Numerical methods for nonlinear Schrödinger equations

Mechthild Thalhammer, University of Innsbruck, Austria

Innsbruck, Austria, March 2010
Discretisation of nonlinear Schrödinger equations

Problem. System of nonlinear Schrödinger equations

\[i \partial_t \Psi(x, t) = \mathcal{H}(x, \Psi(x, t)) \Psi(x, t), \quad x \in \mathbb{R}^d, \quad 0 \leq t \leq T. \]

Discretisation. High accuracy approximations rely on

- pseudo-spectral methods in space and
- exponential operator splitting methods in time.

Numerical analysis. Theoretical analysis of integration methods (stability, convergence, long-term behaviour).

Applications.

- Gross–Pitaevskii systems (GPS)
- Multi-configuration time-dependent Hartree–Fock (MCTDHF) equations
Bose–Einstein condensation

In our laboratories temperatures are measured in micro- or nanokelvin ... In this ultracold world ... atoms move at a snail’s pace ... and behave like matter waves. Interesting and fascinating new states of quantum matter are formed and investigated in our experiments.

Grimm et al.

Practical realisation. Observation of Bose–Einstein condensation in physical experiments.

Theoretical model. Mathematical description of multi-component Bose–Einstein condensates by Gross–Pitaevskii systems.

Numerical simulation. Favourable space and time discretisations rely on time-splitting pseudo-spectral methods. See recent work by _BAO ET AL._
Objectives

Convergence analysis.
- High-order time-splitting methods for nonlinear Schrödinger equations (GPS, MCTDHF).
- Minimisation method for ground state computation (1D/2D GPS).

Implementation.
- Numerical simulation of Gross–Pitaevskii systems in three space dimensions (ground state, time evolution).
Contents

- Gross–Pitaevskii systems
- Pseudo-spectral methods
 (Fourier, Sine, Hermite, Laguerre–Fourier–Hermite)
- Exponential operator splitting methods
 - Linear evolutionary Schrödinger equations
 - Nonlinear evolutionary Schrödinger equations
 - Stability and convergence analysis
- Illustrations
 - Pseudo-spectral methods
 - Ground state computation
 - Time evolution
Gross–Pitaevskii systems
Problem. System of coupled time-dependent Gross–Pitaevskii equations for $\Psi : \mathbb{R}^d \times [0, \infty) \to \mathbb{C}^J$

$$i \hbar \partial_t \Psi_j(x, t) = \left(-\frac{\hbar^2}{2m_j} \Delta + V_j(x) + \hbar^2 \sum_{k=1}^{J} g_{jk} |\Psi_k(x, t)|^2 \right) \Psi_j(x, t),$$

$$V_j(x) = \sum_{i=1}^{d} \left(\frac{m_j}{2} \omega_{ji}^2 (x_i - \zeta_{ji})^2 + \kappa_{ji} \left(\sin(q_{ji} x_i) \right)^2 \right),$$

$$\|\Psi_j(\cdot, 0)\|_{L^2}^2 = N_j, \quad x \in \mathbb{R}^d, \quad 0 \leq t \leq T, \quad 1 \leq j \leq J.$$

Normalisation. Linear transformation yields normalised problem for $\psi : \mathbb{R}^d \times [0, \infty) \to \mathbb{C}^J$

$$i \partial_t \psi_j(\xi, t) = \left(-c_j \Delta + U_j(\xi) + \sum_{k=1}^{J} \partial_{jk} |\psi_k(\xi, t)|^2 \right) \psi_j(\xi, t),$$

$$\|\psi_j(\cdot, 0)\|_{L^2}^2 = N_j, \quad \xi \in \mathbb{R}^d, \quad 0 \leq t \leq T, \quad 1 \leq j \leq J.$$
Special case \((J = 1)\). Gross–Pitaevskii equation subject to asymptotic boundary conditions and initial condition

\[
i \partial_t \psi(\xi, t) = \left(-\frac{1}{2} \Delta + U(\xi) + \vartheta |\psi(\xi, t)|^2 \right) \psi(\xi, t),
\]

\[
\Delta = \sum_{i=1}^{d} \partial_{\xi_i}^2, \quad U(\xi) = \frac{1}{2} U_H(\xi) = \frac{1}{2} \sum_{i=1}^{d} \gamma_i^4 \xi_i^2,
\]

\[
\|\psi(\cdot, 0)\|_{L^2}^2 = 1, \quad \xi \in \mathbb{R}^d, \quad 0 \leq t \leq T.
\]

Geometric properties. Preservation of particle number \(\|\psi(\cdot, t)\|_{L^2}^2\)

and energy functional

\[
E(\psi(\cdot, t)) = \left(\left(-\frac{1}{2} \Delta + U + \frac{1}{2} \vartheta |\psi(\cdot, t)|^2 \right) \psi(\cdot, t) \right) \left| \psi(\cdot, t) \right|_{L^2}.
\]
Pseudo-spectral methods
Spectral methods

- Fourier spectral method
- Sine spectral method
- Cosine spectral method
- Hermite spectral method
- Laguerre–Fourier–Hermite spectral method
Fourier pseudo-spectral method

Spectral decomposition. Let $\Omega = [-a, a]^d$ with $a > 0$. Fourier basis functions $(\mathcal{F}_m)_{m \in \mathbb{Z}^d}$ form orthonormal basis of $L^2(\Omega)$ and satisfy

$$-\frac{1}{2} \Delta \mathcal{F}_m = \lambda_m \mathcal{F}_m, \quad \lambda_m = \frac{\pi^2}{2a^2} \sum_{i=1}^d m_i^2.$$

Fourier decomposition for $\psi(\cdot, t) \in L^2(\Omega)$

$$\psi(\cdot, t) = \sum_m \psi_m(t) \mathcal{F}_m, \quad \psi_m(t) = \left(\psi(\cdot, t) \mid \mathcal{F}_m\right)_{L^2}.$$

Numerical approximation. Truncation of infinite sum and application of trapezoid quadrature formula

$$\psi_M(\cdot, t) = \sum_m \psi_m(t) \mathcal{F}_m,$$

$$\psi_m(t) = \int_{\Omega^d} \psi(\xi, t) \mathcal{F}_m(\xi) \, d\xi \approx \omega \sum_k \psi(\xi_k, t) \mathcal{F}_m(\xi_k).$$
Spectral decomposition. Hermite functions \((\mathcal{H}_m)_{m \geq 0}\) form orthonormal basis of \(L^2(\mathbb{R}^d)\) and satisfy
\[
\frac{1}{2} \left(- \Delta + U_H \right) \mathcal{H}_m = \lambda_m \mathcal{H}_m, \quad \lambda_m = \sum_{i=1}^{d} \gamma_i^2 \left(m_i + \frac{1}{2} \right).
\]

Hermite decomposition for \(\psi(\cdot, t) \in L^2(\mathbb{R}^d)\)
\[
\psi(\cdot, t) = \sum_m \psi_m(t) \mathcal{H}_m, \quad \psi_m(t) = (\psi(\cdot, t) | \mathcal{H}_m)_{L^2}.
\]

Numerical approximation. Truncation of infinite sum and application of Gauss–Hermite quadrature formula
\[
\psi_M(\cdot, t) = \sum_M \psi_m(t) \mathcal{H}_m, \\
\psi_m(t) = \int_{\mathbb{R}^d} \psi(\xi, t) \mathcal{H}_m(\xi) \, d\xi \approx \sum_k \omega_k e^{\xi_k^2} \psi(\xi_k, t) \mathcal{H}_m(\xi_k).
\]
Observations (GPE, 2D).

- Spectral methods show favourable behaviour regarding accuracy.
- For certain parameter ranges Hermite spectral error (bottom) is remarkably smaller than Fourier spectral error (top).
- Hermite transform error does not go below $\approx 10^{-14}$ (Matlab implementation).
Computation time

Mean computational cost of a single spectral transform in one (left picture) and two (right picture) space dimensions.
Preliminary tests

Preliminary tests in PYTHON/CYTHON by Johannes Traxl.

Computational cost of a single spectral transform in one to three space dimensions.
Ground state computation
Problem. Gross–Pitaevskii equation

\[i \partial_t \psi(\xi, t) = \left(-\frac{1}{2} \Delta + U(\xi) + \vartheta |\psi(\xi, t)|^2 \right) \psi(\xi, t). \]

Ground state. Solution of special form \(\psi(\xi, t) = e^{-i\mu t} \varphi(\xi) \) that minimises energy functional. Used as reliable reference solution in time-integration.

Imaginary time method (normalised gradient flow). Artificial time integration by linearly-implicit Euler method, see BAO, CHERN, LIM (2006).

Minimisation approach. Direct minimisation of energy functional, see BAO, TANG (2003), CALIARI, OSTERMANN, RAINER, TH. (2008).
Imaginary time method. Artificial time integration of

\[\partial_t \psi(\xi, t) = \left(\frac{1}{2} \Delta - U(\xi) - \vartheta |\psi(\xi, t)|^2 \right) \psi(\xi, t), \quad \| \psi(\cdot, 0) \|_{L^2}^2 = 1. \]

- Space discretisation by pseudo-spectral methods
- Time discretisation by linearly-implicit Euler method

Illustration. Computation of ground state \(\psi(\xi, t) = e^{-i\vartheta t} \varphi(\xi) \) for different values of \(\vartheta \).
Illustration. Computation of ground state $\psi(\xi, t) = e^{-i\mu t} \varphi(\xi)$ for $\vartheta = 0$. Random initial value. Exact solution $\varphi = \mathcal{H}_0$.
Illustration (1D). Computation of ground state $\psi(\xi, t) = e^{-i\mu t} \varphi(\xi)$ for $\vartheta = 0$ by imaginary time method (time stepsize Δt, number of steps N, tolerance $\text{tol} \parallel \Delta \varphi \parallel_{L^2} = 10^{-13}$, random initial value). Exact solution $\varphi = \mathcal{H}_0$. Determine $\Delta \varphi = \parallel \varphi - \mathcal{H}_0 \parallel_{L^2}$, $\Delta E = |E(\varphi) - E(\mathcal{H}_0)|$.

<table>
<thead>
<tr>
<th>Method (dof)</th>
<th>Δt</th>
<th>N</th>
<th>$\Delta \varphi$</th>
<th>ΔE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hermite 1D (256)</td>
<td>$1 \cdot 10^{-1}$</td>
<td>285</td>
<td>$9.9 \cdot 10^{-13}$</td>
<td>0</td>
</tr>
<tr>
<td>Fourier 1D (256)</td>
<td>$3.3 \cdot 10^{-3}$</td>
<td>6062</td>
<td>$3.0 \cdot 10^{-11}$</td>
<td>$2.8 \cdot 10^{-16}$</td>
</tr>
<tr>
<td>Sine 1D (256)</td>
<td>$3.3 \cdot 10^{-3}$</td>
<td>6569</td>
<td>$3.0 \cdot 10^{-11}$</td>
<td>$1.1 \cdot 10^{-16}$</td>
</tr>
<tr>
<td>Hermite 1D (256)</td>
<td>$3.3 \cdot 10^{-3}$</td>
<td>6005</td>
<td>$3.0 \cdot 10^{-11}$</td>
<td>0</td>
</tr>
</tbody>
</table>
Illustration (2D). Computation of ground state $\psi(\xi, t) = e^{-i\mu t} \varphi(\xi)$ for $\vartheta = 0$ by imaginary time method (time stepsize Δt, number of steps N, $N_{\text{max}} = 1000$, tolerance $\text{tol} \|\Delta \varphi\|_{L^2} = 10^{-13}$, random initial value). Exact solution $\varphi = H_0$. Determine $\Delta \varphi = \|\varphi - H_0\|_{L^2}$, $\Delta E = |E(\varphi) - E(H_0)|$.

<table>
<thead>
<tr>
<th>Method (dof)</th>
<th>Δt</th>
<th>N</th>
<th>$\Delta \varphi$</th>
<th>ΔE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hermite 2D (128 \times 128)</td>
<td>$1 \cdot 10^{-1}$</td>
<td>279</td>
<td>$1.1 \cdot 10^{-12}$</td>
<td>$2.7 \cdot 10^{-15}$</td>
</tr>
<tr>
<td>Fourier 2D (128 \times 128)</td>
<td>$1 \cdot 10^{-3}$</td>
<td>N_{max}</td>
<td>$1.3 \cdot 10^{-1}$</td>
<td>$3.5 \cdot 10^{-2}$</td>
</tr>
<tr>
<td>Sine 2D (128 \times 128)</td>
<td>$1 \cdot 10^{-3}$</td>
<td>N_{max}</td>
<td>$1.5 \cdot 10^{-1}$</td>
<td>$4.3 \cdot 10^{-2}$</td>
</tr>
<tr>
<td>Hermite 2D (128 \times 128)</td>
<td>$1 \cdot 10^{-3}$</td>
<td>N_{max}</td>
<td>$1.4 \cdot 10^{-1}$</td>
<td>$3.7 \cdot 10^{-2}$</td>
</tr>
<tr>
<td>Hermite 2D (40 \times 40)</td>
<td>$1 \cdot 10^{-1}$</td>
<td>274</td>
<td>$1.1 \cdot 10^{-12}$</td>
<td>$4.4 \cdot 10^{-16}$</td>
</tr>
<tr>
<td>Laguerre 2D (40 \times 40)</td>
<td>$1 \cdot 10^{-1}$</td>
<td>281</td>
<td>$1.1 \cdot 10^{-12}$</td>
<td>$1.8 \cdot 10^{-15}$</td>
</tr>
</tbody>
</table>
Illustration (1D). Computation of ground state $\psi(\xi, t) = e^{-i\mu t} \varphi(\xi)$ for $\vartheta = 1, 10, 100$ by imaginary time method (time stepsize Δt, number of steps N, $N_{\text{max}} = 10000$, $\text{tol} \|\Delta \varphi\|_{L^2} = 10^{-13}$, initial value H_0). Determine energy E and chemical potential μ.

<table>
<thead>
<tr>
<th>ϑ</th>
<th>Method (dof)</th>
<th>Δt</th>
<th>N</th>
<th>E</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fourier 1D (128)</td>
<td>$1 \cdot 10^{-3}$</td>
<td>N_{max}</td>
<td>0.6894870340025343</td>
<td>0.8699438147705625</td>
</tr>
<tr>
<td>1</td>
<td>Sine 1D (128)</td>
<td>$1 \cdot 10^{-3}$</td>
<td>N_{max}</td>
<td>0.6894870340025348</td>
<td>0.8699438147705982</td>
</tr>
<tr>
<td>1</td>
<td>Hermite 1D (128)</td>
<td>$1 \cdot 10^{-1}$</td>
<td>144</td>
<td>0.6894870340025350</td>
<td>0.8699438147531438</td>
</tr>
<tr>
<td>10</td>
<td>Fourier 1D (128)</td>
<td>$1 \cdot 10^{-3}$</td>
<td>8480</td>
<td>1.947127215051800</td>
<td>3.107243089467828</td>
</tr>
<tr>
<td>10</td>
<td>Sine 1D (128)</td>
<td>$1 \cdot 10^{-3}$</td>
<td>8427</td>
<td>1.947127215051803</td>
<td>3.107243089467807</td>
</tr>
<tr>
<td>10</td>
<td>Hermite 1D (128)</td>
<td>$1 \cdot 10^{-1}$</td>
<td>142</td>
<td>1.947127215051971</td>
<td>3.107243396563452</td>
</tr>
<tr>
<td>100</td>
<td>Fourier 1D (128)</td>
<td>$1 \cdot 10^{-3}$</td>
<td>5477</td>
<td>8.508526756216922</td>
<td>14.13428708666590</td>
</tr>
<tr>
<td>100</td>
<td>Sine 1D (128)</td>
<td>$1 \cdot 10^{-3}$</td>
<td>5541</td>
<td>8.508526756216202</td>
<td>14.13428708664118</td>
</tr>
<tr>
<td>100</td>
<td>Hermite 1D (128)</td>
<td>$1 \cdot 10^{-3}$</td>
<td>5768</td>
<td>8.508526756216648</td>
<td>14.13428708652637</td>
</tr>
</tbody>
</table>
Illustration (1D). Harmonic and optical lattice potential.
Parameters $\vartheta = 400, \kappa = 0$ (first row), $\vartheta = 250, \kappa = 25$ (second row).
Ground and excited states

Illustration (1D). Harmonic and optical lattice potential \((\vartheta = 400, \kappa = 0)\). Ground state (first table), first excited state (second table).

<table>
<thead>
<tr>
<th>Method (dof)</th>
<th>N</th>
<th>(E)</th>
<th>(\mu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fourier 1D (128)</td>
<td>1652</td>
<td>21.36006969604896</td>
<td>35.57746088822537</td>
</tr>
<tr>
<td>Sine 1D (128)</td>
<td>1641</td>
<td>21.36006969606773</td>
<td>35.57746088877173</td>
</tr>
<tr>
<td>Hermite 1D (128)</td>
<td>1741</td>
<td>21.36006969605781</td>
<td>35.57746088895613</td>
</tr>
<tr>
<td>Fourier 1D (256)</td>
<td>1645</td>
<td>21.36006969605765</td>
<td>35.57746088917683</td>
</tr>
<tr>
<td>Sine 1D (256)</td>
<td>1644</td>
<td>21.36006969605768</td>
<td>35.57746088924034</td>
</tr>
<tr>
<td>Hermite 1D (256)</td>
<td>1741</td>
<td>21.36006969605780</td>
<td>35.5774608895738</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method (dof)</th>
<th>N</th>
<th>(E)</th>
<th>(\mu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fourier 1D (256)</td>
<td>4731</td>
<td>22.07805357471709</td>
<td>36.289617999999919</td>
</tr>
<tr>
<td>Sine 1D (256)</td>
<td>4731</td>
<td>22.07731557354061</td>
<td>36.28639506700304</td>
</tr>
<tr>
<td>Hermite 1D (256)</td>
<td>4731</td>
<td>22.07785253485193</td>
<td>36.28875625057125</td>
</tr>
<tr>
<td>Fourier 1D (512)</td>
<td>4731</td>
<td>22.07770234793737</td>
<td>36.28810887615681</td>
</tr>
<tr>
<td>Sine 1D (512)</td>
<td>4731</td>
<td>22.07770233695729</td>
<td>36.28810878176972</td>
</tr>
</tbody>
</table>
Illustration (2D). Harmonic and optical lattice potential. Parameters $\vartheta = 500, \kappa = 50$.
Problem. Description of two-component Bose–Einstein condensate with external driving field by Gross–Pitaevskii system

\[
i \partial_t \psi_1(\xi, t) = \left(-c_1 \Delta + U_1(\xi) + \delta_1 + \vartheta_{11} |\psi_1(\xi, t)|^2 \\
+ \vartheta_{12} |\psi_2(\xi, t)|^2 \right) \psi_1(\xi, t) + \lambda_1 \psi_2(\xi, t),
\]

\[
i \partial_t \psi_2(\xi, t) = \left(-c_2 \Delta + U_2(\xi) + \delta_2 + \vartheta_{12} |\psi_1(\xi, t)|^2 \\
+ \vartheta_{22} |\psi_2(\xi, t)|^2 \right) \psi_2(\xi, t) + \lambda_1 \psi_1(\xi, t),
\]

\[
\| \psi_1(\cdot, 0) \|^2_{L^2} = N_1, \quad \| \psi_2(\cdot, 0) \|^2_{L^2} = N_2, \quad \xi \in \mathbb{R}^d, \quad 0 \leq t \leq T.
\]

Ground state. Numerical computation of ground state solutions

\[
\psi_1(\xi, t) = e^{-i\mu t} \varphi_1(\xi), \quad \psi_2(\xi, t) = e^{-i\mu t} \varphi_2(\xi),
\]

by imaginary time method, see also BAO, CAI (2009).
Illustration. Harmonic potential. Raman transition constant, effective Rabi frequency, interaction constants

\[\delta = (0, 0), \quad \lambda = (-1, -1), \quad \vartheta_{12} = 0.94 \vartheta_{11}, \quad \vartheta_{22} = 0.97 \vartheta_{11}.\]

Particle numbers \(N_1 = \frac{1}{2} = N_2\). Ground state computation for different \(\vartheta_{11}\).

<table>
<thead>
<tr>
<th>Method</th>
<th>(dof)</th>
<th>(\vartheta_{11})</th>
<th>(N)</th>
<th>(E)</th>
<th>(\mu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fourier 1D (256)</td>
<td>10</td>
<td>2767</td>
<td>0.9032323983452519</td>
<td>2.031721966687096</td>
<td></td>
</tr>
<tr>
<td>Sine 1D (256)</td>
<td>10</td>
<td>2767</td>
<td>0.9032323983452527</td>
<td>2.031721966687234</td>
<td></td>
</tr>
<tr>
<td>Hermite 1D (256)</td>
<td>10</td>
<td>2767</td>
<td>0.9032323983452527</td>
<td>2.031721966687215</td>
<td></td>
</tr>
<tr>
<td>Fourier 1D (256)</td>
<td>100</td>
<td>8220</td>
<td>7.293198290467438</td>
<td>12.77289228962208</td>
<td></td>
</tr>
<tr>
<td>Sine 1D (256)</td>
<td>100</td>
<td>8218</td>
<td>7.293198290467440</td>
<td>12.77289228962209</td>
<td></td>
</tr>
<tr>
<td>Hermite 1D (256)</td>
<td>100</td>
<td>8220</td>
<td>7.293198290467459</td>
<td>12.77289228961896</td>
<td></td>
</tr>
<tr>
<td>Fourier 1D (256)</td>
<td>500</td>
<td>7931</td>
<td>23.13994498391353</td>
<td>39.20595346563520</td>
<td></td>
</tr>
<tr>
<td>Sine 1D (256)</td>
<td>500</td>
<td>7931</td>
<td>23.13994498391356</td>
<td>39.20595346563536</td>
<td></td>
</tr>
<tr>
<td>Hermite 1D (256)</td>
<td>500</td>
<td>7931</td>
<td>23.13994498391372</td>
<td>39.20595346564230</td>
<td></td>
</tr>
</tbody>
</table>
Ground state (External driving field)

Ground state solutions for $\theta_{11} = 0, 10, 50, 100, 250, 500$ (left).
Particle numbers, total energy and chemical potential versus θ_{11} (right).
Exponential operator splitting methods
Evolutionary Schrödinger equations. Formulate nonlinear Schrödinger equations such as Gross–Pitaevskii equation

\[i \partial_t \psi(\xi, t) = \left(-\frac{1}{2} \Delta + U(\xi) + \vartheta |\psi(\xi, t)|^2 \right) \psi(\xi, t) \]

as abstract differential equation for \(u(t) = \psi(\cdot, t) \)

\[u'(t) = A u(t) + B(u(t)) u(t) . \]

Choose differential operator \(A \) and multiplication operator \(B(u) \) according to spectral space discretisation

\[
\begin{align*}
 i A &= -\frac{1}{2} (\Delta - U_H), \\
 i B(u) &= U - \frac{1}{2} U_H + \vartheta |u|^2, \quad \text{(Hermite)} \\
 i A &= -\frac{1}{2} \Delta, \\
 i B(u) &= U + \vartheta |u|^2. \quad \text{(Fourier)}
\end{align*}
\]

Abstract formulation convenient for construction and theoretical analysis of time integration methods.
Splitting methods for linear equations

Aim. For linear evolutionary Schrödinger equation

\[u'(t) = A u(t) + B u(t), \quad t \geq 0, \quad u(0) \text{ given,} \]

\[i A = - \frac{1}{2} (\Delta - U_H), \quad i B = U - \frac{1}{2} U_H, \quad \text{(Hermite)} \]

\[i A = - \frac{1}{2} \Delta, \quad i B = U, \quad \text{(Fourier)} \]

determine numerical approximation \(u_n \approx u(t_n) \) at \(t_n = nh \).

Approach. Splitting methods rely on suitable composition of

\[v'(t) = A v(t), \quad w'(t) = B w(t). \]

Spectral decomposition with respect to basis functions \(\mathcal{B}_m \) and pointwise multiplication yields

\[v(t) = e^{tA} v(0) = \sum_m v_m e^{-i t \lambda_m} \mathcal{B}_m, \quad v(0) = \sum_m v_m \mathcal{B}_m, \]

\[\left(w(t) \right)(x) = \left(e^{tB} w(0) \right)(x) = e^{tB(x)} \left(w(0) \right)(x). \]
Splitting methods for linear equations (Examples)

- **Lie–Trotter splitting method** yields first-order approximation
 \[u_{n+1} = e^{hB} e^{hA} u_n \approx u(t_{n+1}) = e^{h(A+B)} u(t_n). \]

- **Second-order Strang splitting method** given through
 \[u_{n+1} = e^{\frac{1}{2}hB} e^{hA} e^{\frac{1}{2}hB} u_n, \quad u_{n+1} = e^{\frac{1}{2}hA} e^{hB} e^{\frac{1}{2}hA} u_n. \]

- **Higher-order splitting methods** by Blanes and Moan, Kahan and Li, McLachlan, Suzuki, and Yoshida are cast into form
 \[u_{n+1} = \prod_{j=1}^{s} e^{b_j hB} e^{a_j hA} u_n = e^{b_s hB} e^{a_s hA} \cdots e^{b_1 hB} e^{a_1 hA} u_n \]
 with real (possible negative) method coefficients \((a_j, b_j)_{j=1}^{s}\).
Situation. Exponential operator splitting methods for linear evolutionary Schrödinger equations

\[
\begin{align*}
 u'(t) &= A u(t) + B u(t), \quad t \geq 0, \\
 u(t_{n+1}) &= e^{h(A+B)} u(t_n), \quad n \geq 0, \quad u(0) \text{ given}, \\
 u_{n+1} &= \prod_{j=1}^{s} e^{b_j h B} e^{a_j h A} u_n, \quad n \geq 0, \quad u_0 \text{ given}.
\end{align*}
\]

Objective. Derive stiff order conditions and error estimate for general exponential operator splitting method.

Approach. Extend error analysis by Jahnke and Lubich (2000) for second-order scheme to splitting methods of arbitrary order.
Convergence result

Theorem (Th. 2007, Neuhauser and Th. 2008)

Suppose that the coefficients of the splitting method fulfill the classical order conditions for $p \geq 1$. Then, provided that the exact solution is sufficiently regular, the following error estimate holds

$$\| u_n - u(t_n) \|_X \leq C \| u(0) - u_0 \|_X + C h^p, \quad 0 \leq nh \leq T.$$
Sketch of the proof

Approach. Relate global and local error (*Lady Windermere’s Fan*)

\[u_n - u(t_n) = S^n (u_0 - u(0)) - \sum_{j=0}^{n-1} S^{n-j-1} d_{j+1}, \]

\[S = \prod_{j=1}^{s} e^{b_j hB} e^{a_j hA}, \quad d_{j+1} = u(t_{j+1}) - Su(t_j). \]

Deduce **stability bound** for powers of splitting operator and suitable estimate for local error.

- Variation-of-constants formula
- Stepwise expansion of e^{tB}
- Quadrature formulas for multiple integrals
- Bounds for iterated commutators
- Characterise domains of unbounded operators
Splitting methods for nonlinear equations

Abstract formulation. Rewrite nonlinear Schrödinger equation

\[i \partial_t \psi(\xi, t) = \left(-\frac{1}{2} \Delta + U(\xi) + \vartheta |\psi(\xi, t)|^2 \right) \psi(\xi, t) \]

as abstract differential equation for \(u(t) = \psi(\cdot, t) \)

\[u'(t) = A u(t) + B(u(t)) u(t). \]

Approach. Splitting methods rely on suitable composition of

\[v'(t) = A v(t), \quad w'(t) = B(w(t)) w(t), \]

with \(A, B \) chosen according to spectral space discretisation

\[i A = -\frac{1}{2} \left(\Delta - U_H \right), \quad i B(u) = U - \frac{1}{2} U_H + \vartheta |u|^2, \quad \text{(Hermite)} \]

\[i A = -\frac{1}{2} \Delta, \quad i B(u) = U + \vartheta |u|^2. \quad \text{(Fourier)} \]
Approach. Splitting methods rely on suitable composition of

\[
v'(t) = A v(t), \quad w'(t) = B(w(t)) w(t),
\]

\[
i A = -\frac{1}{2} \left(\Delta - U_H \right), \quad i B(u) = U - \frac{1}{2} U_H + \vartheta |u|^2, \quad \text{(Hermite)}
\]

\[
i A = -\frac{1}{2} \Delta, \quad i B(u) = U + \vartheta |u|^2. \quad \text{(Fourier)}
\]

Spectral decomposition with respect to basis functions \((B_m)\) and invariance property \(B(w(t)) = B(w(0))\) yields

\[
v(t) = e^{tA} v(0) = \sum_m v_m e^{-it\lambda_m B_m}, \quad v(0) = \sum_m v_m B_m,
\]

\[
\left(w(t) \right)(x) = \left(e^{tB(w(0))} w(0) \right)(x) = e^{tB(w(0))(x)} \left(w(0) \right)(x).
\]
Splitting methods for nonlinear equations

Splitting methods. Consider initial value problem

\[u'(t) = A u(t) + B(u(t)) u(t), \quad u(t_n) \text{ given}, \]

and solutions of associated initial value problems

\[v(t) = e^{(t-t_n)A} v(t_n), \quad w(t) = e^{(t-t_n)B(w(t_n))} w(t_n). \]

Strang splitting. Second-order scheme given by

\[u_{n+1} = e^{\frac{1}{2}hB(U_n)} e^{hA} e^{\frac{1}{2}hB(u_n)} u_n. \]

High-order splitting. General scheme can be cast into form

\[u_{n+1} = e^{b_s hB(U_{ns})} U_{ns}, \]

\[U_{n1} = e^{a_1 hA} u_n, \quad U_{nj} = e^{a_j hA} e^{b_{j-1} hB(U_{n,j-1})} U_{n,j-1}. \]
Temporal convergence orders of various time-splitting Fourier (first row) and Hermite (second row) pseudospectral methods (GPE in 2d, $\theta = 1$, $M = 128$).
Convergence analysis

Conjecture

Suppose that the coefficients of the splitting method fulfill the classical order conditions for $p \geq 1$. Then, provided that the exact solution is sufficiently regular, the following error estimate holds

$$\| u_n - u(t_n) \|_X \leq C \| u(0) - u_0 \|_X + C h^p, \quad 0 \leq nh \leq T.$$
Convergence analysis

Main tools.

- Formal calculus of Lie derivatives
- Nonlinear variation-of-constants formula
- Stepwise expansion of exponential involving nonlinear part
- Quadrature formulas for multiple integrals
- Bounds for iterated Lie commutators (Sobolev embedding)

Remark. Convergence analysis for high-order splitting methods applied to MCTDHF equations, see Koch, Neuhauser, Th. (2009).
Illustration. Perform long-term integration of the GPE (breathing) with $\vartheta = 1$ up to $T = 400$. For a prescribed tolerance display optimal performances (smallest values of required number of basis functions and spectral transforms).

Numerical solution $\psi(x_1, 0, t)$ of the GPE (breathing) for $\vartheta = 1$ up to a final time $T = 13$. Slice along $x_2 = 0$.
Long-term integration (Breathing)

<table>
<thead>
<tr>
<th>tol.</th>
<th>method</th>
<th>d.o.f.</th>
<th>#transf.</th>
<th>Δpn</th>
<th>ΔE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$< 10^{-2}$</td>
<td>Hermite 2</td>
<td>32 × 32</td>
<td>16384</td>
<td>$2.6 \cdot 10^{-11}$</td>
<td>$4.2 \cdot 10^{-6}$</td>
</tr>
<tr>
<td>$< 10^{-2}$</td>
<td>Fourier 2</td>
<td>64 × 64</td>
<td>32768</td>
<td>$3.6 \cdot 10^{-13}$</td>
<td>$1.6 \cdot 10^{-6}$</td>
</tr>
<tr>
<td>$< 10^{-2}$</td>
<td>Hermite 4</td>
<td>32 × 32</td>
<td>6144</td>
<td>$9.7 \cdot 10^{-12}$</td>
<td>$1.1 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>$< 10^{-2}$</td>
<td>Fourier 4</td>
<td>64 × 64</td>
<td>12288</td>
<td>$1.7 \cdot 10^{-13}$</td>
<td>$9.1 \cdot 10^{-7}$</td>
</tr>
<tr>
<td>$< 10^{-2}$</td>
<td>Hermite 6</td>
<td>32 × 32</td>
<td>14337</td>
<td>$2.3 \cdot 10^{-11}$</td>
<td>$3.2 \cdot 10^{-8}$</td>
</tr>
<tr>
<td>$< 10^{-2}$</td>
<td>Fourier 6</td>
<td>64 × 64</td>
<td>7169</td>
<td>$1.1 \cdot 10^{-13}$</td>
<td>$6.8 \cdot 10^{-6}$</td>
</tr>
<tr>
<td>$< 10^{-2}$</td>
<td>Hermite rk4</td>
<td>32 × 32</td>
<td>65532</td>
<td>$2.1 \cdot 10^{-5}$</td>
<td>$1.2 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>$< 10^{-2}$</td>
<td>Fourier rk4</td>
<td>64 × 64</td>
<td>524284</td>
<td>$6.4 \cdot 10^{-10}$</td>
<td>$3.7 \cdot 10^{-9}$</td>
</tr>
<tr>
<td>$< 10^{-2}$</td>
<td>Hermite ode45</td>
<td>32 × 32</td>
<td>208376</td>
<td>$2.6 \cdot 10^{-8}$</td>
<td>$1.5 \cdot 10^{-7}$</td>
</tr>
<tr>
<td>$< 10^{-2}$</td>
<td>Fourier ode45</td>
<td>64 × 64</td>
<td>1132436</td>
<td>$5.6 \cdot 10^{-12}$</td>
<td>$3.1 \cdot 10^{-11}$</td>
</tr>
<tr>
<td>$< 10^{-4}$</td>
<td>Hermite 4</td>
<td>32 × 32</td>
<td>12288</td>
<td>$1.9 \cdot 10^{-11}$</td>
<td>$2.6 \cdot 10^{-9}$</td>
</tr>
<tr>
<td>$< 10^{-4}$</td>
<td>Fourier 4</td>
<td>128 × 128</td>
<td>12288</td>
<td>$1.6 \cdot 10^{-12}$</td>
<td>$1.8 \cdot 10^{-9}$</td>
</tr>
<tr>
<td>$< 10^{-6}$</td>
<td>Hermite 4</td>
<td>64 × 64</td>
<td>24576</td>
<td>$1.0 \cdot 10^{-10}$</td>
<td>$1.1 \cdot 10^{-10}$</td>
</tr>
<tr>
<td>$< 10^{-6}$</td>
<td>Fourier 4</td>
<td>128 × 128</td>
<td>49152</td>
<td>$6.7 \cdot 10^{-12}$</td>
<td>$1.2 \cdot 10^{-11}$</td>
</tr>
<tr>
<td>$< 10^{-6}$</td>
<td>Hermite 6</td>
<td>64 × 64</td>
<td>28673</td>
<td>$1.2 \cdot 10^{-8}$</td>
<td>$2.1 \cdot 10^{-10}$</td>
</tr>
<tr>
<td>$< 10^{-6}$</td>
<td>Fourier 6</td>
<td>128 × 128</td>
<td>28673</td>
<td>$4.2 \cdot 10^{-12}$</td>
<td>$8.7 \cdot 10^{-12}$</td>
</tr>
<tr>
<td>$< 10^{-6}$</td>
<td>Hermite rk4</td>
<td>64 × 64</td>
<td>524284</td>
<td>$6.4 \cdot 10^{-10}$</td>
<td>$3.7 \cdot 10^{-9}$</td>
</tr>
<tr>
<td>$< 10^{-6}$</td>
<td>Fourier rk4</td>
<td>128 × 128</td>
<td>524284</td>
<td>$6.4 \cdot 10^{-10}$</td>
<td>$3.7 \cdot 10^{-9}$</td>
</tr>
<tr>
<td>$< 10^{-6}$</td>
<td>Hermite ode45</td>
<td>64 × 64</td>
<td>509816</td>
<td>$3.6 \cdot 10^{-10}$</td>
<td>$2.1 \cdot 10^{-9}$</td>
</tr>
<tr>
<td>$< 10^{-6}$</td>
<td>Fourier ode45</td>
<td>128 × 128</td>
<td>1411448</td>
<td>$2.2 \cdot 10^{-12}$</td>
<td>$1.1 \cdot 10^{-11}$</td>
</tr>
</tbody>
</table>
Conclusions

Theoretical aspects.
- Numerical methods
- Ordinary differential equations
 (Lie derivatives, BCH, etc.)
- Functional analysis

Practical aspects.
- Practical implementation in 3D