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I) A BRIEF HISTORY OF FUNDAMENTAL SOLUTIONS

1. Fundamental Solutions in the 18th and 19th Century:
Special Equations of Mathematical Physics

The first use of a non-trivial fundamental solution (in the sequel abbreviated as FS)
can probably be ascribed to Jean d’Alembert. In 1747 he considered the deflection u
of a vibrating string. It satisfies the one-dimensional wave equation

∂2u

∂t2
− c2

∂2u

∂x2
= f,

which is solved by convolving f with the FS E(t, x) = 1
2c
Y (t−|x|/c) of the operator

∂2
t − c2∂2

x. In fact, this yields the formula

u(t, x) = f ∗ E =
1

2c

∫∫

|x−ξ|<c(t−τ)

f(τ, ξ) dτ dξ,

which—applied to the initial value problem, i.e. with f = δ(t) ⊗ u1(x) + δ′(t) ⊗ u0(x),

where uj(x) = (∂j
tu)(0, x), j = 0, 1, —furnishes d’Alembert’s solution, see [A], [Lü,

p. 15 ff]. We observe that the FS E appears, as in much of the old literature, only in
an implicit way.

Here and in the following, we use the notations ∂t = ∂
∂t , ∂x = ∂

∂x , ∂1 = ∂
∂x1

etc., ∆n = ∂2
1 + · · · + ∂2

n, ∂α = ∂α1

1 · · ·∂αn
n , P (∂) =

∑

α∈Nn
0

cα∂
α, Y (t) = 1 for t ≥

0 and Y (t) = 0 else, x = (x1, . . . , xn)T , ∇ = (∂1, . . . , ∂n)T , |x| =
√

x2
1 + · · · + x2

n.

In 1789, Pierre Simon de Laplace used the FS E = − 1
4π|x| of the elliptic operator

∆3, which bears his name, and thereby established the connexion of the Laplace op-
erator with the Newtonian gravitational potential (cf. [L1]). To tell the truth, Laplace
just recognized that ∆3(E ∗ f) = 0 outside the support of f, and it was Simon Denis
Poisson, who obtained the equation ∆3(E ∗ f) = f in 1813 (cf. [P1]).

In 1809, Laplace considered the first parabolic operator, namely the heat operator
∂t − ∆n, and calculated its FS

E(t, x) =
Y (t)

(4πt)n/2
e−|x|2/(4t)

in the case n = 1, cf. [L2]. The generalization to higher n, in particular to n = 2,
was found by Poisson in 1818 ([P2]).
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In 1818, Joseph Fourier was able to calculate the FS E of the operator of the
dynamic deflections of beams ∂2

t + ∂4
x, an operator of fourth order:

E(t, x) =
Y (t)

2
√
π

∫ t

0

sin
(x2

4τ
+
π

4

) dτ√
τ

= Y (t)
[

√

t

π
sin
(x2

4t
+
π

4

)

− |x|
2
C
(x2

4t

)

+
|x|
2
S
(x2

4t

)]

,

where
C(x)

S(x)

}

=
1√
2π

∫ x

0

{

cos

sin

}

(u)
du√
u
,

see [F].

As well in 1818, Poisson generalized d’Alembert’s formula to three space dimensions
by representing the solutions of the wave operator ∂2

t − ∆3 as convolution with the
FS E = δ(t − |x|)/(4π|x|), cf. [P3]. This notation, viz. the first use of Dirac’s delta
function, goes back to Gustav Kirchhoff’s paper of 1882 (see [K], [Lü, p. 99]).

In 1849, George Stokes obtained—as the kernel of an integral representation—the
fundamental matrix E of the system of partial differential operators which describes
elastic waves in isotropic media ([St]). This system can be found already in a memoir
of 1829 by Poisson (cf. [P4]). It is given by

P (∂) = (∂2
t − µ∆3)I3 − (λ+ µ)∇ · ∇T (I3 = 3 by 3 unit matrix)

and Stokes’ fundamental matrix reads

E(t, x) =
I3|x|2 − x · xT

4πµ|x|3 δ

(

t− |x|√
µ

)

+
x · xT

4π(λ+ 2µ)|x|3 δ
(

t− |x|√
λ+ 2µ

)

+

+
t

4π|x|3
(

I3 −
3x · xT

|x|2
)

[

Y

(

t− |x|√
µ

)

− Y

(

t− |x|√
λ+ 2µ

)]

.

The FS E = Y (t − |x|)/(2π
√

t2 − |x|2) of the wave operator in two space dimen-
sions, i.e. of ∂2

t − ∆2, was found as late as 1894 by Vito Volterra, cf. [V].

2. Fundamental Solutions in the 20th Century:
General Theories

Investigating the equations of static anisotropic elasticity, Ivar Fredholm found in
1900 (cf. [Fr1]) the fundamental matrix E of the elliptic 3 by 3 system

P (∂) =
(

3
∑

k,l=1

cijkl∂k∂l

)

i,j=1,2,3
, cijkl ∈ R,

of linear partial differential operators in three variables with constant coefficients and
homogeneous of second order. In our notation, his result is the following (cf. [Fr1, (10),
p. 7], [OW3, 3.2.2, (F)]):

E(x) = − i sign(x2)

2π

3
∑

k=1

|ζk(x)|2 P (ζk(x))ad

x2
∂ det P

∂ξ1

(

ζk(x)
)

− x1
∂ det P

∂ξ2

(

ζk(x)
) ,
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where P (ζ)ad denotes the adjoint matrix of P (ζ) and ζk(x) ∈ C3\{0} are determined
up to complex factors by the conditions

x · ζk(x) = 0, detP (ζk(x)) = 0, Im
(ζk(x)1
ζk(x)3

)

> 0, k = 1, 2, 3.

In 1908, Fredholm succeeded in representing the FSs of elliptic homogeneous opera-
tors in 3 variables by Abelian integrals ([Fr2]). To test the theory, he applied it to the
operator ∂4

1 + ∂4
2 + ∂4

3 , and he obtained, up to the constant factor − 1
8π
, the beautiful

formula

E(x) = − 1

8π

3
∑

j=1

|xj |
∫ ∞

ζ/(2x2

j
)

du√
4u3 − u

= − 1

8π

3
∑

j=1

xjF

(

arcsin
(

√
2xj

√

ζ + x2
j

)

,
1√
2

)

.

Therein ζ denotes the largest of the three real roots of the cubic

ζ3 − (x4
1 + x4

2 + x4
3)ζ − 2x2

1x
2
2x

2
3 = 0,

and F denotes the elliptic integral of the first kind, cf. [GR, 3.131.8 and 8.111]. (A

generalization to elliptic operators of the form
∑3

j,k=1 cjk∂
2
j ∂

2
k can be found in [W4].)

In 1911, his pupil Nils Zeilon gave the first definition of a FS in case it is a locally
integrable function (cf. [Z1]):

F is a FS of f
( ∂

∂x
,
∂

∂y
,
∂

∂z

)

if and only if

u =

∫∫∫

F (x− λ, y − µ, z − ν)φ(λ, µ, ν)dλdµdν

solves f
( ∂

∂x
,
∂

∂y
,
∂

∂z

)

u = φ.

In 1913, Zeilon transferred Fredholm’s results to non-elliptic operators and, in par-
ticular, he considered ∂3

1 +∂3
2 +∂3

3 (cf. [Z2]). He determined the singular support of its
FS, but, in contrast to Fredholm, he was not able to obtain an explicit representation
for the FS. However, explicit formulae were found recently, see [W1], [W2], [W3].

In three famous papers from 1926 to 1928 (see [He]), Gustav Herglotz overcame
the restriction to 2 or 3 independent variables and represented the FSs of elliptic and
of strictly hyperbolic homogeneous operators of the degree m in n variables (with
n ≤ m) by (n − 1)− fold and by (n − 2)− fold integrals, respectively. Later, these
formulae came to be known as the Herglotz-Petrovsky formulae.

In 1945, Ivan Petrovsky represented—in the hyperbolic case—the FS E by integrals
over cycles in complex projective space and investigated the lacunas of E by means of
algebraic topology ([Pe]).

In 1950/51, Laurent Schwartz first published his Theory of Distributions ([Sch]), in
which framework he also gave the general definition of FSs:

E is a FS of P (∂) if and only if P (∂)E = δ.
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In Ch. 6 (Transformation de Fourier) of his book, Schwartz rederives the FSs of (∆n −
λ)m, (∂2

t − ∆n − λ)m, (∂t − ∆n − λ)m, λ ∈ C, by distributional calculus.

In 1952, Jean Leray stated a distributional version of the Herglotz-Petrovsky formu-
lae for homogeneous hyperbolic operators, thereby also treating the case m < n (cf.
[Le]). The same goal was reached in 1959 by Vladimir A. Borovikov for operators of
principal type (cf. [B]) and presented in the textbook “Generalized Functions” by Israel
M. Gel’fand and Georgi E. Shilov (cf. [GS]).

The first existence proofs for FSs were given in 1953/54 by Bernard Malgrange and
Leon Ehrenpreis (cf. [M], [E]). These proofs were based on the Hahn-Banach theorem. In
1957/58, Lars Hörmander and Stanislaw  Lojasiewicz independently solved the “division
problem” and thereby proved the existence of temperate FSs (cf. [H2], [ L]).

In 1970/73, Michael Atiyah, Raoul Bott, and Lars G̊arding extended and generalized
Petrovsky’s work, thereby developing a general theory of FSs of hyperbolic operators,
cf. [ABG]. For general operators, this was established in the fundamental work of Lars
Hörmander, cf. [H1], [H3], [H4].

We also mention the first major table of FSs in 1980 (cf. [O]) and the discovery of
the connexion of lacunas of FSs with the existence of right inverses by Reinhold Meise,
B. Alan Taylor, and Dietmar Vogt in 1990 (cf. [MTV]).

Finally, I would like to sketch a proof of the Malgrange-Ehrenpreis theorem I found
in 1994, influenced by a paper of Heinz König (cf. [Kö]). This constructive proof seems
to be the shortest one at present.

Theorem. (Malgrange/Ehrenpreis, 1953/54)

Let P (ξ) =
∑

|α|≤m cαξ
α be a not identically vanishing polynomial in Rn, (i.e.

cα ∈ C, ξ = (ξ1, . . . , ξn) ∈ Rn, ξα = ξα1

1 · · · ξαn
n , not all cα = 0). Then there exists

a FS of P (∂), i.e., ∃E ∈ D′(Rn) : P (∂)E = δ.

Proof. ([OW1]) The distribution E ∈ D′(Rn) defined by

E(x) =
1

Pm(η)

∫

λ∈C,|λ|=1

λmeληxF−1

(

P (iξ + λη)

P (iξ + λη)

)

dλ

2πiλ

is a FS of P (∂), if Pm(ξ) =
∑

|α|=m cαξ
α (i.e. Pm is the principal part of P ),

η ∈ Cn with Pm(η) 6= 0 is fixed, ηx = η1x1 + · · ·+ηnxn, and F denotes the Fourier
transform ((Fφ)(x) =

∫

φ(ξ) e−ixξ dξ for φ ∈ D, and extended to S′ by continuity)
with the inverse F−1T = (2π)−n(FT )(−x). The formula makes sense, since

P (iξ + λη)

P (iξ + λη)
∈ L∞(Rn

ξ ) ⊂ S′(Rn),

and since this distribution continuously depends on λ. That the formula yields a FS
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is seen by direct verification:

P (∂)E =
1

Pm(η)

∫

λ∈C,|λ|=1

λmP (∂)

(

eληxF−1
( P (iξ + λη)

P (iξ + λη)

)

)

dλ

2πiλ

=
1

Pm(η)

∫

λ∈C,|λ|=1

λmeληx

(

P (∂ + λη)F−1
( P (iξ + λη)

P (iξ + λη)

)

)

dλ

2πiλ

=
1

Pm(η)

∫

λ∈C,|λ|=1

λmeληxF−1
(

P (iξ + λη)
) dλ

2πiλ

=
1

Pm(η)

∫

λ∈C,|λ|=1

λmeληxP (−∂ + λη) δ
dλ

2πiλ

=
1

Pm(η)

∫

λ∈C,|λ|=1

λmeληx
[

λm Pm(η) δ +

m−1
∑

k=0

λk Qk(∂)δ
] dλ

2πiλ
= δ. �

II) DUALITY AND MICROLOCAL ANALYSIS

An important step in the calculation of FSs consists in the determination of its
singular support. Here I would like to sketch a connection of microlocal analysis with
Plücker’s theory of dual algebraic curves. This relation is also at the heart of the
Atiyah-Bott-G̊arding theory, but applies to non-hyperbolic operators as well.

Let P (∂) be a real homogeneous operator of the degree m and of principal type, i.e.,
∀ξ ∈ Rn \ {0} : dP (ξ) 6= 0. Then we can easily solve the division problem P (ω) ·Φ = 1

on the sphere Sn−1 by Φ = vp
(

1
P (ω)

)

∈ D′(Sn−1), which is defined through

〈ψ,Φ〉 = lim
ǫց0

∫

|P (ω)|>ǫ

ψ(ω)

P (ω)
do(ω), ψ ∈ D(Sn−1).

From this we obtain T ∈ S′(Rn) with P (ξ)·T = 1 by putting T = Pf
λ=−m

[

Φ
(

ξ
|ξ|

)

|ξ|λ
]

.

The distribution T is homogeneous in Rn \ {0} and we can describe its wave front
set WFT quite explicitly: Near a zero ξ0 ∈ Rn \ {0} of P, we use y1 = P (ξ) as
a coordinate and obtain, since WFT is defined intrinsically in the cotangent space
T ∗Rn, that

WFT ∩ T ∗(Rn \ {0}) = {(ξ, x); ξ ∈ Rn \ {0}, P (ξ) = 0, x = t · dP (ξ), t ∈ R \ {0}}.

Making use of the following theorem, which goes back to Sato, we obtain a precise
description of WFE, where E := (im/(2π)n)FT is a FS of P (∂).

Theorem. (Thm. 8.1.8, [H4]) Let u ∈ D′(Rn) be homogeneous in Rn \ {0} and
identify T ∗Rn with R2n. Then

(x, ξ) ∈ WF(u) ⇐⇒ (ξ,−x) ∈ WF(Fu) if ξ 6= 0, x 6= 0,

x ∈ supp u⇐⇒ (0,−x) ∈ WF(Fu) if x 6= 0,

ξ ∈ suppFu⇐⇒ (0, ξ) ∈ WF(u) if ξ 6= 0.

Hence we conclude that

WFE = {(x, ξ); ξ ∈ Rn \ {0}, x = 0 or [P (ξ) = 0, x = t · ∇P (ξ), t ∈ R \ {0}]},
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where ∇P = ( ∂P
∂x1

, . . . , ∂P
∂xn

)T . In particular,

sing suppE = {t · ∇P (ξ); t ∈ R, ξ ∈ Rn, P (ξ) = 0}.

This means that sing suppE is the algebraic variety dual to the zero variety of P. Let
us recapitulate this concept from algebraic geometry.

If V is a finite dimensional vector space over K = R or C, then the corresponding
projective space is the set of all one-dimensional subspaces in V, i.e.

P(V ) = {[v]; v ∈ V \ {0}}, [v] = K · v.

The projective space P(V ∗) is canonically identified with the set of all subspaces
of V of codimension one and is called the dual projective space. If X ⊂ P(V ) is
a hypersurface given as the zero-set of a homogeneous polynomial P as above, i.e.
X = {[v] ∈ P(V ); P (v) = 0}, then the set of tangent planes to X is an algebraic
variety in P(V ∗), called the dual hypersurface X∗. We consider these varieties over
K = R or C, and denote them by X or Xc, X∗ or Xc∗, respectively. From the
above discussion, we obtain in our case X∗ = {[x]; x ∈ sing suppE \ {0}}.

Trivial example: The cubic t = s3 (written projectively as x3
1 − x2x

2
3 = 0 with

s = x1/x3, t = x2/x3) has a flex at s = t = 0. The dual curve is by definition
the collection of all tangent lines, i.e., t = 3s20(s − s0) + s30 = ks + d and hence is
parametrized by k = 3s20, d = −2s30. This is Neill’s parabola, which has a cusp at the
point k = d = 0 corresponding to s = t = 0.

In general, flexes and cusps correspond to one another by duality in the case of plane
curves. If κ, δ, b, f and κ∗, δ∗, b∗, f∗ denote the number of cusps, (ordinary) double
points, bitangents, flexes of a plane algebraic curve and of its dual, respectively, then
the classical Plücker formulae say (cf. [GH, p. 280])

b = δ∗, b∗ = δ, f = κ∗, f∗ = κ, d∗ = d(d− 1) − 2δ − 3κ, g =

(

d− 1

2

)

− δ − κ.

Here d, d∗ are the degrees of our curves and g denotes the genus.

If Xc is given by P (ζ1, ζ2, ζ3) = 0, we obtain Xc∗ as the set of those projective
points [z] ∈ P(C3) where the two equations ζ · z = 0, P (ζ) = 0 have a multiple
projective solution [ζ], and thus from the zero set of of the discriminant of P (u,−(uz1+
z3)/z2, 1) with respect to u.

III) HOMOGENEOUS CUBIC AND QUARTIC OPERATORS IN 3D

As mentioned earlier, I. Fredholm calculated the FS of ∂4
1 + ∂4

2 + ∂4
3 , whereas

N. Zeilon failed to find an explicit representation for a FS of ∂3
1 + ∂3

2 + ∂3
3 . In later

years, Herglotz, Petrovsky, Garnir etc. explicitly calculated FSs for products of wave
and Laplace operators, but, up to 1997, ∂4

1 + ∂4
2 + ∂4

3 remained the only irreducible
homogeneous operator of degree > 2, the FS of which was known. In 1997, I succeeded
in representing a FS of ∂3

1 + ∂3
2 + ∂3

3 (which I called “Zeilon’s operator”) by elliptic
integrals, and in 1998, I generalized the result to operators of the form ∂3

1 + ∂3
2 + ∂3

3 +
3a∂1∂2∂3, a ∈ R \ {−1} (cf. [W1], [W2]). Let me describe the main result.

According to Newton’s classification of real elliptic curves, the non-singular real
homogeneous polynomials P (ξ) of third order in three variables are divided into two
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types according to whether the real projective curve {[ξ] ∈ P(R3) : P (ξ) = 0} consists
of one or of two connected components, respectively. In Hesse’s normal form, all non-
singular real cubic curves are—up to linear transformations—given by

Pa(ξ) = ξ31 + ξ32 + ξ33 + 3aξ1ξ2ξ3, a ∈ R \ {−1}.

(Intuitively, this comes from the fact that a homogeneous cubic polynomial in 3 vari-
ables, i.e., P (ξ) =

∑

α∈N
3

0
,|α|=3 cαξ

α has
(

3+2
3

)

= 10 coefficients and dim gl(R3) = 9

and hence the (Teichmüller) space of elliptic curves is one-dimensional.) Let Xa :=
{[ξ] ∈ P(R3) : Pa(ξ) = 0} denote the real projective variety defined by Pa. For
a > −1, Xa is connected, whereas, for a < −1, Xa consists of two components (cf.
Fig. 1). The corresponding operators Pa(∂) also differ from the physical viewpoint:
For a < −1, every projective line through [1, 1, 1] intersects Xa in three different
projective points and thus Pa is strongly hyperbolic in the direction (1, 1, 1), for
a > −1, Pa is not hyperbolic in any direction, nor is it an evolution operator.

−2 0 2

−3

−2

−1

0

1

2

3

xi1

xi
2

a = −2

−2 0 2

−3

−2

−1

0

1

2

3

xi1

xi
2

a = 0

Figure 1: {(ξ1, ξ2) : [ξ1, ξ2, 1] ∈ Xa} for a = −2 and for a = 0

We define the fundamental solution Ea of Pa(∂) as the Fourier transform of the
homogeneous distribution which is of order −3 and has vp 1

Pa(ω)
∈ D′(S2) as its

restriction to the sphere. According to II), the (analytic) singular support of Ea is the
dual curve of Xa, i.e.,

sing suppEa = sing suppAEa = {t∇Pa(ξ); t ∈ R, ξ ∈ R3, Pa(ξ) = 0}.

By the classical Plücker formulae, [sing suppEa \{0}] is an algebraic curve of degree 6.
Its complexification has nine cusps, three of which are real in correspondence with the
three flexes of Xa (cf. Fig. 2). Explicitly, we have sing suppEa = {x ∈ R3; Aa(x) =
0}, where

(1) Aa(x) := 3a(a3 + 4)x2
1x

2
2x

2
3 + 4(a3 + 1)(x3

1x
3
2 + x3

1x
3
3 + x3

2x
3
3)

+ 6a2x1x2x3(x3
1 + x3

2 + x3
3) − (x3

1 + x3
2 + x3

3)2.

If a < −1, then Pa is hyperbolic with respect to (1, 1, 1) , and

(21) Wa := {x ∈ R3; Aa(x) = 0, x1 + x2 + x3 ≥ 0} (a < −1)
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consists of two conical surfaces which are the respective duals of the two components
of Xa. Let Fa denote the unique fundamental solution of Pa(∂) with support in
{x ∈ R3 : x1 +x2 +x3 ≥ 0}. Then Ea = 1

2(Fa− F̌a), where the superscript ˇ indicates
reflection with respect to the origin. Further, we denote by Ka the propagation cone
of Pa with respect to (1, 1, 1), i.e.,

Ka := dual cone of the component of (1, 1, 1) in {x ∈ R3; Pa(x) 6= 0}(3)

= convex hull of Wa.

From the Herglotz-Petrovsky-Leray formula, we infer that Fa has a Petrovsky lacuna
inside the cone

(41) La := {x ∈ Ka; Aa(x) > 0} (a < −1).

Hence Wa consists of ∂Ka and of ∂La, which bound a convex and a non-convex
cone, respectively (cf. Fig. 2).

a = −10

x2=x3 x1=x3

x1=x2

K

L

a = 1/3

x2=x3 x1=x3

x1=x2

L

Figure 2: {x ∈Wa : x1 + x2 + x3 = 1} for a = −10 and for a = 1
3

If a > −1, then still Ea has lacunas inside La and −La, where now we define

(42) La := component of (1, 1, 1) in {x ∈ R3; Aa(x) > 0} (a > −1)

and

(22) Wa := ∂La (a > −1).

In both cases, the fundamental solutions Ea are constant inside La and −La, and we
represent these constant values as complete elliptic integrals of the first kind. Moreover,
Ea is continuous outside the origin.

Outside the lacunas, Ea(x) can be represented by elliptic integrals of the first kind.
The final result is contained in the following theorem.

Theorem. Let a ∈ R \ {−1}. The limit

Ta := lim
ǫց0

Y (|ξ31 + ξ32 + ξ33 + 3aξ1ξ2ξ3| − ǫ)

ξ31 + ξ32 + ξ33 + 3aξ1ξ2ξ3
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defines a distribution in S′(R3). If Ea :=
( i

2π

)3

FTa, and Aa,Wa, La, and, for

a < −1, Ka are as in (1), (21), (22), (41), (42), (3), respectively, then

(a) Ea is a fundamental solution of ∂3
1 + ∂3

2 + ∂3
3 + 3a∂1∂2∂3;

(b) Ea is homogeneous of degree 0;
(c) Ea is odd and invariant under permutations of the co-ordinates;
(d) sing suppEa = sing suppAEa = Wa ∪−Wa;
(e) Ea is continuous in R3 \ {0};
(f) if a < −1, then Ea = 1

2
(Fa − F̌a), Pa(∂)Fa = δ, suppFa = Ka;

(g) Ea is constant in La and in −La, and the values Ea|La
are given by the

following complete elliptic integrals of the first kind:

Ea|La
= − 1

4
√

3π



















∫ ∞

ρ

du
√

pa(u)
: a > −1,

∫ ρ

−∞

2 du
√

pa(u)
: a < −1,

where pa(u) := 4(a3 + 1)u3 + 9a2u2 + 6au+ 1 and ρ is the smallest real root
of pa(u);

(h) let x ∈ Ua, where Ua := R3\(La∪−La) if a > −1 and Ua := Ka\(La∪Wa)
if a < −1, and denote by z(x) the only simple real root or, if x belongs to
one of the co-ordinate axes, the triple root 0, respectively, of the cubic equation

Qa(x, z) := Aa(x)z3 + 9(ax2
1 + x2x3)(ax2

2 + x1x3)(ax2
3 + x1x2)z2

+ [9a2x2
1x

2
2x

2
3 + 6a(x3

1x
3
2 + x3

1x
3
3 + x3

2x
3
3) + 3x1x2x3(x3

1 + x3
2 + x3

3)]z

+ 3ax2
1x

2
2x

2
3 + x3

1x
3
2 + x3

1x
3
3 + x3

2x
3
3 = 0.

Then z is a real-analytic function in Ua, and

Ea(x) =
Y (−1 − a)

2
Ea|La

+
sign(P̃a(x))

4
√

3π

∫ z(x)

ρ

du
√

pa(u)

where P̃a(x) := 3[(a3 − 2)ρ+ a2]x1x2x3 − (3aρ+ 1)(x3
1 + x3

2 + x3
3).

Sketch of the proof. Applying the residue theorem in the Herglotz-Petrovsky-
Leray formula and using some substitution yields

(5) Ea(x) = C1 + C2 · Im

∫

γ(x)

Ω, x ∈ Ua,

where C1, C2 are constants, γ(x) is a path in the elliptic curve Xc
a := {[ζ] ∈

P(C3);Pa(ζ) = 0} starting at some fixed point and leading to [y(x)] ∈ Xc
a defined by

x · y(x) = 0 and Im y1(x) > 0, say. Furthermore, Ω is a generator of the space of
holomorphic one-forms on Xc

a. Then the addition theorem for elliptic functions (resp.
Abel’s theorem for elliptic curves) is applied. �

Remarks. Interestingly, it follows from this theorem that the level surfaces of Ea

are algebraic. Up to present, there is no theoretical explanation for this fact.
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Figure 3: X and W for ∂4
1 + ∂4

2 + ∂4
3 + 2a∂2

1∂
2
2 + 2b∂2

3(∂2
1 + ∂2

2)
with a = −0.7 and b = −1.2

In the papers [W4], [W5], we deduce similar formulae for elliptic resp. hyperbolic

quartic operators of the form P (∂) =
∑3

j,k=1 cjk∂
2
j ∂

2
k. A typical picture of the slowness

surface X and of the wave front surface W for such an operator is given in Fig. 3.

In the regions A,B, the fundamental solution E is given by incomplete elliptic
integrals of the first kind, in the Petrovsky lacunas L it is given by linear functions the
coefficients of which are complete elliptic integrals of the first kind. We refer to [W5]
for details.

Note that the Riemann surfaces defined by P (z) = 0 in this case have genus 3, but
E is still given by elliptic integrals. This comes from the fact that E is represented
by sums of Abelian integrals in analogy with the imaginary part appearing in formula
(5) above.

IV) THE SYSTEM OF CRYSTAL OPTICS

If H denotes the magnetic field, and J denotes the density of current, and ǫ =




ǫ1 0 0
0 ǫ2 0
0 0 ǫ3



 , µ, c, ǫj being positive constants, then

(

I3∂
2
t + A(∇)

)

H =
4πc

µ
rot(ǫ−1J )

with the symmetric matrix

A(ξ) =





−d3ξ
2
2 − d2ξ

2
3 d3ξ1ξ2 d2ξ1ξ3

d3ξ1ξ2 −d3ξ
2
1 − d1ξ

2
3 d1ξ2ξ3

d2ξ1ξ3 d1ξ2ξ3 −d1ξ
2
2 − d2ξ

2
1





where we have set dj =
c2

µǫj
, j = 1, 2, 3. Particularly important for systems of PDOs

is the determinant operator. We have

det
(

I3∂
2
t + A(∇)

)

= ∂2
tR(∂)
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with

R(τ, ξ) = τ4 − τ2
3
∑

j=1

ξ2j (dj+1 + dj+2) + |ξ|2
3
∑

j=1

ξ2j dj+1dj+2

(where we define d4 = d1, d5 = d2). The slowness surface X = {ξ ∈ R3;R(1, ξ) = 0}
is called “Fresnel’s surface”. If the positive constants d1, d2, d3 are pairwise different,
then X is homeomorphic to two disjoint spheres glued together at four points, which
two by two are pairwise opposite and span the “optical axes”. In this case, R is
irreducible. If two of the dj are equal, i.e., if d1 = d2 = 1 and d3 = d 6= 1 without
loss of generality, then the crystal is called “uniaxial”, because in this case the optical
axes coincide. Then X is made up of a sphere and of an ellipsoid touching each other
at the two points on the optical axis.

Use of the matrix version of the Herglotz-Petrovsky formula yields a representation
of E by Abelian integrals (cf. [OW3, 2.2.2], [KS, p. 3318])

(6) E(t, x) = −Y (t)

4π2
∂t

∫

Ct,x

P (1, ξ)ad sign
(

(∂τ detP )(1, ξ)
)

|x3(∂2 detP )(1, ξ)− x2(∂3 detP )(1, ξ)| |dξ1|

where

Ct,x := {ξ ∈ R3; detP (1, ξ) = 0, t+ 〈ξ, x〉 = 0} (for (t, x) ∈ R4).

Unfortunately, in the case of crystal optics (i.e., P (∂) = ∂2
t −A(∇), A as above), an

explicit evaluation (in terms of higher transcendental functions) of formula (6) has not
yet been achieved. Let me describe what is known so far ([OW3, 3.4 and 4.3]):

If K denotes the support of E, then K is the dual cone of the connectivity
component of (1, 0) in {(τ, ξ) ∈ R4;R(τ, ξ) 6= 0}. The singular support of E (which
coincides with the wave front surface W ) consists of the four “Hamiltonian circles”
and of {(t, x); t > 0, x/t ∈ X0}, where X0 is the dual surface to the slowness surface
X, i.e. X0 is the envelope of the planes {x ∈ R3; 〈ξ, x〉 = 1, ξ ∈ X}. It turns out
that

X0 = {x ∈ R3; 1 −
3
∑

j=1

x2
j (d−1

j+1 + d−1
j+2) + |x|2

3
∑

j=1

x2
j/(dj+1dj+2) = 0}

and hence X0 is given by an equation analogous to that of Fresnel’s surface X. The
intersection of X0 with a plane through the optical axes consists of a circle intersecting
an ellipse, see Fig. 4.

The fundamental matrix E is explicitly known in the inner region J. There

E = vp
tY (t)

4π|x|3
(

I3 −
3x · xT

|x|2
)

+
1

3

(

tY (t) ⊗ δ(x)
)

I3.

Furthermore, one can calculate the delta terms in E, and E is known in the uniaxial
case. In this case, the circle and the ellipse in Fig. 4 touch each other and E can be
expressed by delta terms and algebraic functions ([OW3, Prop. 3]). For the biaxial case,
however, E is given in K \J by Abelian integrals over curves of genus 3, the moduli of
which depend on (t, x). Up to now, there is no representation by higher transcendental
functions known.
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Figure 4: Section of the wave front surface of crystal optics through the optical axes
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[H3] Hörmander, L., Linear partial differential operators, Grundlehren, 116, Springer, Berlin, 1963.
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[Lü] Lützen, J., The prehistory of the theory of distributions, Springer, Berlin, 1981.

[M] Malgrange, B., Existence et approximation des solutions des équations aux dérivées partielles et
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