient-enhanced126

micropolar theory discussed earlier. In particular, we present an improved numerical method, namely an efficient127

and robust extension of the iMPM to the gradient-enhanced microplar continuum, denoted here as gradient-128

enhanced micropolar iMPM (gmp-iMPM), for describing complex and extreme deformations under localized129

material failure in gradient-enhanced micropolar continua in a geometrically exact, three dimensional setting.130

The outline of the paper is as follows. In Section 2, we present a formulation of the iMPM for the gradient-131

enhanced micropolar continuum, aiming at the simulation of strongly localized, inelastic deformations upon132

material failure resulting in shear bands. In particular, we highlight an efficient numerical implementation133

using B-splines to overcome well known issues related to cell crossing and locking. For validating the proposed134

approach, we present a 2D and 3D numerical study in Section 3, together with a comparison with the classical135

Lagrangian FEM. In Section 4, we conclude with a summary and an outlook on future research activities.136
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2. A B-spline based gradient-enhanced micropolar implicit material point method137

In the following, first, we briefly describe the gradient-enhanced micropolar continuum framework for finite138

inelastic deformations developed in [60], and its weak form. Next, a B-spline based material point method for the139

solution of initial boundary value problems (IBVP) is introduced in Section 2.3. Furthermore, the numerical140

implementation of the formulation is covered, including approaches for handling MPM specific challenges,141

i.e., the imposition of essential and natural boundary conditions, as well as the tracing of material points142

in the background mesh. We use the notation used by Eringen [27], employing the index notation due to143

the nonsymmetry of all involved tensors, using subscripts (•)i for components and omitting base vectors for144

readability. We imply summation over repeated subscript indices. Furthermore (•)i,j represents the spatial145

derivative, and ˙(•) = D(•)
Dt designates the material time derivative of a tensor.146

2.1. Gradient-enhanced micropolar continuum framework for large localized inelastic deformations147

For the combined gradient-enhanced micropolar continuum each material particle of a body with an initial148

undeformed volume V 0 and volume V (t) in the current deformed configuration is endowed with three inde-149

pendent variables: (i) the classical displacement field ui, (ii) an independent field describing the microscopic150

deformation state in terms of a microscopic orthogonal tensor χiI [28], and (iii) an additional scalar field α̃151

describing the integrity of the material. The current position of a particle152

xi = XI δiI + ui , (1)

with initial position XI and with δiI denoting the Kronecker delta, is characterized by the displacement field153

ui. Unlike the classical continuum, in addition to the classical macroscopic deformation gradient154

FiI = xi,I , (2)

the independent microscopic orthogonal tensor χiI155

χiIχjI = δij , (3)

characterizes the deformation state. Due to the orthogonal property of χiI , it can be expressed using a three156

parameter representation in terms of the axial vector wi and the Euler-Rodrigues formula157

χiI = cos (w) δiI − sin (w) ϵijk nk δjI + (1− cos (w))ni njδjI , (4)

where158

ni = wi/w and w =
√
wiwi , (5)

with ϵijk denoting the Levi-Civita permutation symbol.159

The balance equations of the gradient-enhanced micropolar continuum in the quasi-static case, neglecting160

volumetric couple forces, consist of the balance of linear momentum161

tij ,i + ρ fj = 0 in V (t) , (6)

and the balance of angular momentum162

mij ,i
+ ϵjkl tkl = 0 in V (t) , (7)
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in which tij is the macroscopic, in general nonsymmetric, Cauchy stress tensor, mij is the nonsymmetric couple163

stress tensor, ρ is the mass density, fj is the body force per unit mass. The third balance equation is the second164

order partial differential equation [64]165

α̃− l2d (α̃,I),I = αd in V 0 . (8)

This equation describes the nonlocal character of material damage using the independent, damage related field166

α̃, with the local internal state variable αd acting as the driving force. The domain of nonlocal interaction is167

related to the length scale parameter ld, which is considered as a material property [3].168

2.2. Weak form and spatial discretization169

For solving the coupled system of partial differential equations numerically, the weak form is constructed170

from the three balance equations (6), (7) and (8). To this end, these equations are multiplied by test functions171

δui, δwi and δα̃. Integration over the spatial domain and subsequent application of the Gauss theorem yields172

the following weak form of the governing equations173 ∫
V (t)

δuj,i tij dV (t)−
∫
V (t)

δuj fj ρ dV (t)−
∫
Āt(t)

δuj t̄j dĀ
t(t) = 0 , (9)∫

V (t)
−δwj,imij + δwj ϵjkl tkl dV (t) = 0 , (10)∫

V 0

δα̃ α̃+ l2d δα̃,I α̃,I − δα̃ αd dV
0 = 0 , (11)

with t̄j denoting the surface traction vector acting on the boundary Āt(t).174

Similar to the FEM, in the MPM a spatial discretization is performed, where the independent fields are175

interpolated using a finite number of values at the nodes of the background mesh based on a set of suitable176

shape functions. In contrast to the Lagrangian FEM, this discretization is performed on a rigid, non-deforming177

background mesh. Accordingly, nodes of the background mesh are not directly associated with the deforming178

body V (t), and the concept of total nodal values is non-existent in the MPM. Furthermore, compared to the179

FEM, due to alternating computations of Lagrangian phases, i.e., the incremental solution on the background180

mesh, and convective phases, i.e., the update of the material points’ positions in the background mesh, the181

MPM inevitably introduces a time discretization. In the following, we focus on a single time increment ∆t to182

the current time t, defining a time interval [t(old), t = t(old) +∆t] with t(old) denoting the previously solved time183

instant with a completely known state.184

During the Lagrangian phase, the primary unknowns to be solved for are the incremental nodal values, with185

the frame of reference being the configuration at the previous time instant t(old). During such a time increment,186

the field solution increments and their derivatives are interpolated using background mesh shape functions NA187

and their derivatives N
A,Ĩ

with respect to the undeformed mesh coordinates, with subscripts (•)A and (•)B188

henceforth denoting node indices of the background mesh as189

190

∆ui = NA∆qu
Ai , ∆u

i,J̃
= N

A,J̃
∆qu

Ai ,

∆wi = NA∆qw
Ai , ∆w

i,J̃
= N

A,J̃
∆qw

Ai ,

∆α̃ = NA∆qαA , ∆α̃,Ĩ = N
A,Ĩ

∆qαA .

(12)

Therein, ∆qu
Ai, ∆qw

Ai and ∆qαA denote the incremental values of the background mesh nodes of the dis-191

placement field ui, the microrotation field in terms of the components of the axial vector wi, and the field of192

the damage-driving variable α̃, respectively. In particular, for parametrizing the microrotations, we adopt the193

7



approach used in [60, 25], updating the axial vector wi incrementally in an additive manner, which leads to a194

multiplicative update of χiI . Furthermore, in the present work, for the sake of simplicity we assume an identical195

interpolation for all fields. Accordingly, the test functions δui, δwi and δα̃, and their respective gradients are196

similarly interpolated using the same interpolation operators NA and N
A,J̃

, and the respective nodal test values197

δqu
Aj , δq

w
Aj , and δqαA.198

Note that, as a result of the convective phase, the undeformed mesh coordinates X̃Ĩ coincide with the particle199

coordinates at the end of the previously converged time instant t(old), i.e.,200

X̃Ĩ ← xi(t(old)) δiĨ (13)

at the end of each time step.201

Following this concept, the total deformation gradient FiI is decomposed in a multiplicative manner202

FiI = F̃
iĨ
F (old)

ĨI , (14)

with203

F (old)
ĨI =

∂X̃Ĩ

∂XI
=
∂xi(t(old)) δiĨ

∂XI
(15)

denoting the previously converged total deformation gradient at time t(old), which is treated as a history variable,204

and the incrementally updating deformation gradient F̃
iĨ

which follows as205

F̃
iĨ

= ∆u
i,Ĩ

+ δiĨ = N
A,Ĩ

∆qu
Ai + δiĨ . (16)

Utilizing this decomposition, the derivatives of the shape function with respect to the current, deformed con-206

figuration, and the materially undeformed configuration can be expressed as207

NA,i = N
A,Ĩ

(F̃ )
−1

Ĩi , (17)

NA,I = N
A,Ĩ

(F̃ )
−1

Ĩi FiI . (18)

This allows, using the Kirchhoff stress τij = J tij and the Kirchhoff couple stress µij = J mij for convenience,208

to express the discretized weak form as209

δqu
Aj

(∫
V 0

NA,i τij dV
0 −

∫
V 0

NA fj ρ0 dV
0 −

∫
Āt(t)

NA t̄j dĀ
t(t)

)
= δqu

Aj r
u
Aj = 0 , (19)

δqw
Aj

∫
V 0

−NA,i µij +NA ϵjkl τkl dV
0 = δqw

Aj r
w
Aj = 0 , (20)

δqαA

∫
V 0

NA α̃+ (ld)
2NA,I α̃,I −NA αd dV

0 = δqαA rαA = 0, (21)

in which use of the Jacobian determinant210

J =
dV (t)

dV 0
=
ρ0
ρ

= detFiI (22)

was made to transform the volume integrals to the undeformed configuration, and with ruAj , r
w
Aj and rαA211

denoting the nodal residual vectors, forming the system of nonlinear equations. Expressing the constitutive rela-212

tions in terms of the Kirchhoff stress measures is particularly convenient for efficient numerical implementations,213

as the resulting expressions become independent of the Jacobian determinant J .214

In equations (19), (20) and (21), the Kirchhoff stress τij , the Kirchhoff couple stress µij and local damage215

8



driving variable αd are functions of FiI , wi, wi,I , α̃, and a material specific set of thermodynamic internal state216

variables α•, i.e.,217

τij = τij (FiI , wi, wi,I , α̃, α•) , µij = µij(FiI , wi, wi,I , α̃, α•) , αd = αd(FiI , wi, wi,I , α̃, α•) . (23)

Accordingly, they depend on the incremental node values ∆qu
Bk, ∆qw

Bk and ∆qαB, and the loading history218

of the material.219

2.3. Material point method for solving the IBVP220

For the classical MPM, considering material points as concentrated, shapeless point masses, the spatial221

domain occupied by the body V (t) is discretized by a finite number N of material points with positions (xp)i222

V (t) =

∫
V (t)

dV (t) ≈
N∑
p

Vp(t) =
N∑
p

JpV
0
p , (24)

and we henceforth use the subscript (•)p for designating an individual material point. Furthermore, Vp(t) and223

V 0
p denote the current and initial volume of each material point, and Jp denotes the determinant of the material224

point’s deformation gradient (FiI )p.225

As the final step for the MPM, envisioning the material points as convecting quadrature points, the volume226

integrals in equations (19), (20) and (21) are approximated by227

∫
V 0

NA,i τij dV
0 −

∫
V 0

NA fj ρ0 dV
0 ≈

N∑
p

NA,i τij V
0
p −

N∑
p

NA fj ρ0 V
0
p , (25)

∫
V 0

−NA,i µij +NA ϵjkl τkl dV
0 ≈

N∑
p

(
−NA,i µij +NA ϵjkl τkl

)
V 0
p , (26)

∫
V 0

NA α̃+ (ld)
2NA,I α̃,I −NA αd dV

0 ≈
N∑
p

(
NA α̃+ (ld)

2NA,I α̃,I −NA αd

)
V 0
p , (27)

in which the explicit dependence of τij = (τij )p, µij = (µij)p, αd = (αd)p, α̃ = (α̃)p NA = NA((X̃p)Ĩ) and228

N
A,Ĩ

= N
A,Ĩ

((X̃p)Ĩ) on the material point and its location (X̃p)Ĩ was omitted for the sake of readability. Note229

that, similar to the Lagrangian FEM, during the Lagrangian phase the relative position of the material points230

with respect to the background mesh remains fixed, i.e., during this phase the background mesh is moving and231

deforming with the body, and hence (X̃p)Ĩ is constant during the Lagrangian phase.232

One particularly appealing characteristic of the MPM is its continuum based nature, which allows adaptation233

of sophisticated continuum based constitutive models, e.g., those developed in the context of the FEM. The234

gmp-iMPM has been formulated in such a way that the constitutive models and stress update algorithms235

developed previously in [60, 57, 23] for use in the FEM can be readily adopted.236

The system of nonlinear equations formed by the three residual vectors ruAj , r
w
Aj and rαA is commonly237

solved by means of the Newton-Raphson scheme, which requires the derivatives of those residual vectors with238

respect to the vectors of the incremental nodal values. Those derivatives are summarized in Section 2.6.239

Once the updated increments of the nodal solution have been computed, the Lagrangian phase is finished240

and is then followed by the convective phase, in which the positions of the material points xi(t) = XĨ δiĨ +∆ui241

are accepted as converged, the deformed background mesh is reset, and the current time t is accepted as the242

previously converged time instant t(old), i.e., t(old) ← t.243
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2.4. B-spline shape functions244

While traditionally classical linear shape functions have been used for the MPM, the use of higher order B-245

spline shape functions, which are commonly employed in the Isogeometric FEM, has gained a certain popularity,246

as they allow to overcome the well known issues related to cell crossing of material points due to their higher247

order continuity. Moreover, they are less prone to locking behavior upon plastic deformations, as will be248

demonstrated in Section 3.249

In one dimension, the value of a B-spline of order ζ associated with node A of the background mesh250

(commonly denoted as control point in Isogeometric FEM terminology) is expressed recursively as251

Bζ
A(X) =

X − ξA
ξA+ζ − ξA

Bζ−1
A (X) +

ξA+ζ+1 −X
ξA+ζ+1 − ξA+1

Bζ−1
A+1(X) (28)

with252

B0
A(X) =

1, if ξA ≤ X < ξA+1

0, otherwise ,
(29)

and with ξA denoting the Ath knot from a predefined set of knots {ξ1, ξ2, ..., ξM+(ζ)+1}, which controls the253

supports of the in total M B-spline functions. This concept can be generalized to multiple spatial dimensions254

D using products of B-spline basis functions. Thus, for obtaining the shape functions NA of chosen degree ζ at255

location X̃Ĩ , the index A of the mesh node is associated with a cartesian triple index (A1, A2, A3), Ad denoting256

the index of the B-spline basis function in direction d. The shape function NA is then defined as the product of257

the B-spline basis functions in the D spatial directions, each of which is evaluated for the respective coordinate258

(X̃Ĩ)d of X̃Ĩ , i.e.259

NA(X̃Ĩ) =

D∏
d=1

Bζ
Ad

((X̃Ĩ)d) . (30)

For the numerical implementation, identical to the FEM due to the bounded support of each shape function,260

the evaluation of residuals and stiffness is performed by partitioning the approximations (25), (26) and (27)261

of the total integrals into a finite number of cells, with each cell being associated with a certain number of262

nodes and knots of the background mesh, depending on the chosen order ζ. Only active cells, i.e., cells hosting263

material points are considered for the assembly of the global system of equations, which follows the standard264

assembly procedure.265

2.5. Boundary conditions and constraints266

Compared to the Lagrangian FEM, a particular challenge in the MPM is the imposition of Dirichlet boundary267

conditions on surfaces which do not conform with the background mesh. For this purpose, we propose the use268

of weakly imposed boundary conditions based on a penalty formulation, as developed in [9]. For the sake of269

brevity, we restrict the discussion to boundary conditions for the displacement field in the following.270

For imposing Dirichlet boundary conditions on a set of Nu material points forming a surface Āu
p(t), the271

residual vector ruAi is augmented by the penalty term272

Nu∑
p

NA γp ((up)j − ūj)Vp(t) . (31)

with γp as the penalty parameter, (up)j = NA∆qu
Aj + (up(t(old)))j as the current material point displacement,273

and with ūj denoting the prescribed displacement. In a similar manner, constraints can be formulated, e.g.,274

coupling one displacement component of a material point to the respective average over a surface for, e.g.,275

formulating rigid body constraints.276
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For prescribing Neumann boundary conditions, i.e., surface tractions acting on a deforming surface Āt(t),277

the surface integral in (19) is approximated as278

∫
Āt(t)

NA t̄j dĀ
t(t) ≈

Nt∑
p

NA t̄j Ā
t
p(t) (32)

using the set of N t material points at the boundary, with Āt
p(t) denoting the surface area associated with the279

material point in the deformed configuration. Relating this equation to the undeformed configuration, exploiting280

Nanson’s formula, leads to281

t̄j Ā
t
p(t) = J F−1

Jj T̄J Ā
t,0
p (33)

with T̄J denoting the initial surface traction vector, and Āt,0
p as the area associated with the material point in282

the undeformed configuration.283

In principle, both weakly imposed Dirichlet boundary conditions (31) and Neumann boundary conditions284

(32) could be enforced using sets of dummy surface material points which form a denser representation of the285

respective surfaces and which are not used for computing the volume integrals in (25), (26) and (27). This286

method is described in [9], but not pursued in the present work.287

2.6. Tangent operators288

For solving the global system of nonlinear equations using the Newton-Raphson method, the global stiffness289

matrix is assembled from the derivatives of the nodal residual vectors, i.e., of ruAj in the form290

∂ruAj
∂∆qu

Bk

=
N∑
p

(
NA,i

∂τij
∂FmM

∂FmM
∂F̃

kK̃

N
B,K̃
−NA,kNB,i τij

)
V 0
p (34)

−
N∑
p

NA t̄i
(
δijδlk − δikδlj

)
NB,l Ā

t
p(t) (35)

∂ruAj
∂∆qw

Bk

=
N∑
p

NA,i

(
∂τij
∂wm,M

∂FmM
∂F̃

kK̃

N
B,K̃

+
∂τij
∂wk

NB

)
V 0
p , (36)

∂ruAj
∂∆qαB

=

N∑
p

NA,i

∂τij
∂α̃

NB V
0
p , (37)

of rwAj as291

∂rwAj
∂∆qu

Bk

=
N∑
p

(
−NA,i

∂µij
∂FmM

∂FmM
∂F̃

kK̃

N
B,K̃

+NA ϵjmn
∂τmn
∂FlL

∂FlL
∂F̃

kK̃

N
B,K̃

+NA,kNB,i µij

)
V 0
p , (38)

∂rwAj
∂∆qw

Bk

=

N∑
p

(
−NA,i

(
∂µij
∂wm,M

∂FmM
∂F̃

kK̃

N
B,K̃

+
∂µij
∂wk

NB

)
(39)

+NA ϵjmn

(
∂τmn
∂wl,L

∂FlL
∂F̃

kK̃

N
B,K̃

+
∂τmn
∂wk

NB

))
V 0
p , (40)

∂rwAj
∂∆qαB

=
N∑
p

(
−NA,i

∂mij

∂α̃
NB +NA ϵjmn

∂τmn
∂α̃

NB

)
V 0
p , (41)
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and of rαA as292

∂rαA
∂∆qu

Bk

=
N∑
p

(
−NA

∂αd

∂FmM

∂FmM
∂F̃

kK̃

N
B,K̃

)
V 0
p , (42)

∂rαA
∂∆qw

Bk

=
N∑
p

−NA

(
∂α̃

∂wm,M

∂FmM
∂F̃

kK̃

N
B,K̃

+
∂α̃

∂wk
NB

)
V 0
p , (43)

∂rαA
∂∆qαB

=

N∑
p

(
NANB + l2dNA,I NB,I −NA

∂αd

∂α̃
NB

)
V 0
p , (44)

with respect to ∆qu
Bk, ∆qw

Bk, and ∆qαB, using the relation293

∂FmM
∂F̃

kK̃

=
∂wm,M
∂w

k,K̃

= δmk F
(old)

K̃M . (45)

Furthermore,
∂τij
∂FkK

,
∂τij
∂wk

,
∂τij
∂wk,K

,
∂τij
∂α̃ ,

∂µij
∂FkK

,
∂µij
∂wk

,
∂µij
∂wk,K

,
∂µij
∂α̃ , ∂αd

∂FkK
, ∂αd

∂wk
, ∂αd

∂wk,K
, and ∂αd

∂α̃ denote the consis-294

tent tangent operators at the constitutive level, which are consistently computed as part of the stress update295

algorithm [60, 24].296

2.7. Fast tracing of material points in the background mesh using a k-d tree algorithm.297

Unlike in the FEM, where the numerical integration is performed using quadrature points that are directly298

associated with a single finite element, the material points in the context of the MPM may change cells in299

the rigid background mesh. Accordingly, prior to each time step, the connectivity between material points300

and the background mesh has to be determined and each material point has to be associated with its hosting301

background cell. The most trivial approach for locating material points in the background mesh would be a302

loop over all material points in which a loop over all background cells is performed until the background cell303

covering each material point is found. Of course, this brute force approach is not feasible for problems involving304

a large number of material points and background cells. To overcome this issue a k -d tree is employed for the305

fast material point tracing. The use of a k -d tree in the present context includes the following three main parts,306

which are illustrated in Fig. 3 and explained in the following:307

(i) k-d tree setup (Fig. 3, top row)308

Prior to the start of the simulation, the k -d tree is initialized. Thereby, the entire computational domain,309

which is covered by the background mesh, is partitioned into k -d tree boxes. For a given number of310

levels, the resulting subdomains are again divided until level 0 is attained, cf. Fig. 3 (top row). Then, all311

background cells, which are (at least partially) included in a k -d tree box are assigned to the latter. Note312

that a background mesh cell is partially covered if at least one vertex is inside of the k -d tree box. The313

assignment of background mesh cells to k -d tree boxes must be performed only once since the background314

mesh is rigid, and therefore the connectivity between background cells and k -d tree boxes does not change315

during the simulation.316

(ii) Initial assignment of material points in the background mesh (Fig. 3, mid row)317

After the setup of the k -d tree, an initial assignment of the material points (undeformed configuration)318

in the k -d tree, and subsequently, the assignment to the respective background cells is performed. This319

includes a search downwards the k -d tree until level 0 is reached, and subsequently, the assignment to the320

background cell. For each material point, the respective background cell is stored as an initial guess for a321

tracing in the deformed configuration. This step is performed only once before the simulation.322

12



(iii) Tracing of material points in the background mesh (Fig. 3, bottom row)323

During the simulation the material points move with respect to the background mesh, which makes a324

tracing of the material points necessary at the beginning of each time step. The tracing process starts325

with a verification if the respective material point is still within the background cell it was associated with326

in the previous time instant. For small deformations, this is expected to be the case for many material327

points. However, if a material point has left the previous background cell, instead of repeating the initial328

assignment with the actual spatial configuration, the previous k -d tree box is utilized as an initial guess for329

an even faster tracing, cf. Fig. 3. Assuming relatively small deformation increments, it is highly probable330

that a material point which left a background cell, enters a cell which is in the immediate surrounding331

area. If the material point is not covered in the initially guessed k -d tree cell, the search is performed332

recursively upwards the tree beginning with the parent of the latter. Once a box containing the material333

point is found, the search is performed downwards again until level 0 is attained, following step (ii). This334

approach for tracing material points has proven to be efficient if the time steps are small, which is usually335

the case for highly nonlinear problems.336

2.8. Summary of the gmp-iMPM337

Algorithm 1 summarizes the proposed gmp-iMPM, showing the performed computations.338

Algorithm 1 gmp-iMPM
procedure Preprocessing

V 0 ≈
∑N

p V 0
p , ▷ Populate material points to cover V 0, cf. Eq. (24)

Setup background mesh
Setup k-d tree ▷ Initial partitioning of the computational domain; cf. Section 2.7

end procedure
procedure Transient Analysis

for all ∆t do
t← t(old) +∆t ▷ Define time step
NA(X̃Ĩ),NA,Ĩ

(X̃Ĩ)← Material point tracing ▷ Locate material point; define active set of cells cf. Section 2.7
procedure Lagrangian Phase

while not converged do ▷ Newton Scheme
∆ui, ∆wi, ∆α̃ ← ∆qu

Bk, ∆qw
Bk, ∆qα

B ▷ Compute field increments for material points, cf. Eq. (12)
F̃
iĨ
← ∆ui ▷ Compute incrementally updating deformation gradient

FiI ← F̃
iĨ

, F (old)
ĨI ▷ Update deformation from history, cf. Eq. (14)

τij , µij , αd ← FiI , wi, wi,I , α̃, α• ▷ Compute material point response, cf. Eq. (23)
ruAj , rwAj , rαA ← τij , µij , αd, α̃ ▷ Compute volumetric kernels contributions: (25), (26), (27)
ruAj , rwAj , rαA ← t̄i, ūi ▷ Compute boundary conditions and constraints, cf. Eqs. (31), (32)
Ax = b← ruAj , rwAj , rαA ▷ Assemble global system of equations, cf. Eqs. (19), (20), (21)
∆qu

Bk, ∆qw
Bk, ∆qα

B ← x ▷ Solve global system for corrections to nodal solution increments
end while

end procedure
procedure Convective Phase

t(old) ← t ▷ Advance time
X̃Ĩ ← xi(t(old)) δiĨ ▷ Reset background mesh and update positions, cf. Eq. (13)

end procedure
end for

end procedure

3. Numerical study and comparison with the FEM339

The proposed gmp-iMPM is assessed and compared to the FEM in two challenging benchmark examples340

involving strongly localized, shear band dominated material failure. In detail, we focus on (i) a 2D plane strain341

compression test on prismatic sandstone specimens, resembling the experiments by Ord et al. [63], and (ii) a342

3D triaxial extension test on cylindrical sandstone specimens.343
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Figure 3: Efficient tracing of material points in the background mesh: initial setup of the k -d tree prior to the start of the simulation
(top row), initial assignment of the material points (undeformed reference configuration) using the previously built tree (mid row),
and efficient tracing of material points (deformed configuration) using the previous k -d tree box as initial guess and subsequent
search upwards and downwards in the tree (bottom row).
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For modeling the material behavior of the sandstone, we employ the gradient-enhanced micropolar hyper-344

elastic damage-plastic model for Gosford sandstone proposed in [60], originally developed to be used in the345

context of the FEM. It is considered as a representative benchmark constitutive model for cohesive-frictional346

materials, as it accounts for nonlinear, damaging elastic behavior, as well as hardening finite strain plasticity347

with a pressure dependent yield function. The evolution of gradient-enhanced damage is driven by the accumu-348

lation of plastic deformation. The model was developed and calibrated based on the plane strain compression349

tests on prismatic Gosford sandstone specimens reported in [63], and the good predictive capabilities were350

demonstrated in [60].351

The basic model formulation is summarized briefly in the following, whereas the reader is referred to [60]352

for a detailed explanation of the model. For the subsequently presented simulations, the gmp-iMPM and the353

constitutive models are implemented as an extension of the EdelweissFE [56] finite element code, using the354

Marmot [22] material library. For performing the numerous higher order tensor contractions efficiently, we make355

use of the Fastor [68] library.356

3.1. Material model for Gosford sandstone – summary357

For an objective description of a material point, a set of Lagrangian tensors, consisting of the Cosserat358

deformation tensor359

CIJ = FiI χiJ , (46)

and the wryness tensor360

ΓKLI = χiK χiL,I , (47)

are used. Since the wryness tensor ΓKLI is skew symmetric in its first two indices K and L, an axial represen-361

tation can be exploited yielding362

ΓKLI = −ϵJKL ΓJI . (48)

Next, the elastic-plastic split is introduced. First, at the macroscopic level, an elastic-plastic split based on363

the multiplicative decomposition of the deformation gradient is assumed as364

FiI = F e
iĪF

p
ĪI , (49)

known as the Kröner-Lee decomposition [45, 46], denoting the macroscopic stress free intermediate configuration365

by the overhead bar [60]. Using the multiplicative decomposition (49), the elastic deformation tensor Ce
ĪJ is366

formed, resulting from the multiplicative decomposition as367

Ce
ĪJ = F e

iĪ χiJ = (F p)−1
IĪ CIJ . (50)

Second, for the wryness tensor, an additive decomposition368

ΓJI = Γe
JI + Γp

JI , (51)

is assumed. Therein, we denote369

Γe
JI = −

1

2
ϵJKL χkK χ

e
kL,I and Γp

JI = −
1

2
ϵJKL χkK χ

p
kL,I , (52)

by assuming an additive decomposition of the material gradient χiJ,K as370

χiJ,K = χe
iJ,K + χp

iJ,K . (53)
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For the considered model, the elastic Helmholtz free energy density Ψe is assumed to be a function of371

the elastic deformation tensor Ce
ĪJ , the elastic wryness tensor Γe

JI , and a scalar isotropic material damage372

parameter 0 ≤ ω ≤ 1 in the form373

Ψe = Ψe(Ce
ĪJ ,Γ

e
JI , ω) . (54)

The hyperelastic-plastic relations are formulated in terms of the Biot stress measure T
ĪJ

, which is power374

conjugate to the elastic Cosserat deformation rate Ċe
ĪJ , and is defined with respect to both the undeformed375

and the stress free intermediate configurations as376

TĪJ = J (F e)−1
Īi tij χjJ . (55)

Furthermore, the Mandel stress measure T
ĪJ̄

, which is power conjugate to the plastic velocity gradient Lp
J̄ Ī

=377

Ḟ p
J̄K(F p)−1

KĪ , is defined exclusively in the intermediate configuration as378

TĪJ̄ = J (F e)−1
Īi tij F

e
jJ̄ . (56)

Lastly, the Biot couple stress tensor MIJ , power conjugate to Γ̇e
JI and Γ̇p

JI , is introduced as379

MIJ = J mij F
−1

Ii χjJ . (57)

Following the derivations in [60], the Coleman-Noll procedure [13], requiring that non-negative dissipation must380

be fulfilled for arbitrary, independent rate processes, yields the the constitutive relations381

TĪJ = ρ0
∂Ψe

∂Ce
ĪJ

, MIJ = ρ0
∂Ψe

∂Γe
JI

. (58)

For the elastic constitutive relations, the potential function382

ρ0Ψ
e(Ce

ĪJ ,Γ
e
JI , ω) = g(Je) + (1− ω) 1

2

(
(G+Gc)

(
(Je)−

2
3 Ce

ĪJ C
e
ĪJ − 3

)
−Gc

(
(Je)−

2
3 Ce

ĪJ C
e
JĪ − 3

))
+ (1− ω) 1

2

(
(γ̂ + β̂) Γe

JI Γ
e
JI + (γ̂ − β̂) Γe

JI Γ
e
IJ + α̂Γe

IIΓ
e
JJ

)
,

(59)
is used, with Je denoting the determinant of Ce

ĪJ , and383

g(Je) =
K

8

(
Je − 1

Je

)2

. (60)

The six elastic constants are the shear modulus G, the bulk modulus K, the coupling modulus Gc, and the384

three micropolar elastic constants α̂, β̂ and γ̂. The latter are commonly expressed using the polar ratio and the385

characteristic lengths in bending and torsion, i.e.,386

ψ =
2γ̂

2γ̂ + α̂
, lb =

√
γ̂ + β̂

4G
, lt =

√
γ̂

G
. (61)

Following the principle of bounded stiffness [55] leads to the choice387

ψ =
3

2
and lt = 2 lb . (62)

Accordingly, only the length scale parameter lb and the coupling modulus Gc remain as independent elastic388

parameters, together with the classical constants G and K.389
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The evolution of the plastic deformation tensor F p
ĪI

and the plastic wryness Γp
JI , as well as an assumed390

internal state variable αp accounting for the hardening state, are described by means of a yield condition, a391

flow rule, and a hardening rule. For the combined damage-plasticity approach, plasticity is formulated in the392

effective stress space393

T̄ĪJ = ρ0
∂Ψe

∂Ce
ĪJ

∣∣∣∣
ω=0

, M̄IJ = ρ0
∂Ψe

∂Γe
JI

∣∣∣∣
ω=0

, (63)

interpreted as forces per intact area of the material.394

A single, combined yield function exploiting the concept of generalized stress invariants [54, 76], computed395

from both the effective Mandel and couple stress tensors, T̄
ĪJ̄

and M̄IJ , is used. Following the discussion in396

[58, 57], those generalized invariants ˆ̄I1 and ˆ̄J2 are computed as397

ˆ̄I1 = T̄Ī Ī , (64)

and398

ˆ̄J2 =
1

2
S̄ĪJ̄ S̄ĪJ̄ +

1

(lJ2)
2

(
1

2
M̄IJ M̄IJ

)
, (65)

from the deviatoric part of the effective Mandel stress tensor399

S̄ĪJ̄ = T̄ĪJ̄ −
1

3
δĪJ̄

ˆ̄I1 . (66)

Therein, the length scale parameter lJ2 is a material parameter specific to the microstructure of the material.400

The single combined yield function is expressed as401

fp(T̄ĪJ̄ , M̄IJ , β̄p) =

√
3

2
ˆ̄ρ+
√
3
(
mϕ

ˆ̄Tm − β0
)
− β̄p , (67)

with402

ˆ̄Tm =
1

3
ˆ̄I1 , ˆ̄ρ =

√
2 ˆ̄J2 , (68)

with mϕ denoting the friction parameter, β0 denoting the cohesion strength parameter, and βp = (1 − ω) β̄p403

as the nominal scalar stress-like hardening parameter. The latter is related to the conjugate equivalent plastic404

deformation measure αp as405

βp = (1− ω)ρ0
∂Ψh

∂αp
, with ρ0Ψ

h = h∆

(
αp +

exp(−αp hexp)− 1

hexp

)
, (69)

where h∆ and hexp are hardening material parameters.406

The evolution of F p
ĪI

, Γp
JI and αp follows from the flow rules407

Lp
J̄ Ī = λ̇

∂gp(T̄ĪJ̄ , M̄IJ )

∂T
ĪJ̄

, Γ̇p
JI = λ̇

∂gp(T̄ĪJ̄ , M̄IJ )

∂MIJ

, α̇p = −λ̇
∂fp(T̄ĪJ̄ , M̄IJ , β̄p)

∂βp
, (70)

with λ̇ denoting the plasticity consistency parameter, and with the non-associated plastic potential function408

gp(T̄ĪJ̄ , M̄IJ , βψ) defined as409

gp(T̄ĪJ̄ , M̄IJ ) =

√
3

2
ˆ̄ρ+
√
3

(
mψ

ˆ̄Tm
βψ

(1− ω)

)
. (71)

Therein, mψ is the dilation parameter, and βψ is a dimensionless parameter for modeling decreasing dilatant410
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Table 1: Material parameters for Gosford sandstone used in the numerical examples.

E (GPa) ν (-) Gc/G (-) lb (mm) ld (mm) lJ2 (mm) c (MPa) ϕ (◦) ψ (◦) A (-) h∆ (MPa) hexp (-) hd (-) εf (-)

13 0.35 1 1 1 1 8 30 20 1 11 1400 1 0.11

behavior with evolving plastic deformations as411

βψ = 1− exp(−αp hd) , (72)

utilizing the material parameter hd.412

Parameters β0, mϕ and mψ in equations (67) and (71) are computed as413

β0 =
6 c cos (ϕ)√
3(3 +A sinϕ)

, mϕ =
6 sin (ϕ)√

3(3 +A sinϕ)
, mψ =

6 sin (ψ)√
3(3 +A sinψ)

, (73)

in which c denotes the cohesion stress like material parameter, ϕ the friction angle, ψ the angle of dilation and414

−1 ≤ A ≤ 1 a fitting parameter for adjusting the Drucker-Prager yield surface for in- (A = 1) or circumscribing415

(A = −1) the Mohr-Coulomb yield surface.416

For describing the evolution of damage, the exponential softening law417

ω = 1− exp

(
− α̃
εf

)
, (74)

is used, with εf as the softening modulus, and with α̃ denoting the independent field describing the integrity of418

the material in Eq. (8).419

The local damage driving variable αd is related to the accumulation of plastic dilation as420

α̇d =
D

Dt

(
log
(
detF p

ĪI

))
. (75)

This way, a monotonic growth of the damage parameter ω is ensured. The employed material parameters, which421

have been calibrated in [60] based on the experimental results on specimen RAO636 by [63], are summarized422

in Table 1. At material point level, the constitutive relations are implemented by means of a stress update423

algorithm, computing in the time interval [t(old), t = t(old) + ∆t] for the given total deformation state FiI , wi424

and wi,J and the known state of the material at time t(old) (i) the updated Kirchhoff stress τij (t), (ii) the425

updated Kirchhoff couple stress µij(t), (iii) the updated damage driving variable αd(t), and (iv) the updated426

hardening variable αp(t). Additionally, (v) the algorithmic tangents of τij (t), µij(t), and αd(t) with respect427

to the deformation tensors are computed, which are required for solving the global system of equations using428

the Newton scheme. The employed stress update algorithm is briefly outlined in Algorithm 2. For detailed429

explanations of the implementation, especially the finite strain return mapping algorithm of the plasticity part,430

we refer to [60, 23].431

3.2. Plane strain compression tests on Gosford sandstone432

As a first numerical example, we consider one of the biaxial compression tests under plane strain conditions433

on Gosford sandstone carried out by Ord et al. [63]. This test has already been investigated by the authors in434

[60] in the context of the finite element method. In the following, the finite element results are compared to the435

results achieved using the present gmp-iMPM. In [63], prismatic sandstone specimens (40mm×80mm×80mm)436

were tested under plane strain conditions at constant lateral confining pressures ranging from 0MPa to 20MPa.437

In the numerical model, possible relative displacements between the loading plates and bottom and top surfaces438
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Algorithm 2 Gosford sandstone model – stress update
Input: FiI , wi , wi,I , α̃, (F

p
ĪI
)(old), (Γ

p
JI)(old), (αp)(old), (αd)(old)

Output: τij , µij , αd and tangents, F p
ĪI
,Γp

JI , αp,

χiI , χiI,J ← Rotation Integrator (wi, wi,I ) ▷ Update micro rotation tensor and its gradient using (4)
CIJ ,ΓJI ← FiI , χiJ , χiL,I ▷ Compute deformation measures in (46) and (47)
procedure Plasticity part

Ce,tr
ĪJ ,Γ

e,tr
JI ← CIJ , ΓJI , (F

p
ĪI)(old), (Γ

p
JI)(old) ▷ Assume trial elastic state using (50) and (51)

T̄ĪJ̄ , M̄IJ , β̄p ← Ce,tr
ĪJ , Γ

e,tr
JI , (αp)(old), ω = 0 ▷ Compute effective trial state using (63), (56) and (69)

fp(T̄ĪJ̄ , M̄IJ , β̄p) ← T̄ĪJ̄ , M̄IJ , β̄p ▷ Evaluate the yield function (67)
if fp(T̄ĪJ̄ , M̄IJ , β̄p) > 0 then

Ce
ĪJ , Γ

e
JI , αp ← Return mapping ((F p

ĪI)(old), (Γ
p
JI)(old), (αp)(old),CIJ ,ΓJI)

▷ Numerical integration of (70)
F p

ĪI , Γ
p
JI ← CIJ , ΓJI , ,C

e
ĪJ , Γ

e
JI , ▷ Update plastic state using (50) and (51)

αd ← αp, (αp)(old), T̄ĪJ̄ ▷ Compute local damage driving parameter in (75)
else

F p
ĪI , Γ

p
JI , αp ← (F p

ĪI)(old), (Γ
p
JI)(old), (αp)(old) ▷ No plastic response

αd ← (αd)(old) ▷ No change in local damage driving force
end if

end procedure
procedure Damage part

ω ← α̃ ▷ Compute updated damage parameter in (74)
end procedure
TĪJ , MIJ ← Ce

ĪJ , Γ
e
JI , ω ▷ Compute nominal Biot stress measures using (58)

τij , µij ← TĪJ , MIJ ▷ Push forward to nominal Kirchhoff stress measures

are neglected, resulting in fixed boundary conditions at the bottom and a rigid body constraint at the top439

surface. Additionally, a relative rotation between the bottom and top surfaces is not permitted. Furthermore,440

for triggering the shear band direction with an imperfection, a small lateral force of 10N is applied at the441

top right corner of the specimen. In the model using the gmp-iMPM, only the fixed boundary condition at442

the bottom surface is applied directly on the background mesh, whereas the rigid body constraint and the443

displacement at the top surface are weakly imposed as described in Section 2.5. The simulation of the plane444

strain compression tests is performed in two sequential steps: First, the confining pressure is applied while any445

vertical displacement is blocked at the top surface. Subsequently, an adaptive time incrementation scheme is446

employed for applying the displacement at the top surface.447

In the following, for comparing the present gmp-iMPM to the FEM, the test with 20MPa confining pressure448

is investigated. The test setup, including the boundary conditions together with the respective discretization449

using the MPM approach, is illustrated in Fig. 4. For the FEM, 60×120 elements with second order Lagrangian450

shape functions and a reduced Gaussian quadrature rule are employed, c.f. [60] for details on the discretization451

and boundary conditions using the FEM.452

For discretizing the background domain with dimensions of 60mm×80mm, two resolutions with 30×40 and453

60×80 cells are considered. Moreover, for all background meshes B-splines of order 1, 2, and 3 are investigated.454

Similarly, for all background meshes, different discretizations of the specimens are investigated, consisting of455

80× 160, 120× 240 and 160× 320 material points.456

Fig. 5 illustrates the evolution of the displacement field in the specimen during the simulation. It can be457

seen that during the test, a diagonal shear band emerges, resulting in localization of the deformations. The458

respective load-displacement curves are shown in Fig. 6, together with the reference FEM solution from [60]. It459

can be seen that the coarser background discretization is insufficient for obtaining an accurate agreement with460

the FEM solution in the post peak regime, irrespective of the B-spline order and the number of material points.461

By contrast, for the fine background resolution, very good agreement is obtained for second and third order462

B-splines, irrespective of the number of material points. For the first order B-splines, which are equal to classical463

linear Lagrangian shape functions, not only a ductile post peak response is obtained, but also oscillations are464
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observed. The first issue, i.e., the overly ductile response, is attributed to locking behavior in shear deformations,465

similar to the well known issues in the context of the FEM. In particular, the complex kinematics in case of466

shear band dominated failure cannot be represented properly by such low order cells. The second issue, i.e.,467

oscillations in the load-displacement curves, are a result of the well known cell crossing problems, which are468

completely remedied by higher order B-splines providing higher order continuity for derivatives.469

Fig. 7 illustrates a detailed view of the shear band at a later stage of the simulation for both the MPM and470

the FEM. It can be seen clearly that for large localized deformations, for the FEM mesh distortion becomes471

excessive, resulting in severely warped and entangled elements, which ultimately terminates the simulation.472

lateral confining
pressure 20MPa

d
is
p
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ce
m
en
t

40mm

8
0
m
m

imperfection:
10N lateral force

constrained material points
for Dirichlet boundary conditions
and rigid body constraint

Neumann boundary
conditions applied directly
to material points

mesh conforming
Dirichlet boundary conditions

background mesh

rigid body constraint

x2

x1

Figure 4: Geometry and boundary conditions (left) and illustration of the respective MPM discretization for the 2D plane strain
compression test on Gosford sandstone.

x2

x1

Figure 5: Evolution of the magnitude of the vertical displacement in the prismatic specimen for different stages of the simulation,
indicating the formation of a diagonal shear band with strongly localized inelastic deformations. The simulation is based on the
60×80 third order B-spline background cells with 160× 320 material points.

3.3. Triaxial extension tests on Gosford sandstone473

In order to further investigate the capabilities of the gmp-iMPM, we consider a triaxial extension test on474

a cylindrical specimen with a height to diameter ratio of one employing the same constitutive model. The475

respective test setup and discretization using the gmp-iMPM is illustrated in Fig. 8. In order to reduce the476
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Figure 6: Load–displacement curves for the plane strain compression tests using the FEM with second order Lagrangian shape
functions and a reduced Gaussian quadrature rule, and the MPM with B-splines of order 1, 2, and 3. For the MPM, three different
material point discretization are employed.

x2

x1

Figure 7: Contour plot of the magnitude of the vertical displacement in the specimen at an applied displacement of 5mm, and
detail view of the shear band obtained using the MPM with 40×80 third order B-spline cells with 160×320 material points (left),
and the FEM (right). For the FEM, severe distortion of the mesh occurs, resulting in collapsing elements.
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computational effort, the symmetry is exploited in the simulations. Apart from the symmetry conditions, the477

boundary conditions assumed in the triaxial extension test are quite similar to the plane strain compression478

test. Accordingly, the top and bottom surfaces are constrained, and a relative rotation between them is not479

possible. Furthermore, again for triggering the direction of the emerging shear band using an imperfection, a480

small lateral force of 10N is applied in the x3 direction at the top surface.481

Similar to the previous 2D plane strain model, the fixed boundary condition at the bottom surface is applied,482

conforming with the background mesh, whereas the constraint and the Dirichlet boundary condition at the top483

surface are weakly imposed. Additionally, the boundary condition following from the symmetry exploitation is484

applied in a mesh conforming way. Furthermore, the simulation is carried out in accordance to the plane strain485

compression test, i.e., applying the confining pressure of 20MPa while top and bottom surfaces are fixed, and486

subsequently increasing the displacement of the top surface.487
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Figure 8: Geometry and boundary conditions (left) and illustration of the respective MPM discretization (right) for the triaxial
extension test.

As concluded from the previous example, second order B-splines are sufficient for overcoming numerical488

locking upon inelastic plastic flow, and provide good accuracy. Moreover, compared to third order B-splines,489

they are characterized by a drastically lower computational effort. This is of particular great importance for490

3D simulations. In 3D, third order B-splines result in a large bandwidth of the sparsity pattern of the global491

system matrix, and for the present gradient-enhanced micropolar continuum with seven degrees of freedom per492

node, each cell stiffness matrix has (4 × 4 × 4 × 7)2 = 4482 entries, compared to the (3 × 3 × 3 × 7)2 = 1892493

entries in case of second order B-splines. For these reasons, we restrict the discussion to second order B-splines.494

For the FEM model, a mesh consisting of 7479 second order Lagrangian elements with an average element495

size of 1.5mm and reduced Gaussian quadrature is used, yielding a global system of equations with the size496

of 235 368. For the gmp-iMPM model with second order B-splines, background mesh resolutions consisting of497

30×30×30 cells, 40×40×40 cells, and 50×50×50 cells are utilized, resulting in global systems of equations with498

approximate sizes of 60 000 (30×30×30 cells), 130 000 (40×40×40 cells), and 240 000 (50×50×50 cells). Similar499

to the previous example, for the gmp-iMPM model different material point discretizations of the cylinder are500

investigated, ranging from 80× 2531 = 202 480 to 140× 7730 = 1 082 200 material points. For comparison, the501

FEM model has a total of 59 832 quadrature points.502

Fig. 9 illustrates the evolution of the displacement field in the cylindrical specimen at different stages of the503

test. During the test, after attaining the peak load, deformations in the center of the specimen are increasing504

and subsequently localize, resulting in the formation of a single shear band spanning diagonally across the505

specimen.506
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Figure 9: Evolution of the magnitude of the vertical displacement in the cylindrical specimen for different stages of the simulation,
indicating the formation of a diagonal shear band with strongly localized inelastic deformations. The simulation is based on
40×40×40 second order B-spline background cells with 120× 5684 material points.
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Figure 10: Load–displacement curves for the triaxial extension tests on cylindrical specimens using the FEM with second order
Lagrangian shape functions and a reduced Gaussian quadrature rule, and the MPM with B-splines of order 2. For the MPM, three
different background mesh resolutions (30×30×30 (left), 40×40×40 (center), and 50×50×50 (right)), and different refinements of
the material point discretization are investigated.
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Figure 11: Contour plot of the magnitude of the vertical displacement using the FEM with second order Lagrangian elements
and reduced Gaussian quadrature at an applied displacement of 6mm. Similar to the plane strain compression test, severe mesh
distortion occurs in the region of the shear band.
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Figure 12: Contour plot of the magnitude of the vertical displacement at an applied displacement of 6mm, using the MPM (B-spline
order 2, 120×5684 material points, 40×40×40 background cells).

The obtained load-displacement curves are shown in Fig. 10. Comparing the FEM and gmp-iMPM results,507

it can be seen that the 30×30×30 cells resolution is too coarse, resulting in a slight discrepancy between the508

gmp-iMPM and the reference FEM solution in the far post peak regime. However, both finer background mesh509

resolutions are in very good agreement with the FEM results.510

For the simulation using the FEM, similar to the 2D example the emerging shear band results in severe511

mesh distortion, see Fig. 11. By comparison, an expected displacement field is obtained using the gmp-iMPM512

as shown in Fig. 12, confirming the suitability of the gmp-iMPM for representing large localized deformations.513

3.4. Remarks on computational effort514

The MPM is commonly attributed with a higher computational effort compared to the FEM due to additional515

required steps in the computational procedure. While for the present examples it was found that the overall516

runtimes were longer, it was also found that similar to the FEM the major part of the computational effort is517

spent on solving the global system of equations. For instance, Table 2 summarizes the computational effort of518

individual tasks for the largest investigated MPM simulation with 50×50×50 cells and 1 082 200 material points.519

In particular, it can be seen that MPM specific tasks such as the tracing of the material points using the k -d520

tree algorithm, and the interpolation of the solution from the background mesh to the material points, i.e., the521

convective phase, are barely noticeable in the overall computational effort. Moreover, despite the considerably522

larger number of material points compared to the FEM, the cost of the stress update and the computation of523

the cell residuals and stiffness matrices are moderate and amount only to 6% of the total computational effort.524

However, compared to the FEM an additional effort results from the fact that the set of active cells changes525

during the simulation, and accordingly the global sparsity pattern needs to be reanalyzed several times during526

the simulation, leading to a higher cumulative effort than the evaluation of cell residuals and tangents, and527

the stress update combined. Furthermore, for all the investigated examples, in general, more time steps were528

required compared to the FEM, further increasing the simulation times.529

4. Summary and Conclusions530

An extended formulation of the material point method for the gradient-enhanced micropolar continuum531

was proposed, aiming at the analysis of strongly localized inelastic deformations resulting from shear band532
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task remark relative effort

tracing of material points in cells using a k -d tree1 (Section 2.7) < 1%
stress update (Algorithm 2, cf. also [23]) in parallel 2%
2nd order B-spline cells: internal kernels (25), (26), (27), and tangents in parallel 4%
rigid body constraint residual contributions non optimized 5%
analysis of the sparse matrix pattern from active cell connectivity2 8%
assembly of the sparse matrix from cell contributions 3%
linear solver (Intel PARDISO) in parallel 72%
interpolation of solution from nodes to material points1 < 1%
remainder (e.g., data handling, boundary conditions, postprocessing, ...) 5%

100%

Table 2: Distribution of the computational effort for the triaxial extension test with 50×50×50 second order B-spline background
mesh cells and 1 082 200 material points using 28 cores of two Intel(R) Xeon(R) CPU E5-2690v4.
1Tasks specific to the MPM compared to the FEM.
2This task is required and executed only if the set of active cells changes.

dominated failure of cohesive-frictional materials.533

The proposed method, denoted as gmp-iMPM, was developed based on the recently proposed unified534

gradient-enhanced micropolar continuum, of which the prognosis capabilities were confirmed in previous studies535

using the FEM. For mitigating the well known issues such as locking behavior upon plastic flow or cell crossing536

errors, the method makes use of higher order B-spline based shape functions for the background mesh.537

For assessing the gmp-iMPM, a numerical study was conducted, investigating shear band dominated failure of538

sandstone specimens in plane strain compression and triaxial extension. Reference simulations using the classical539

Lagrangian FEM revealed excessive mesh distortion, limiting the suitability in case of extreme deformations. It540

was confirmed that the gmp-iMPM is suitable for representing the arising excessive deformations. Furthermore,541

it was shown that second order B-splines are sufficient for overcoming the well known issues related to locking542

and cell crossing, and they represent a good compromise regarding computational efficiency.543

By analyzing the distribution of the computational effort, it was highlighted that the major effort of the544

gmp-iMPM, similar to the FEM, is the solution of the global system of equations, whereas MPM specific545

tasks, such as the tracing of material points in the background mesh leveraging a simple yet effective k -d tree546

algorithm, or the convective phase for updating the position of the material points, are virtually negligible in547

terms of computational cost.548

Final remarks concern a well known, fundamental issue of the standard MPM, which results from the549

fact that cell residual and stiffness are, in general, integrated non-optimally, with potential under-integration.550

Moreover, in certain cases, if the supports of cell shape functions are only partially covered by material points551

at the boundary of a body, an ill-conditioned or rank deficient global system of equations may be obtained. As552

a consequence, large jumps in the solution increments at the respective nodes of the background mesh may be553

obtained, leading to spuriously large deformation increments at certain material points at the boundary of a554

body. This issue is described and illustrated in [85], together with an extension of the B-spline MPM denoted as555

(Enhanced B-spline) EBS-MPM for mitigating such issues. Those issues have been observed also sporadically556

during the presented numerical study. In order to remedy such numerical stability issues, we are currently557

investigating the extension of the gmp-iMPM to stabilization concepts such as the EBS-MPM.558
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