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This is a talk on joint work with N. Ortner [6]. We shall first briefly recapitulate
the theory created by Atiyah, Bott, and G̊arding in [1], [2] concerning the propagation
of singularities for scalar hyperbolic operators with constant coefficients. We shall
then give some observations on systems, and finally consider the particular case of the
propagation of waves in hexagonal linear elastic media.

1. Some facts from Atiyah–Bott–G̊arding

We fix N ∈ Rn \ {0} and we assume that the linear partial differential operator
with constant coefficients Q(D) =

∑

cαDα, D = −i∂, is hyperbolic with respect to
N. If m = deg Q, we write Qpr(η) =

∑

|α|=m cαηα for the principal part of Q. We

denote by E(Q(D)) the fundamental solution of Q(D) with support in H = {y ∈
Rn; y · N ≥ 0}, by Γ(Q(D)) the hyperbolicity cone, i.e., the connectivity component
containing N in {η ∈ Rn; Qpr(η) 6= 0}, and by K(Q(D)) the cone dual to Γ(Q(D)),
the so-called propagation cone: K(Q(D)) = {y ∈ Rn; ∀η ∈ Γ(Q(D)) : η · y ≥ 0}.

For η ∈ Rn, Qη(ζ) denotes the localization of Q at infinity in the direction
η ∈ Rn, i.e., the lowest (non-vanishing) coefficient with respect to s in the MacLaurin
series of smQ(ζ+ η

s
). The operators Qη(D) are again hyperbolic. The set W (Q(D)) =

∪η∈Rn\{0}K(Qη(D)) is called the wavefront surface of Q(D). One of the central results
of Atiyah–Bott–G̊arding is the following series of inclusions:

(1)
⋃

η∈Rn\{0}
supp E(Qη(D)) ⊂ sing supp E(Q(D)) ⊂ W (Q(D)),

cf. [1, Thm. 4.10, p. 144; Thm. 7.24, p. 177]. In the physically relevant cases, in
particular if n ≤ 4, both of the inclusions in (1) are identities, cf. [2, Thm. 7.7, p. 175].

If Ξ = {η ∈ Rn; Qpr(η) = 0} is the slowness surface of Q(D) and η ∈ Ξ fulfills
dQpr(η) 6= 0 (and η is thus a regular point of Ξ), then Qη is a first-order polynomial
and K(Qη(D)) is the half-ray R · dQpr(η) ∩ H. Hence Ξ∗ ∩ H ⊂ sing supp E(Q(D))
if Ξ∗ denotes the dual algebraic hypersurface of Ξ, the so-called wave surface, i.e.,
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Ξ∗ is the closure of {tdQpr(η); t ∈ R, η ∈ Ξ}. (Here we suppose that Qpr does not
contain multiple factors.) We shall say that conical refraction occurs if Ξ∗ ∩ H is a
proper subset of sing supp E(Q(D)). If the inclusions in (1) are identities (as is usually
the case), then conical refraction occurs if the set

(2) C =
⋃

{K(Qη(D)); η ∈ Rn \ {0}, Qpr(η) = 0, dQpr(η) = 0}

is not already contained in Ξ∗.

Let us elaborate the above on the simple example Q(D) = (∂2
t −∆3)(∂

2
t − 2∆2 −

1
2
∂2
3). Here

Ξ = R · {η = (1, ξ) ∈ R4; |ξ| = 1 or 2(ξ2
1 + ξ2

2) + 1
2
ξ2
3 = 1}

and

Ξ∗ = R · {y = (1, x) ∈ R4; |x| = 1 or 1
2
(x2

1 + x2
2) + 2x2

3 = 1}.

Furthermore dQ(1, ξ) = 0 ⇔ |ξ| = 1 = 2(ξ2
1 + ξ2

2) + 1
2
ξ2
3 ⇔ |ξ| = 1 and ξ2

3 = 2
3
. For

such points η = (1, ξ), we have Qη(D) = −4(∂t − ξ · ∇)(∂t − 2(ξ1∂1 + ξ2∂2) − 1
2
ξ3∂3)

and

K(Qη(D)) = [0,∞) · {(1, x) ∈ R4; x = λξ + (1 − λ)(2ξ1, 2ξ2,
1
2
ξ3), 0 ≤ λ ≤ 1}.

Hence C in (2) furnishes two conical frusta on the boundary of the convex hull of the
two ellipsoids representing Ξ∗; cf. Fig. 1, where the intersections with τ = 1 and
t = 1, respectively, are depicted.
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sing supp E(Q(D)) = (Ξ* ∩ H ) ∪  C

Figure 1: Slowness surface and wavefront surface for (∂2
t − ∆3)(∂

2
t − 2∆2 − 1

2
∂2
3)
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2. Hyperbolic systems

The l×l−matrix P (D) of linear constant coefficient partial differential operators
is called hyperbolic if this is true for Q(D) = det P (D). As in the scalar case, P (D)
has a unique fundamental matrix E(P (D)) with support in H, namely E(P (D)) =
P ad(D)E(Q(D)). For the singular support

sing supp E(P (D)) =
⋃

1≤j,k≤l

sing supp E(P (D))jk,

we have, instead of (1),

(3)
⋃

1≤j,k≤l
η∈R

n\{0}

supp
[

(P ad
jk )η(D)E(Qη(D))

]

⊂ sing supp E(P (D)) ⊂ W (Q(D)).

(This straightforward consequence of (1) is stated in [4, p. 191].)

Unfortunately, in contrast to the scalar case, the inclusion on the right-hand
side of (3) can be strict also in physically relevant cases. E.g., if we set P (D) =
(

∂2
t − ∆3 0

0 ∂2
t − 2∆2 − 1

2
∂2
3

)

, then we obtain for the determinant operator Q(D) =

det P (D) the one in the example of section 1. However, the singular support of

E(P (D)) =
1

4πt

(

δ(t − |x|) 0

0 1√
2
δ
(

t −
√

1
2
(x2

1 + x2
2) + 2x2

3

)

)

consists just of Ξ∗ ∩ H and no conical refraction occurs.

Let me still sketch how one can use microlocal analysis in order to determine
sing supp E(P (D)) in the cases where the two bounds in (3) differ. We suppose here
that P (D) is homogeneous. Then T = limσր0 P (η +iσN)−1 and E(P (D)) = F−1T
are both homogeneous. Due to [5, Thm. 8.1.8, p. 258], (y, η) ∈ (Rn \ {0})2 belongs
to WF E(P (D)), the wavefront set of E(P (D)), if and only if (η,−y) ∈ WF T.
Therefore, sing supp E(P (D)) \ {0} is the negative of the projection of WF T onto
the second factor, cf. the analogous considerations in [9, p. 288]. In particular, the set
C, which corresponds to conical refraction, is now given by

(4) C = {y ∈ Rn \ {0}; ∃η ∈ Ξ : dQ(η) = 0 and (η,−y) ∈ WF T}.

3. Elastodynamics in hexagonal media

Hexagonal or transversely isotropic media are characterized by the property of
rotational symmetry with respect to an axis. In [6], we extended R. G. Payton’s semi-
nal work [7] in that area by providing qualitative and quantitative information on the
fundamental matrix of the elastodynamic system P (D) = I3∂

2
t + A(∇). With the

abbreviations in [3], i.e.,

a1 = c1111 = c11, a2 = c3333 = c33, a3 = c1133 + c2323 = c13 + c44,

a4 = 1
2
(c1111 − c1122) = 1

2
(c11 − c12), a5 = c2323 = c44,
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(cij being the contracted index notation), we have

A(∇) = −





a1∂
2
1 + a4∂

2
2 + a5∂

2
3 (a1 − a4)∂1∂2 a3∂1∂3

(a1 − a4)∂1∂2 a4∂
2
1 + a1∂

2
2 + a5∂

2
3 a3∂2∂3

a3∂1∂3 a3∂2∂3 a5(∂
2
1 + ∂2

2) + a2∂
2
3



 .

As observed already by Christoffel in 1877, the determinant Q = det P splits:
Q = W1 · R, with W1(D) = ∂2

t − a4∆2 − a5∂
2
3 and

R(D) = ∂4
t − (a1 +a5)∂

2
t ∆2 − (a2 +a5)∂

2
t ∂2

3 +a1a5∆
2
2 +a2a5∂

4
3 +(a1a2 +a2

5 −a2
3)∆2∂

2
3 .

P (D) is hyperbolic (with respect to N = (1, 0, 0, 0)) iff

a1 ≥ 0, a2 ≥ 0, a4 ≥ 0, a5 ≥ 0, and a5 +
√

a1a2 ≥ |a3|,

see [6, Prop. 2, p. 419]. We assume, moreover, that these inequalities are strict, which
is equivalent to Q(0, ξ) 6= 0 for ξ ∈ R3 \ {0}, and which, physically, amounts to the
positivity of the propagation speeds.

Depending on the values of the elastic constants a1, . . . , a5, the surfaces W1 = 0
and R = 0 can intersect along two circular cones around the ξ3−axis, cf. Fig. 2, left
part. (The elastic constants for TiB2 are (in gigapascal) a1 = 690, a2 = 440, a3 =
570, a4 = 140, a5 = 250.) These ridge points on Ξ imply conical refraction for
Q(D), very much so as in the example in section 1. The corresponding parts of
sing supp E(Q(D)) are represented by the dashed lines in Fig. 2, right part. For the
system P (D) however, we showed in [6, Prop. 4, pp. 424, 425] that—similarly as in
the example in section 2—no conical refraction can occur in general hexagonal media
(to be precise, as long as a2 6= a5). Hence the dashed lines in Fig. 2, right part, are
not contained in sing supp E(P (D)).
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Figure 2: Slowness surface and wavefront surface for titanium boride
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Let us explain this fact, which was already conjectured in [7, p. 67], by inspecting
WF E(P (D)). According to the last paragraph in section 2, we have to consider

T (τ, ξ) = lim
σր0

P (τ + iσ, ξ)−1 = P (τ, ξ)ad · lim
σր0

Q(τ + iσ, ξ)−1.

For ρ =
√

ξ2
1 + ξ2

2 > 0, an algebraic calculation (see [6, p. 425]) yields P ad = W1B1 +
RB2, where

B1 =





W4ξ
2
1/ρ2 W4ξ1ξ2/ρ2 −a3ξ1ξ3

W4ξ1ξ2/ρ2 W4ξ
2
2/ρ2 −a3ξ2ξ3

−a3ξ1ξ3 −a3ξ2ξ3 W3



 and B2 =





ξ2
2/ρ2 −ξ1ξ2/ρ2 0

−ξ1ξ2/ρ2 ξ2
1/ρ2 0

0 0 0



 ,

with W3(τ, ξ) = −τ2+a1ρ
2+a5ξ

2
3 , W4(τ, ξ) = −τ2+a5ρ

2+a2ξ
2
3 . Due to Q = W1 ·R,

we conclude that, still for ρ 6= 0,

T = B1 · lim
σր0

R(τ + iσ, ξ)−1 + B2 · lim
σր0

W1(τ + iσ, ξ)−1.

This implies that, for η = (τ, ξ) ∈ Ξ with ρ 6= 0 and W1(η) = R(η) = 0 (and hence
dQ(η) = 0),

{y ∈ R4 \ {0}; (η,−y) ∈ WF T} ⊂ R · dR(η) ∪R · dW1(η).

For the points η ∈ Ξ \ {0} with ρ = 0, it is easily seen that the sets {y ∈ R4 \
{0}; (η,−y) ∈ WF T} are just half-rays. Therefore the set C in (4) is contained in
Ξ∗ ∩ H, and thus no conical refraction occurs in general hexagonal media.

Let us finally comment on the exceptional case a2 = a5. Then the three sheets
of Ξ meet along the ξ3−axis ρ = 0, cf. Fig. 3, left part. This leads to conical
refraction along two flat circular lids, cf. Fig. 3, right part. This fact is readily verified
by evaluating the lower estimate of sing supp E(P (D)) in (3). In the special case of
a1 = a2 = a5, the occurrence of the two lids was proven by explicit calculation of
E(P (D))33 in [8], cf. also [6, p. 428].
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Figure 3: Slowness surface and wavefront surface for a2 = a5
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