Übungsaufgaben zu Höherer Analysis, WS 2002/03

Aufgaben zu Doppelintegralen.

- (A1) Bestimmen Sie den Schwerpunkt des Gebietes $0 \le x \le \frac{\pi}{2}$, $0 \le y \le \cos x$. (Antwort: $\vec{s} = (\frac{\pi}{2} - 1, \frac{\pi}{8})$)
- (A2) Berechnen Sie die folgenden Integrale und skizzieren Sie das Gebiet D, über das integriert wird:
 - (a) $\int_{y=0}^{1} \int_{x=0}^{y} \frac{y}{\sqrt{(1-x^2)(1-y^2)}} dx dy$ (b) $\int_{x=0}^{\pi} \int_{y=-x}^{\pi-x} \sin^2 x \cos^2 y dy dx$
 - (c) $\int_{y=0}^{1} \int_{x=0}^{1} y e^{xy} \cos xy \, dx \, dy$ (Antwort: $1, \frac{\pi^2}{4}, \frac{1}{2} (e \sin 1 1)$)
- (A3) Das Volumen V des Körpers, der über dem Viertelkreis $D: x^2 + y^2 \le 1, \quad x,y \ge 0$ liegt und von der Sattelfläche z = xy begrenzt wird, ist durch $V = \iint_D xy \, \mathrm{d}x \mathrm{d}y$ gegeben. Berechnen Sie V (a) in xy-Koordinaten, (b) in Polarkoordinaten. (Antwort: $V = \frac{1}{8}$)

Aufgaben zum Koordinatenwechsel in Doppelintegralen.

- (B1) Berechnen Sie den Schwerpunkt der Kardioide, die in Polarkoordinaten durch $r \leq 1 + \cos \varphi$ gegeben ist. (Antwort: $\vec{s} = (\frac{5}{6}, 0)$)
- (B2) Skizzieren Sie das Flächenstück, das in Polarkoordinaten durch die Kurven r=1, $r=2, \quad r=\varphi, \quad r=\mathrm{e}^{\varphi}$ begrenzt wird und ermitteln Sie seine Größe. (Antwort: $\frac{37}{12}-2\ln 2\approx 1.7$)
- (B3) D sei das Dreieck mit den Eckpunkten (0/0), (0/1), (1/0). Berechnen Sie $\iint_D \cos\left(\frac{x-y}{x+y}\right) \mathrm{d}x\mathrm{d}y, \text{ indem Sie } u=x-y, \quad v=x+y \text{ substituieren. (Antwort: } \frac{1}{2}\sin 1\approx 0.42)$
- (B4) Berechnen Sie die Fläche der Ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$ mit der Koordinatentransformation $x = as\cos t, \quad y = bs\sin t.$ (Antwort: $ab\pi$)
- (B5) Berechnen Sie die von der Astroide $|x|^{2/3} + |y|^{2/3} = 1$ (vgl. Skriptum Math. B, Üb. 25) eingeschlossene Fläche mit der Koordinatentransformation $x = \rho \cos^3 \psi$, $y = \rho \sin^3 \psi$. (Antwort: $3\pi/8$)

Aufgaben zur Guldinschen Regel.

(C1) Berechnen Sie mit der Guldinschen Regel den Schwerpunkt des Viertelkreises $x^2 + y^2 \le R$, $x, y \ge 0$! (Antwort: $\vec{s} = (\frac{4R}{3\pi}, \frac{4R}{3\pi})$)

- (C2) Berechnen Sie das Volumen des Drehkörpers, der durch Rotation des Dreiecks mit den Eckpunkten (0/0/0), (1/0/0), (1/0/1) um die z-Achse entsteht (a) als Doppelintegral, (b) mit der Guldinschen Regel, (c) als Differenz von Zylinderund Kegelvolumen. (Antwort: $\frac{2\pi}{3}$)
- (C3) Berechnen Sie (a) den Schwerpunkt des Kreissegmentes $x^2 + y^2 \le 1$, $x \ge a$, $y \ge 0$ (0 < a < 1 fest) und damit (b) das Volumen der Kugelkappe, welche durch Rotation um die x-Achse entsteht. (Antwort: $A = \frac{\pi}{4} \frac{1}{2}a\sqrt{1 a^2} \frac{1}{2}\arcsin a$, $\vec{s} = \frac{1}{4}(\frac{1}{3}(1 a^2)^{3/2}, \frac{1}{6}(2 3a + a^3))$, $V = \frac{\pi}{3}(2 3a + a^3)$
- (C4) Wenn der Halbkreis $(x-2)^2 + y^2 \le 1$, $x \ge 2$ um die y-Achse rotiert, so entsteht ein "halber Torus". (Skizze!) Bestimmen Sie mit der Guldinschen Regel sein Volumen! (Antwort: $V \approx 23.93$)

Aufgaben zu Dreifachintegralen.

- (D1) Berechnen Sie das Trägheitsmoment I_1 bezüglich der x-Achse für den durch die 3 Koordinatenebenen und x+y+z=1 begrenzten Tetraeder, wenn die Dichte $\rho=1$ ist. (Antwort: $\frac{1}{30}$)
- (D2) Berechnen Sie die Masse des Pyramidenstumpfes (Skizze!), der von den Ebenen $y=1, \quad y=2, \quad z=0, \quad x=y, \quad z=x$ begrenzt wird und mit der Dichte $\rho(x,y,z)=\frac{1}{x^2+y^2}$ belegt ist! (Antwort: $\frac{1}{2}\ln 2$)
- (D3) Berechnen Sie die Masse des Körpers im ersten Oktanten, der durch die Ebenen y=0, z=0, x+y=2, 2y+x=6 aus dem Zylinder $y^2+z^2\leq 4$ ausgeschnitten wird (Skizze!) und mit der Dichte $\rho(x,y,z)=z$ belegt ist. (Antwort: $\frac{26}{3}$)

Dreifachintegrale in Kugel- und Zylinderkoordinaten.

- (E1) Berechnen Sie den Schwerpunkt des homogen mit Masse belegten Körpers, der als Schnitt der Kugel $x_1^2 + x_2^2 + x_3^2 \le R^2$ mit dem Kegel $x_1^2 + x_2^2 \le a^2 x_3^2$, $x_3 \ge 0$, entsteht. (Antwort: $\vec{s} = (0, 0, \frac{3Ra^2}{8(1+a^2-\sqrt{1+a^2})})$)
- (E2) Bestimmen Sie das Trägheitsmoment I_1 für die Halbkugel $D: x_1^2 + x_2^2 + x_3^2 \le R^2$, $x_3 \ge 0$, welche mit der Dichte $\rho(\vec{x}) = x_3$ belegt ist. (Antwort: $\frac{\pi}{8}R^6$)
- (E3) Eine Halbkugelschale mit Innenradius R ist bis zur halben Höhe mit Wasser gefüllt. Welche Wassermenge enthält sie? Hinweis: Verwenden Sie Zylinder- oder Kugelkoordinaten! (Antwort: $\frac{5\pi}{24}R^3$)
- (E4) Berechnen Sie das Volumen, das innerhalb des Zylinders $(x-a)^2+y^2=a^2$ und der Kugel $x^2+y^2+z^2=4a^2$ liegt! Skizze! Verwenden Sie Zylinderkoordinaten! (Antwort: $V\approx 9.644a^3$)

Aufgaben zum Koordinatenwechsel in Dreifachintegralen.

- (F1) Berechnen Sie das Volumen des Körpers im 1. Oktanten, der von den hyperbolischen Zylindern xy = 1, xy = 9, xz = 4, xz = 36, yz = 25, yz = 49 begrenzt wird. Setzen Sie u = xy, v = xz, w = yz. (Antwort: V = 64)
- (F2) Es sei 0 < r < R. Durch Drehung des in der yz-Ebene liegenden Kreises $(y-R)^2+z^2 \le r^2$ um die z-Achse entsteht ein Torus. (Skizze!) Der Kreis wird parametrisiert durch $y=R+\varrho\sin\alpha, \ z=\varrho\cos\alpha, \ 0\le\varrho\le r, \ 0\le\alpha\le 2\pi$ (Skizze!) und daher der Torus durch die "Toruskoordinaten" $x=(R+\varrho\sin\alpha)\cos\varphi, \ y=(R+\varrho\sin\alpha)\sin\varphi, \ z=\varrho\cos\alpha.$
 - (a) Bestimmen Sie das Volumselement dV = dxdydz bzgl. ρ, α, φ .
 - (b) Berechnen Sie den Schwerpunkt der Torushälfte $0 \le \varphi \le \pi$, d.h. $y \ge 0$. (Antwort: $\mathrm{d}V = \varrho(R + \varrho\sin\alpha)\mathrm{d}\varrho\mathrm{d}\alpha\mathrm{d}\varphi$, $\vec{s} = (0, \frac{2R}{\pi} + \frac{r^2}{2R\pi}, 0)$)
- (F3) Berechnen Sie das Volumen, das von der Fläche $|x|^{2/3}+|y|^{2/3}+|z|^{2/3}=c$ (mit c>0 fest) eingeschlossen wird, mittels der Substitution $x=\varrho\sin^3\vartheta\cos^3\varphi,\ y=\varrho\sin^3\vartheta\sin^3\varphi,\ z=\varrho\cos^3\vartheta.$ (Antwort: $\frac{4}{35}\pi c^{9/2}$)

Aufgaben zu Kurvenintegralen 1. Art.

- (G1) Berechnen Sie den Schwerpunkt des folgenden Teils einer Schraubenlinie: $x = a \cos t$, $y = a \sin t$, z = bt, $0 \le t \le c$ (a, b, c > 0 fest). (Antwort: $\vec{s} = (\frac{a}{c} \sin c, \frac{a}{c} (1 - \cos c), \frac{1}{2} bc)$)
- (G2) Berechnen Sie die Trägheitsmomente I_x, I_y des Halbkreises $x^2+y^2=r^2, y\geq 0$, bezüglich der x- und der y-Achse. (Antwort: $I_x=\frac{\pi}{2}r^3=I_y$)
- (G3) Der halbkreisförmige Träger $C: x = r\cos\varphi, y = r\sin\varphi, 0 \le \varphi \le \pi, 0 < r$ fest, wird durch die vertikale Linienlast $q(\varphi) = q_0\varphi$ beansprucht. Bestimmen Sie die Resultierende R und ihre Wirkungslinie, d.h. $R = \int_C q \, \mathrm{d}s, x_W = R^{-1} \int_C q \cdot x \, \mathrm{d}s,$ $y_W = R^{-1} \int_C q \cdot y \, \mathrm{d}s.$ (Antwort: $R = \frac{\pi^2}{2} q_0 r, x_W = -\frac{4}{\pi^2} r, y_W = \frac{2}{\pi} r$)
- (G4) Berechnen Sie den Schwerpunkt des Zykloidenbogens $\vec{x}(t) = a {t-\sin t \choose 1-\cos t}$, 0 < a fest, $0 \le t \le 2\pi$. (Antwort: $\vec{s} = (a\pi, \frac{4}{3}a)$)

Kurvenintegrale 2. Art und Potential.

- (H1) Durch $\vec{v}(\vec{x}) = \begin{pmatrix} y \\ x \\ -2z \end{pmatrix}$ ist ein Vektorfeld gegeben.
 - (a) Zeigen Sie, dass \vec{v} wirbelfrei ist und bestimmen Sie ein Potential zu \vec{v} .

(b) Berechnen Sie $W=\int\limits_{(1/0/-1)}^{(2/2/0)}\langle\vec{v},\mathrm{d}\vec{x}\rangle$ entlang der Verbindungsgeraden der 2

Punkte und kontrollieren Sie das Ergebnis mittels (a).

(Antwort:
$$f(\vec{x}) = xy - z^2$$
, $W = 5$)

- (H2) Berechnen Sie $\int_C y \, dx + z \, dy + x \, dz$
 - (a) entlang der Schraubenlinie $\vec{x}(\varphi) = (\cos \varphi, \sin \varphi, \varphi), \quad 0 \le \varphi \le \pi$, und
 - (b) entlang der Verbindungsgeraden der 2 Punkte A = (1/0/0) und $B = (-1/0/\pi)$.
 - (c) Warum ergibt sich etwas Verschiedenes, obwohl die 2 Kurven beide von $\,A\,$ nach $\,B\,$ gehen?

(Antwort: $-2 - \frac{\pi}{2}$, 0, rot $\vec{v} \neq \vec{0}$)

- (H3) Berechnen Sie die Arbeit, die geleistet wird, wenn ein Körper unter der Wirkung des Kraftfeldes $\vec{v} = (-x^2y, y^2z, xz^2)^T$ um die Ellipse $x^2 + y^2 = 1$, z = y transportiert wird. (Antwort: $\pm \frac{\pi}{2}$ je nach Umlaufrichtung)
- (H4) Zeigen Sie, dass $\vec{v}(\vec{x}) = (4xyz + 3x^2y^2z^2, 2x^2z + 2x^3yz^2, 2x^2y + 2x^3y^2z)^T$ wirbelfrei ist und bestimmen Sie ein Potential f durch $f(\vec{x}) = \int_{(0/0/0)}^{\vec{x}} \langle \vec{v}, d\vec{x} \rangle$. (Antwort: $f(\vec{x}) = 2x^2yz + x^3y^2z^2$)

Aufgaben zu Oberflächenintegralen 1. Art.

- (II) Berechnen Sie die Oberfläche des über bzw. unter dem Einheitskreis liegenden Teiles der Sattelfläche z=xy. (Antwort: $F=\frac{2\pi}{3}(2\sqrt{2}-1)\approx 1.22\pi$)
- (I2) Bestimmen Sie den Schwerpunkt der Halbkugeloberfläche $x^2+y^2+z^2=R^2, z\geq 0.$ (Antwort: $\vec{s}=(0,0,\frac{R}{2})$)
- (I3) Bestimmen Sie die Oberfläche und den Schwerpunkt der Paraboloidfläche $z=x^2+y^2,~0\leq z\leq 1.$ (Antwort: $F\approx 5.33,~s_3\approx 0.559$)
- (I4) Bestimmen Sie das Trägheitsmoment der Paraboloidfläche $z=2-x^2-y^2, z\geq 0$ bezüglich der z-Achse. (Antwort: $I_z=\frac{149}{30}\pi)$
- (I5) Bestimmen Sie die Größe des Teiles der Kugeloberfläche $x^2+y^2+z^2=4a^2$, der innerhalb des Zylinders $(x-a)^2+y^2=a^2$ liegt (vgl. auch Aufgabe E4). (Antwort: $8a^2(\pi-2)$)
- (I6) (a) Zeigen Sie, dass für das Flächenelement einer Fläche in Zylinderkoordinaten, d.h.

$$\vec{x}(r,\varphi) = \begin{pmatrix} r\cos\varphi\\r\sin\varphi\\z(r,\varphi) \end{pmatrix} \text{ gilt } d\sigma = \sqrt{r^2 + r^2\left(\frac{\partial z}{\partial r}\right)^2 + \left(\frac{\partial z}{\partial \varphi}\right)^2} drd\varphi.$$

(b) Berechnen Sie damit den Flächeninhalt der Schraubenfläche $z=\varphi, \ 0 \le r \le a, \ 0 \le \varphi \le b, \ (0 < a,b \text{ fest}).$ (Antwort: $F=\frac{b}{2}(a\sqrt{1+a^2}+\cosh a)$)

Oberflächenintegrale 2. Art.

- (J1) Berechnen Sie $\iint_D \langle \vec{v}, \vec{n} \rangle d\sigma$ für $\vec{v} = \operatorname{rot} \vec{u}$, $\vec{u} = (2z 2y, 2x z, y 2z)^T$. D sei dabei die Ellipsoidhälfte $x = \sin \vartheta \cos \varphi, y = \sin \vartheta \sin \varphi, z = 2\cos \vartheta$, $0 \le \vartheta \le \frac{\pi}{2}$, $0 \le \varphi \le 2\pi$. Die Normale weise nach oben, d.h. $n_3 \ge 0$. (Antwort: 4π)
- (J2) Berechnen Sie $\iint_D \langle \vec{v}, \vec{n} \rangle d\sigma$ für $\vec{v}(\vec{x}) = (x, 2y, 2 3z)^T$. Dabei sei D die Paraboloidfläche $z = 1 x^2 y^2$, $z \ge 0$. Die Normale \vec{n} weise nach oben, d.h. $n_3 \ge 0$. (Antwort: 2π)
- (J3) Das Geschwindigkeitsfeld einer Strömung sei $\vec{v}(t,\vec{x}) = (tx,t+y,tz)^T$. Es sei $\varrho = 1$. Bestimmen Sie den Fluß zur Zeit t durch das Dreieck mit den Eckpunkten (1/0/0), (0/1/0), (0/0/1). Die Normale weise in Richtung $(1,1,1)^T$. (Antwort: $\frac{1}{6}(5t+1)$)
- (J4) Berechnen Sie für das Vektorfeld $\vec{v}(\vec{x}) = \vec{x}$ den Fluss durch den Zylindermantel $x^2 + y^2 = 1$, $0 \le z \le 1$. (Antwort: 2π)
- (J5) D sei die Hyperboloidfläche $x^2+y^2-z^2=1,~0\leq z\leq 1.$ (Skizze!) Berechnen Sie $\iint_D \langle \vec{x}, \vec{n} \rangle \, d\sigma$, wenn \vec{n} so gewählt ist, dass $\langle \vec{x}, \vec{n} \rangle > 0$. (Antwort: 2π)

Aufgaben zum Satz von Gauß.

- (K1) Lösen Sie Aufgabe J1 mit dem Satz von Gauß. (Schließen Sie dazu die Fläche D durch den Kreis $D_1: x^2 + y^2 \le 1, z = 0$ ab!)
- (K2) Lösen Sie Aufgabe J2 mit dem Satz von Gauß. (Hinweis wie in Aufgabe K1.)
- (K3) Lösen Sie Aufgabe J3 mit dem Satz von Gauß. (Ergänzen Sie die Fläche zu einem Tetraeder!)
- (K4) Lösen Sie Aufgabe J5 mit dem Satz von Gauß. (Schließen Sie die Fläche $\,D\,$ durch 2 Kreise ab!)
- (K5) Berechnen Sie $\oint D\langle \vec{v}, \vec{n} \rangle d\sigma$, wobei $\vec{v} = (x^2 xy, 2yz 3y, z x^2)^T$ und D die Oberfläche einer Kugel mit Mittelpunkt (1/2/3) und Radius 2 ist mit dem Satz von Gauß. (Verwenden Sie die Tatsache, dass der Mittelpunkt einer Kugel auch ihr Schwerpunkt ist!) (Antwort: $\frac{128\pi}{3}$)
- (K6) Berechnen Sie $\int x^3 dy \wedge dz y^3 dx \wedge dz + z^3 dx \wedge dy$ über die Kugeloberfläche $x^2 + y^2 + z^2 = R^2$ direkt und überprüfen Sie das Ergebnis mit dem Satz von Gauß. (Antwort: $\frac{12}{5}R^5\pi$)
- (K7) Das "archimedische Prinzip" besagt, dass der Auftrieb eines in einer Flüssigkeit befindlichen Körpers gleich dem Gewicht der verdrängten Wassermenge ist. Beweisen Sie das mit dem Satz von Gauß.

Hinweis: Der Wasserdruck ist $p = \gamma(h - z)$, h = Höhe des Flüssigkeitsstandes, $\gamma =$ spezifisches Gewicht der Flüssigkeit, und wirkt normal zur Oberfläche des Körpers, d.h.

Auftrieb =
$$- \oiint pn_3 d\sigma = - \oiint \langle \begin{pmatrix} 0 \\ 0 \\ p \end{pmatrix}, \vec{n} \rangle d\sigma.$$

Aufgaben zum Satz von Green.

- (L1) Überprüfen Sie die Gültigkeit des Greenschen Satzes am Integral $\oint_C (2xy x^2) dx + (x+y^2) dy$, wobei C der durch $y=x^2$, $0 \le x \le 1$, und $x=y^2$, $0 \le y \le 1$, im positivem Drehsinn durchlaufene Weg ist. (Antwort: $\frac{1}{30}$)
- (L2) Berechnen Sie mit dem Satz von Green $\oint_C y^3 \cos x \, dx + 3y^2 (\sin x x) \, dy$ über die geschlossene Kurve C, welche die Punkte (0/0) und (1/0) durch $y = x\sqrt{1-x^2}$ und die x-Achse verbindet. C werde im "positiven" Sinn (d.h. so wie $\vec{e}_1, \vec{e}_2 =$ üblicherweise Gegenuhrzeigersinn) orientiert. (Antwort: $-\frac{2}{35}$)

Aufgaben zum Satz von Stokes.

- (M1) Überprüfen Sie die Gültigkeit des Satzes von Stokes für $\vec{v}=(3y,-xz,yz^2)^T$ und die Fläche $D:2z=x^2+y^2,\ z\leq 2.$ (Antwort: $-20\pi,$ wenn $n_3>0$)
- (M2) Bestimmen Sie die Differenz der zwei Kurvenintegrale in Aufgabe H2 mit dem Satz von Stokes unter Verwendung der Fläche $\vec{x}(\varphi,t) = ((1-t)(1-\frac{2\varphi}{\pi})+t\cos\varphi,t\sin\varphi,\varphi)^T$, $0 \le \varphi \le \pi$, $0 \le t \le 1$.
- (M3) Lösen Sie Aufgabe H3 mit dem Satz von Stokes.
- (M4) Lösen Sie Aufgabe J1 mit dem Satz von Stokes.
- (M5) Lösen Sie Aufgabe J2 mit dem Satz von Stokes.
- (M6) C sei der Rand des Flächenstückes $x^2+y^2=1, \ z^2\leq 2y, \ x,y,z\geq 0$ (Skizze!), und $\vec{v}=(x^2,xy,xz)^T$. C werde von (1/0/0) über (0/1/0) nach $(0/1/\sqrt{2})$ und zurück nach (1/0/0) durchlaufen. Bestimmen Sie $\oint_C \langle \vec{u}, \mathrm{d}\vec{x} \rangle$ mit dem Satz von Stokes. (Antwort: $-\frac{\pi}{4}$)